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Abstract 

Concerns on urban environmental quality, increasing knowledge on impacts of climate 

change and pursuit for sustainable development have increased the need for past, current 

and future knowledge on the transformation of remnant urban fringe green ecosystems. 

Using land-cover change modeler and a Markov chain analysis on multi-temporal SPOT 

imagery, this study sought to determine a twenty two-year past and future land use and land 

cover trend and its implication on green spaces in an eThekwini Municipal Area’s peripheral 

settlement. Results show a consistent pattern of decline in land use and land cover types 

associated with green spaces and an increase in impervious surfaces. The study confirms 

recent urban bio-physical transformation and anticipated increased pressure on peripheral 

urban green spaces in eThekwini Municipality. These changes can be attributed to natural 

urban growth and government led efforts like the Reconstruction and Development 

Programme. Findings in the study highlight the challenges faced by eThekwini Municipality, 

and indeed other South Africa’s urban areas in maintaining urban green spaces and 

mitigating related implications like those associated with climate change. This study further 

demonstrates the value of multi-temporal remotely sensed datasets in planning, optimization 

and sustainable management of urban landscapes. 

    

1. Introduction   

Global population has increased significantly since mid-20th century. Accompanying this 

growth has been increased urbanization.  By the end of the last decade for instance, the 

world’s urban population had reached 2.9 billion or 40% of the world’s 6.1 billion people 

(Van Zyl et al., 1997; Martindale, 2008). In sub-Saharan Africa, this population is expected 

to double to more than 4.9 billion, an equivalent of 52-60% by 2030 (Keiser, et al., 2004; 
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Odindi et al., 2012). The rapid urban population growth has led to significant urban 

landscape transformation mainly through  conversion of green environment to impervious 

and built-up surfaces (Palmer & Ainslie, 2005; Jensen, 1996; Odindi et al., 2012). Such green 

environments are increasingly becoming valuable due to emerging concerns on urban 

environmental quality, climate change and increasing quest for sustainable urban living.  

Urban environmental planning and designing mitigation measures require knowledge of 

past, current and future Land-Use-Land-Cover (LULC) transformations. Traditionally, this 

information has been derived from field surveys and aerial photo interpretation. The use of 

these techniques is however often time consuming, labour-intensive and costly (Peerbhay et 

al., 2013; Wu et al., 2013), consequently, these techniques are not considered ideal for 

quantification and analysis of the often highly dynamic urban LULC processes (Liverman 

1998; Coppin et al., 2004; Kavzoglu & Colkesen 2009).  

Currently, there is a large body of valuable literature on urban LULC change and its 

implication on green spaces (see; Abbott & Douglas, 2003; Mundia & Aniya, 2005; Deng et 

al., 2009 among others). Whereas existing literature has commonly focused entire urban 

landscapes, typically, the highest rate of urban LULC transformation occurs at the urban 

fringes. 

According to Small and Miller (1999), urban landscapes, particularly the transformation of 

urban greenery, significantly influence earth systems within and beyond their geographical 

boundaries. In this regard growth and densification of urban fringes and consequent loss of 

green spaces has made monitoring of sub-urban areas increasingly important for 

understanding the landscape characteristics as a basis for sustainable urban landscape 

management. In this study we determine and predict the influence of LULC transformation 

on green spaces in a location within the Ethekwini Municipal Area (EMA) fringe using multi-

temporal imagery and Markov prediction model.  

 

2. The study area  

This study was conducted within the jurisdiction of Ward 7 of the EMA, KwaZulu-Natal 

Province, South Africa (Figure 1). The wider municipal area is characterised as urban and is 

the second largest manufacturing area in the country. The EMA is made up of Durban, the 

third largest city in South Africa and adjacent smaller towns and accommodates 33% and 7% 

of the province and country’s population respectively (Ethekwini Municipality, 2013). Based 

on the 2011 population survey, the municipality has 3.5 million people and covers 2,292 km2 
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at 1513 people/km2 (Board, 2008; Statistics, 2012). According to the  Ethekwini Municipality 

(2013), EMA’s central urban core in the Durban city is the most densely populated and 

accommodates 35% of the area’s population.  

As a result of increasing urbanization, most of the terrestrial habitat within the EMA has 

been significantly transformed (Ethekwini Municipality, 2013). The transformation of the 

existing green spaces has further been compounded by invasive plant species, pollution and 

impacts associated with climate change. Despite these threats, active conservation measures 

mainly by EMA’s Durban Metropolitan Open Space System (D’MOSS) and other 

stakeholders, portions of the areas greenery are under active conservation and remain in good 

ecological condition.  

 

 

Figure 1: Location of the study area. 

3. Material and methods 

Three sets of multi-temporal SPOT-4 imagery acquired in 2000, 2006 and 2011 detailed in 

Table 1 were used for this study.  The choice of relevant images was determined by their 

availability in the supplier’s archives, amount of cloud cover and centennial or near 

centennial acquisition. Furthermore, unlike lower spatial resolution imagery like Landsat and 

ASTER, SPOT’s higher spatial resolution was considered more suitable for mapping the 

small spatial extent. According to El Hajj et al. (2008) and Davranche et al. (2010),  the 



South African Journal of Geomatics, Vol. 3, No. 2, August 2014 

 

148 
 

image’s 10meter spatial resolution makes it ideal for temporal and multi-temporal LULC 

mapping, change detection and standing green biomass estimation. Whereas a uniform multi-

temporal difference between the image datasets could have been ideal, the 2000-2006 and 

2006-2011 year difference were used because a 2012 image was unavailable. In addition to 

the satellite imagery, Ground Control Points (GCPs), field observations, expert knowledge, 

existing land cover maps and associated aerial photographs were used for analysis and 

ground validation.  

 

Table 1: Image acquisition dates and characteristics. 

          

Image Path/Row           Image centre                  Resolution   

        Date      Time Spatial  Spectral 

2000 141/409 -29o43'12"/30o58'12" 14-Mar 07:49:06 10 m 4 bands 

2006 141/408 -29o57'36"/31o01'48" 07-Mar 07:48:18 10 m 4 bands 

2011 141/410 -29o57'36"/30o54'00" 29-Mar 07:23:28 10 m  4 bands 

 

3.1 Image registration and pre-processing 

Image pre-processing allow for conformity between multi-temporal imagery necessary for 

quantification and spatial comparisons (El Hajj et al., 2008). Spatial and radiometric image 

pre-processing ensures that mis-calculations that may arise from image brightness are 

reduced. In this study, the three sets of images were geo-rectified and radiometrically 

corrected. The 2000 and 2006 images were co-registered to the 2011 SPOT-4 image to less 

than half a pixel Root Mean Squares Error (RMSE). To ensure comparability of the multi-

temporal imagery, atmospheric normalisation using the relative dark object subtraction 

(DOS) approach was adopted as described by  Furby & Campbell (2001), Du et al. (2002) 

and El Hajj et al. (2008). In this study, tarred roads, with average Digital Number (DN) 

values of 12, 7 and 9 for the 2000, 2006 and 2011 respectively were regarded as darkest. 

Consequently, the 2006 image was used for atmospheric normalisation.  

Weng (2002) and Xiuwan (2002) note that a hybrid approach that combines unsupervised 

and supervised classification techniques is commonly adopted to improve the accuracy of 

LULC classes. Consequently this approach was adopted for in study. Firstly, an iterative self-

organizing cluster analysis (ISOCLUST) unsupervised classification scheme was performed 

on the image datasets to provide a multi-temporal overview of the different clusters in the 
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study area. This approach is reliant on an aggregation of image pixels based on naturally 

associated clusters (IDRISI, 2006).  

Based on the multi-temporal imagery and associated ortho-rectified 0.3m spatial resolution 

aerial photographs, the 2000 provincial LULC map and on-site verification on the non-

transformed LULC types, five general LULC types; Built-up, Degraded grassland, Forest, 

Grassland and Thicket were identified and labelled. For each of the LULC types, points from 

the associated aerial photos were generated using a stratified random sampling scheme. As 

described by Beyer (2004) and Mutanga et al. (2012), the generated points were split into 

training and validation datasets using the Hawths analysis tool. A confusion matrix was then 

generated to determine the classification accuracy of LULC types.  

To achieve the aforementioned objectives, a ‘from-to’ post-classification comparison 

change detection procedure using Land Change Modeller (LCM) and Markov chain process 

were employed. This techniques rely on separate multi-temporal image classification and 

subsequent image comparison  (Deng et al., 2008; Odindi et al., 2012). According to 

Eastman (2006) and Bangamwabo (2010), the LCM is suited for analysis and prediction of 

LULC types and evaluation of implications of the changes on the entire ecosystem. Based on 

a landscape prediction tool, the LCM can be used to detail spatial increase and loss, net 

change, net change drivers, tendencies of change and landscape prediction (IDRISI, 2006; 

Mhangara, 2011).  

The Markov chain projection model was implemented on the three classified LULC maps. 

This model is a randomised stochastic process that relies on probabilities rather than 

certainties (Lambin, 1994).  According to Iacono et al. (2012), the model is based on the 

assumption that a future state (t2) can be determined by its current state (t1). In LULC 

modelling, the process determines the t1 to t2 LULC distribution using a transition matrix. 

This can be expressed as; 

                                                         𝑣𝑡2 = 𝑀 × 𝑣𝑡1                                                              [1] 

Where vt1 is the LULC proportion vector input, vt2 is the LULC proportional vector output 

and M is the m×m transition matrix for the time difference ∆𝑡 = 𝑡2 − 𝑡1. 

In LULC prediction, change based on ∆t shows the quantity of land that is expected to 

transform from one class to another over a specified time period while the matrix indicates 

the probability of inter-class transitions among different LULC types (Veldkamp & Lambin, 

2001; Eastman, 2006; IDRISI, 2006).  Lambin et al. (1999) and Petit et al. (2001), note that 
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LULC change is considered to be temporally persistent over 10-15 year intervals, thus an 

eleven year period (2011-2022) illustrated in this study  was deemed to be within the required 

range.  In this study predictions were based on the state of LULC in 2000, 2006, and 2011.  

According to Mubea et al. (2011) and Petit et al. (20010, Markov models have several 

advantages that include scientific compactness and easy execution with empirical LULC data 

and generation of simple transition summaries valuable in change analysis seldom achieved 

by other types of models. However, whereas the use of Markov model has become popular, 

its value is constrained by two major limitations. Firstly, the elimination of stationery 

supposition in first-order chains, while possible in theory, is difficult to analyse and 

computationally process. Secondly, the validation of Markov models depends on forecast of 

transformation over time, consequently, until the transformations occurs, the validation 

process may be unattainable (Mundia et al., 2011).  

 

4. Results 

Based on the hybrid classification using supervised and unsupervised classification, field 

visits and LULC types identified from the 2000 South African  national LULC classification 

scheme, five major LULC’s  (Forest, Thicket, Grassland, Degraded grassland and Built-up) 

were generated.  Reliable overall classification accuracies of over 86% were achieved on all 

the datasets. These accuracies meet the minimum threshold of 85% stipulated by the United 

States Geological Survey classification scheme (Anderson et al., 1976; Congalton & Green, 

1999). 

During the study period, higher transformations were experienced in Grassland, Degraded 

Grassland and Built-up areas while lower transformations were experienced in Forest and 

Thicket (Figure 2). Built-up areas, Forest and Degraded grassland had the least covers in 

2000, 2006 and 2011 respectively. The highest net decline in LULC types were experienced 

in 2000-2006 (Grassland) and 2006-2011 (Degraded grassland) (Figure 2).  
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Figure 2: Multi-temporal LULC transformations. 

 

Based on the Multi-temporal LULC transitions using the LCM, between 2000-2006, 

Grassland, Thicket, Degraded grassland and Grassland had the highest contribution to Built-

up, Grassland, Thicket, Forest and Degraded grassland respectively (Table 2). During the 

2006-2011 period, Forest had the highest contribution to Built-up and Grassland areas while 

areas covered by Degraded grassland had the highest contribution to Thicket, Forest and 

Grassland (Table 2). 
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Table 2: Multi-temporal LULC transition area. 

  

 

      

From LULC To LULC 
2000 to 

2006  

2006 to 

2011  

2000 to 

2011  

    Area (ha.) Area (ha.) Area (ha.) 

Grassland Built-up 744.56 433.24 565.32 

Thicket Built-up 381.68 645.32 638.2 

Forest Built-up 405.08 960.64 372.52 

Degraded grassland Built-up 447.12 333.16 818.24 

Built-up Grassland 75.88 172.8 197.36 

Thicket Grassland 456.48 553.8 614 

Forest Grassland 329.68 688.16 399.08 

Degraded grassland Grassland 784.4 249.88 957.08 

Built-up Thicket 268.96 412.84 295.16 

Grassland Thicket 556.4 287.92 687.16 

Forest Thicket 313.72 210.4 334.08 

Degraded grassland Thicket 630.52 824.48 573.76 

Built-up Forest 143.76 820.72 303.08 

Grassland Forest 391.56 176 780.84 

Thicket Forest 498.76 316.72 394.48 

Degraded grassland Forest 711.8 936.92 489.64 

Built-up Degraded grassland 355.36 611.24 109.44 

Grassland Degraded grassland 906.28 112.52 431.6 

Thicket Degraded grassland 498.84 145.6 235.44 

Forest Degraded grassland 405.48 74.48 253.76 

          

Analysis based on the Markov transition probability matrix showed a general higher 

chance for transformation in Built up/Degraded grassland, Grassland/Degraded grassland and 

Grassland/Built-up in 2011 (Table 3). In 2016, there was an anticipated higher transformation 

for Degraded grassland/Grassland, Thicket/Built-up and Thicket/Grassland while in 2022, 

higher transformations were expected for the Forest/Built-up, Degrade/Forest and 

Grassland/Grassland (Table 3).    
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Table 3: Markov transition probability matrix 2011, 2016 and 2022 generated from LULC 

maps of 2000-2006, 2006-2011 and 2000-2011. 

    

 

      

 Given                                  Probability of changing to: in 2011   

2000-2006 Built-up Degraded grassland Forest Grassland Thicket 

Built-up 0.2073   0.3338 0.1350 0.0710 0.2526 

Degraded 

grassland 0.1473 0.1522 0.2345 0.2584 0.2077 

Forest 0.2419 0.2422 0.1317 0.1969 0.1874 

Grassland 0.2564 0.3121 0.1349 0.105 0.1916 

Thicket 0.1713 0.2239 0.2238 0.2049 0.1761 

2006-2011                              Probability of changing to: in 2016 

Built-up 0.1608 0.1015 0.2810 0.1830 0.2726 

Degraded 

grassland 0.2651 0.0804 0.1586 0.3100 0.1859 

Forest 0.2251 0.1534 0.1784 0.2412 0.2019 

Grassland 0.1965 0.1500 0.2714 0.1433 0.2388 

Thicket 0.2851 0.1052 0.1762 0.2743 0.1591 

2000-2011                              Probability of changing to: in 2022 

Built-up 0.0880 0.2763 0.3711 0.0781 0.1866 

Degraded 

grassland 0.1252 0.1194 0.3519 0.0939 0.3097 

Forest 0.4803 0.0372 0.0333 0.3440 0.1052 

Grassland 0.2473 0.0642 0.1005 0.4236 0.1644 

Thicket 0.3021 0.0682 0.1483 0.2593 0.2222 

 

The LULC in the 2000 and 2006 LULC classes were used to determine the expected 

transitions in 2011, the 2006 and 2011 were used to determine the expected transformation in 

2016 and the 2000 and 2011 were used to determine the expected 2022 transformation 

(Figure 3, 4 and 5).  In 2011, 2016 and 2022, the expected transformation in Built-up and 

Grassland areas showed consistent increase while areas covered by Degraded grassland 

classes showed a consistent decline (Table 4). There was inconsistency in areas covered by 

Forest and Thicket LULCs (Table 4). This can be attributed to the different rates of 

settlement and the reforestation initiatives during the study periods. Based on the determined 

and projected LULC types, green spaces (Forest, Grassland and Thicket) and non-green areas 

(Built-up and Degraded grassland) were grouped as Boolean classes (Figure 3 and 4). 
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Figure 3: Spatial LULC for 2000 (a), 2006 (b), 2011 (c) and Boolean green spaces cover for 

2000 (d), 2006 (e) and 2011 (f). 

 

Table 4: Expected LULC transitions pixels in Markov transition probability matrix generated 

from LULC maps of 2000 and 2006, 2006 and 2011. 
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    The projected multi-temporal LULC showed a general increase in the area covered by 

built-up and degraded grasslands (Figure 4 a-c). Since the rest of the LULC types constitute a 

form of green spaces, it can be concluded that multi-temporal increase in Built-up areas seen 

in Figure 4 a-c has led to decline in green spaces.  

 

    

 

Figure 4: Projected LULCs for 2011 (a), 2016 (b) and 2022 (c). 

 

To show the projected implication of settlements on the study area’s green spaces, a Boolean 

image of non green spaces (Built-up and Degraded Grassland) and green spaces (Forest, 

grassland and Thicket) was generated (Figure 5). In the Boolean image, there was a projected 

increase in non green spaces and decline green spaces (Figure 5).    
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Figure 5: Boolean classes green spaces projections in  2011 (d), 2016 (e) and 2022 (f). 

 

5. Discussion 

Up-to-date knowledge on urban landscape transformation and its implication on urban 

greenery, particularly at the most vulnerable urban fringes is critical for informed socio-

economic and environmental decision making (Naveh, 1995). Results in this study show a 

steady decline in the peripheral urban greenery within the EMA. These results are consistent 

with Florgård (2004) who note a more rapid decline in the area’s peripheral natural 

landscape. In most of South Africa’s urban areas, increased transformation of peripheral 

urban landscapes can be directly linked to post 1994 government efforts to formalize 

informal settlements through Reconstruction and Development Programme (RDP) initiatives 

and associated physical infrastructural development (Christopher, 2001; Collinson et al. 

2007; Pillay & Sebake, 2008). 

Based on the LULC categories identified in the study area, there were apparent changes 

LULC in the study area. The expansion of Built-up areas and reduction in Degraded 

grassland and Grassland LULCs (Table 2) are consistent with literature on South Africa’ 
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urban growth and loss of natural landscapes on urban periphery within the EMA (Ethekwini 

Municipality, 2003; SANBI, 2009; Pillay, 2010), and other South African metropolitan areas 

Sihlongonyane (2003) and Odindi et al. (2012). 

The Markov chain prediction model was used to compute LULC transition probabilities 

from the multi-temporal LULC maps. As shown in Tables 3 and 4, the probabilities of LULC 

associated with green spaces changing to other LULC categories in 2016 and 2022 was 

higher, indicating a further decline to that experienced between 2000-2011. The high chance 

of future green spaces transformation results from the losses to Built-up and Degraded 

grassland and indicates a continuous transformation of these critical greeneries. From 2000-

2006 probability matrix, it is evident that the chance of Grassland remaining unchanged is 

lower than the likelihood of this category changing to other LULCs, this represents instability 

in the green spaces. This finding is consistent with the SANBI biodiversity survey report that 

projected future decline in Ethekwini’s greenery (Ethekwini Municipality, 2003; SANBI, 

2009). 

In this study it is assumed that an increase in population and consequent increase in Built-

up density leads to a decline in urban greenery. Firstly, green areas are cleared for 

establishment of physical structures and secondly, lower income settlements may lead to 

destruction of adjacent greenery through among others fuel wood extraction and grazing.  

Due to the value of urban greenery, the transformation experienced in this study highlights 

the challenges faced by the EMA in maintaining urban greenery and therefore mitigating 

socio-ecological challenges including those associated with climate change. In addition to 

determining and projecting peripheral urban transformation, this study highlights the value of 

remotely sensed data set in concert with GIS applications in understanding the transformation 

of urban landscapes. With an increasing understanding of the a nexus between urbanization, 

LULC and ecosystem and environmental processes, understanding past, current and future 

patterns is increasingly becoming important (Gillanders et al., 2008). According to Turner 

(1987), analysis based on remotely sensed datasets represents an emergence of contemporary 

methods valuable in understanding and quantifying the implications of urban landscape 

evolution.  

Whereas remotely sensed data provides rapid generation of LULC maps, the accuracy of 

the LULC maps generated is still often compromised by the spatial and spectral resolution of 

commonly used imagery. In urban landscapes, often characterized by complex landscape 

heterogeneity, new generation imagery like WorldView and RapidEye would be ideal. 
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However, these images are costly and therefore commonly not cost effective in routine urban 

LULC mapping.   

 

6. Conclusion   

This study successfully determined multi-temporal and projected LULC trends in EMA’s 

Ward 7. The findings show that there has been a persistent reduction of the green areas in 

EMA’s periphery. Based on this findings, it can be concluded that most of the greeneries are 

lost due to the built-ups that characterise urban area’s peripheral growth. Although not 

investigated in this study, the existing and predicted loss of green spaces can be attributed to 

the municipality’s densification of the urban core and the spillage of new settlements to the 

urban periphery. Such spillage is often accompanied by requisite physical infrastructure like 

road and retail services that lead to further decline in urban greenery. This study has further 

demonstrated the value of remotely sensed datasets and techniques in determining historical 

and future LULC trends and their implication on urban greenery. These tools offer a viable 

alternative for fast mapping of urban landscapes with reliable accuracy. Such up-to-date 

LULC maps are particularly critical for designing economically and environmentally 

sustainable urban systems.  
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