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Abstract 
An approach to generating accurate image segments for land-cover mapping applications is to 

model the process as an optimisation problem. Area-based empirical discrepancy metrics are used 

to evaluate instances of generated segments in the search process. An edge metric, called the pixel 

correspondence metric (PCM), is evaluated in this approach as a fitness function for segmentation 

algorithm free-parameter tuning. The edge metric is able to converge to user-provided reference 

segments in an earth observation mapping problem when adequate training data are available. 

Two common metaheuristic search functions were tested, namely particle swarm optimisation 

(PSO) and differential evolution (DE). The edge metric is compared with an area-based metric, 

regarding classification results of the land-cover elements of interests for an arbitrary problem. 

The results show the potential of using edge metrics, as opposed to area metrics, for evaluating 

segments in an optimisation-based segmentation algorithm parameter-tuning approach. 

 

1 Introduction 
Object-based image analysis (OBIA) involves the grouping of pixels of similar spectral and 

spatial properties into segments (or objects). These segments are then analysed and classified rather 

than the individual pixels (Navulur, 2006). Generating accurate image segments is, however, 

challenging and image segmentation is a research topic that has gained importance in the remote 

sensing community, mainly due to the advent of very-high resolution (VHR) satellite imagery and 

the popularisation of object-based image analysis (OBIA) approaches (Blaschke, 2010). For VHR 

imagery it has been shown that the spatial aggregation and subsequent attribution of pixel groups 

improves classification and interpretation (Baatz et al., 2008; Lang, 2008; Blaschke, 2010; Addink, 

Van Coillie & De Jong, 2012). However, a poor segmentation often has a negative impact on 

classification accuracy (Navulur, 2006).  

 

Several automated and semi-automated image segmentation methods are available for generating 

image objects in a remote sensing context. For example, Hay et al.’s (2005) unsupervised process 

uses measures of empirical goodness to select optimal “scales” for generating multi-scale image 
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segments. In contrast, Zhang & Maxwell (2006) proposes a semi-automated, parameter-tuning 

system functioning with a region-merging segmentation. Their workflow starts by over-segmenting 

an image, then all the segments comprising a feature of interest are selected by the user and a fuzzy 

inference system is used to predict the appropriate set of parameters that result in the segmentation 

of the selected subsegments as a single segment. 

 

Osman et al. (2009) developed a semi-automated segmentation-generating system that operates 

on local-only features. The approach performs segmentation on input data transformed by a 

maximum-margin classifier. The system asks the user to digitise a limited number of lines within 

the feature of interest, as well as a few lines on the outside of the feature. The system automatically 

transforms the input data, followed by unsupervised clustering of pixels in the input samples and a 

separation of clusters via support vector machine (SVM). Finally, a region-growing algorithm is 

applied, with seed pixels in the feature of interest, to generate the segment. 

 

Another approach to image segmentation is to model the generation of segments as an 

optimisation or search problem (Bhanu et al., 1995; Pignalberi et al., 2003; Feitosa et al., 2006; 

Fredrich & Feitosa, 2008; Lübker & Schaab, 2009; Derivaux et al., 2010). The process begins with 

a reference set of desired optimal output or segments, after which a search method is invoked that 

traverses the parameter space of the segmentation algorithm, searching for results most closely 

resembling the user-provided reference. Because segmentation is typically computationally 

expensive, population-based stochastic search methods, such as genetic algorithms, are 

recommended to produce usable results in a relatively short time. 

 

Different categories of methods (even methods within the same category) that measure segment 

quality emphasise different aspects when evaluating segments. The ability of a search heuristic to 

find a suitable parameter set for a given task depends on the ability of discrepancy measures to 

correctly – as perceived by the users of the segments – gauge the quality of the generated segments. 

A specific metric (e.g. edge, area, data clustering or hybrid) may not be optimal for all types of 

features (Weidner, 2008). The amount and quality of training information also influences the 

performance of the search heuristic (Feitosa et al., 2006). Furthermore, results depend on the 

intrinsic ability of the search heuristic to effectively traverse the search surface created by the 

fitness function. 

 

Area metrics, such as the larger segments booster (LSB) (Fredrich & Feitosa, 2008) or object-

level consistency error (Polak et al., 2009), measure the correspondence of segment areas. The use 

of area metrics to guide the search for optimal segmentation parameters is well documented 

(Derivaux et al., 2010; Feitosa et al., 2010), whereas edge-based metrics have only been used as 

methods to judge segment quality (Prieto & Allen, 2003; Weidner, 2008) and not as metrics to 

guide the search for optimal segmentation algorithm parameters. For a given area, edge metrics 

generate segment borders, irrespective of the features of interest. When using an edge metric, a user 
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is required to delineate the perceived optimal segments in a specific area and to have knowledge of 

the behaviour of the specific algorithm. An area metric only requires the accurate delineation of 

features of interest, an exercise that is not always objectively possible. 

 

This paper reports on an edge metric used as a fitness function and which converges to synthetic 

(reachable) and user-provided reference segments.  A case study illustrates that the edge metric 

generates segments more closely resemble the user-provided reference segments compared to an 

area metric that compensates for over- and under-segmentation.   

 

2 Materials and methods 
The next section overviews the general approaches to searching for segmentation algorithm 

parameters. The pixel correspondence metric (PCM) (Prieto & Allen, 2003) and an area metric 

(LSB) is compared.  Section 2.2 describes the data used and the application-specific characteristics 

involved.  The experimental methodologies for evaluating an edge metric as an adequate fitness 

function for segmentation algorithm parameter tuning are explained in Section 2.3.   
 

2.1 Semi-automated image segmentation 

2.1.1 Segmentation algorithm parameter tuning  

The search methodology to find satisfactory segmentation algorithm parameters using segment 

metrics is presented in Figure 1. 

 

Generate initial population 

Determine the quality of the 
solutions of the population 

Termination condition 
reached? 

Return best results 

Create a new population via a 
heuristic using the results of the 
quality evaluation 

Yes

No

Fitness function 

 
Figure 1. General search methodology for finding segmentation algorithm parameters 

 

Although the methodology can be based on any search function, stochastic population-based 

search strategies are preferred for computational efficiency.  Each agent or member of the search 

population contains variables or values representing the segmentation algorithm parameters.  At 

each evaluation step of the search algorithm, an image is segmented using the parameters carried by 

the specific agent.  The resulting segments are evaluated against the user-provided set of reference 

segments via a fitness function (described in Section 2.1.3). In this case the fitness function 
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comprises empirical discrepancy metrics (area and edge). The algorithm terminates after a 

predefined number of iterations. The best results of the search procedure are returned as output 

constituting a set of segmentation algorithm parameters that, when used with the segmentation 

algorithm (described in Section 2.1.2), most accurately approximates the user-provided reference 

segmentation set. 

 
2.1.2 Region-merging segmentation 

Multiresolution segmentation (MRS), a region-merging segmentation algorithm variant, was 

used in this work (Baatz & Schäpe, 2000). MRS has seen widespread implementation in earth 

observation image processing applications (Blaschke, 2010). The algorithm contains several 

subheuristics that influence the region-merging process. In addition, the behaviour of these 

components is controlled by user-adjustable parameters. The algorithm contains three parameters, 

namely: 

 A scale parameter that is a unitless measure governing the relative segment sizes; 

 A shape-colour parameter that controls the relative importance of spectral and segment 

shape properties for region merging; 

 A compactness-smoothness parameter that controls the relative influence that these two 

shape properties have on region merging. 

 

In addition to these parameters, the relative importance that input bands have on region-merging 

is encoded as additional weight parameters.  Thus, for a three-band image, the algorithm will have 

six controlling parameters. (See Baatz & Schäpe (2000) for a full formulation of the algorithm.) 

 
2.1.3 Edge and area metrics 

The PCM (Prieto & Allen, 2003) evaluates the similarity of two edge images. Compared to other 

common edge metrics, the PCM incorporates a measure of pixel offset for edges that do not match 

precisely. The metric also allows for weighted or greyscale edge matching. In this paper a binary 

version of this metric is implemented. 

 

The PCM matches pixels from the reference image with pixels from the generated image. Pixels 

that are not matched from either the reference or the generated images are counted as errors. If 

multiple pixels from an image match with one pixel from the other image, the pixel pairing that 

minimises the metric is selected. The PCM also takes the spatial offset of matched pixels into 

account. 

The cost of a possible pixel match between a hypothetical reference and a generated pixel is 

defined as: 

 
                                                             [1] 

 

where i and j are the row and column numbers of the reference image with (i,j) representing the 
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corresponding pixel. The same holds for k and l. The value returned by  is the 

chessboard distance between the two given pixels. E is a scaling function in the range [0...1]. In this 

study pixels within a five-pixel chessboard distance of each other are considered for matching. E 

scales this value accordingly. A cost value of 0 designates an exact match of a pixel pair while a 

cost value of 1 is a match with a chessboard distance separation of 5 between pixels. 

 

The PCM metric is defined as: 

 

                                                [2] 

 

where g is the reference image and r the generated reference image. The element  signifies 
the number of pixels in both images (that are not zero or blank).  denotes the cost of 

the optimal matching of all pixels in the images g and r. A PCM value of 100 implies no matching 

between the imagery and a value of 0 implies a perfect match. 

 
Finding the optimal matching ( ) that will minimise the PCM constitutes a bipartite graph 

matching problem (Prieto & Allen, 2003). The nodes of a bipartite graph represent pixels, while 

vertices indicate the cost of a possible match. In bipartite graph matching, a node may only be 

attached to one vertex. The aim of solving such a problem is to match all nodes using the least 

expensive vertices. This work uses the Hungarian algorithm (also called the Munkres algorithm; 

Munkres, 1957) to search for the optimal matching of pixels. Bipartite graph matching is 

computationally expensive so that less precise but faster matching strategies (approximation 

algorithms) may be needed for the operational use of such a metric in a search procedure. 

 

The LSB is an area-based empirical discrepancy metric containing mechanisms to compensate 

for over- and under-segmentation.  The LSB metric is written as: 

 

                                           [3] 

 

where n symbolises the number of reference segments delineated by the user.  #(Si ) is the area 

(in pixels) of the ith reference segment.  SO(P)i is the set of segments produced by the segmentation 

algorithm and at least half of its pixels intersect Si.  P is the parameter set used in the segmentation 

algorithm.  Further, fpi is the number of pixels in SO(P)i that do not belong to the ith reference 

segment, thus called false positives.  And fni is the number of pixels in the ith reference segment 

that do not belong to SO(P)i, thus called false negatives. The bi variable is the number of border 

pixels in SO(P)i that intersects the ith reference segment area.  NS is the number of empty SO(P)i 

(empty generated segments). Figure 2 illustrates some of the terminology of the LSB metric. 
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False 

ti

False 

Figure 2. Larger segments booster (LSB) metric (after Fredrich & Feitosa, 2008) 

 

This metric favours generated segments with a tight fit to the reference segment.  The parameter 

b provides an offset to this notion by penalising a parameter set for over-segmentation by counting 

the pixels in the intersecting borders of the reference segment. A prime advantage of the LSB 

metric is that it does not assume that a single generated segment will be paired with a user created 

reference segment.  Feitosa et al. (2009) offer a quantitative comparison of the abilities of the LSB 

and reference-bounded segments booster metrics for segmenting urban land-cover features. 

 
2.2 Study area and data 

The study area (Figure 3) consists of a single SPOT 5 scene (www.spotimage.com) (identifier 5 

119-418 06/11/07 08:49:26 2 J) of an area east of Cape Town. The scene was captured on 7 

November 2006 and covers an area of roughly 60 x 60km. The scene location was selected to cover 

a large portion of the Cape thicket habitat as described by Campbell (1985).  

 

The SPOT 5 scene was geometrically corrected (orthorectified) using PCI Geomatica 10.2 

software, while radiometric, atmospheric and topographic effects were corrected using ATCOR3. 

ATCOR3, as implemented in PCI Geomatica 10.2, was chosen due to the mountainous nature of the 

study area (Richter & Schläpfer, 2011). A 5m-resolution digital elevation model (DEM), 

interpolated from 1:10 000 contour and spot height data, was used as input to ATCOR3 and the 

orthorectification. Statistical image fusion of the panchromatic and multispectral bands was 

performed using PANSHARP software. 

 

2.3 Methodology 

The PCM edge metric is tested as a fitness function in an evolutionary search method for its 

ability to effectively guide the search procedure as reference for applicable problems. The test is 

conducted by providing the segmentation algorithm parameter search heuristic with a reference 

generated by the segmentation algorithm itself to ensure that the reference can be accurately 

replicated by the algorithm (Feitosa et al., 2006), as opposed to a user-delineated reference. 
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Figure 3. Study area showing the extent of the selected SPOT 5 scene 

 

Two search heuristics, namely self-adapting differential evolution (DE; Brest et al., 2006) and 

particle swarm optimisation (PSO) (Kennedy & Eberhart, 1995) were implemented in this 

experiment. Both heuristics were given 60 agents and 15 generations to explore the parameter space 

so totalling 900 segmentation and evaluation runs. The metaparameters of DE (Brest et al., 2006) 

and PSO (Vesterstroem & Thomsen, 2004) were set to default values that the literature recommends 

for unseen problems. 

 

Two regions are investigated, namely an area with agricultural-viticultural fields displaying 

distinct edges on most features, and a mountain slope with Cape thicket patches displaying less 

distinct edges on arbitrary land-cover elements of interest.   illustrates the regions selected 

for this experiment. 

Figure 4

 

Three different image subsets (with 300 x 300, 200 x 200 and 100 x 100 pixel dimensions) of 

these areas were used to investigate the effect of reference sample size on the performance of the 

search heuristic.  The subsets were named fields_100, fields_200, fields_300, natural_100, 

natural_200 and natural_300 to correspond with the physical area under observation and the size of 

the image.  The suffixes DE and PSO were added to the subset names to denote the type of search 

heuristic used.  A lossy image-splitting function is used to reduce the computational load of the 

bipartite graph matching on the larger imagery. 
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Figure 4. Fields and natural areas with differently sized subsets used in the PCM suitability test 

 

Conducting graph matching with a theoretical upper limit of 90 000 (300 x 300 pixel images) 

vertices at each iteration of the search algorithm are computationally expensive and would probably 

not be done in practice.  Agents were consequently reduced to thirty for the 300 x 300 imagery to 

reduce computational loads. The fitness trace of the fittest agent was recorded as the search 

proceeded in each experiment.  Each experiment was conducted five times to get a measure-average 

value. 

 

Algorithm-generated segments, instead of user-delineated features, were specified as reference. 

The segmentation algorithm’s (Baatz & Shape, 2000) arbitrarily chosen parameters were scale (30), 

shape-colour (0.5), compactness-smoothness (0.5) and the original SPOT 5 image bands 1 to 3 with 

a weight of 0.7 for all three bands.  The segments generated by this parameter set were taken as the 

optima for a hypothetical problem, irrespective of land-cover elements present in the images.  The 

search bounds for the scale parameter were set to [20...50] and for the other five parameters to 

[0.2...0.9].  In total, 60 parameter search experiments were executed (10 experiments for each scene, 

using two different search algorithms). 

 

The PCM and LSB metrics are also compared quantitatively based on classifier accuracies for the 

particular problem of generating segments over non-homogeneous features with weak edges 

displaying some variation in feature size. Cape and Riparian Thicket patches of varying geometric 

characteristics (region of interest sizes varying from 50 x 50 to 150 x 150 pixels) are selected as the 

objective of a one-class classification problem. A small region directly east of Stellenbosch, South 

Africa (3171 x 2265 pixel dimensions) is used for input data. 

 

An automatic classifier parameter tuning and attribute subset selection tool (Fourie, Van Niekerk & 

Mucina, 2011), operating with both fixed and variable attribute sets, is used to obtain an indication 

of maximum achievable classifier accuracy, using the PCM and LSB generated parameter 
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sets/segments. A particle swarm search heuristic using ten-fold cross-validation is employed to tune 

a one-class SVM. Seven segment attributes judged to hold discriminative value for this arbitrary 

problem were selected for use in this experiment. The classification experiment was conducted 25 

times. The PCM and LSB metrics are compared indirectly according to the classification 

performance of their resulting segment sets. 

 

 

3 Results and discussion 

The fitness values obtained in the 60 experiments are summarised in Table 1 (segmentation 

algorithm parameters are also provided). The values are the average of five experiments and the 

standard deviation over the five experiments are prefixed by ‘±’.  The reference values of the 

segmentation algorithm parameters are listed below the fitness values.  The row of emboldened 

values indicates the average parameter sets with the closest match to the reference.  A fitness value 

of 0 corresponds to the reference. 

  
Table 1. Mean fitness values and segmentation algorithm parameters by obtained running the 
segmentation algorithm search heuristic over the six experimental images 
 

Experiment Fitness Scale 
Shape-
Colour 

Compactness-
smoothness 

Band 1 
weight 

Band 2 
weight 

Band 3 
weight 

Fields_100_DE 14.85±1.96 25.64±2.51 0.57±0.15 0.51±0.14 0.62±0.24 0.48±0.21 0.56±0.16 

Fields_100_PSO 16.18±1.39 21.17±1.73 0.38±0.23 0.35±0.12 0.57±0.22 0.63±0.26 0.70±0.25 

Fields_200_DE 15.12±5.90 29.97±2.37 0.56±0.07 0.50±0.08 0.77±0.15 0.71±0.20 0.76±0.17 

Fields_200_PSO 17.67±5.19 28.18±3.61 0.58±0.25 0.49±0.17 0.73±0.21 0.67±0.29 0.74±0.20 

Fields_300_DE 17.11±6.63 32.24±2.42 0.68±0.16 0.65±0.07 0.70±0.12 0.59±0.20 0.65±0.14 

Fields_300_PSO 19.55±1.99 27.74±4.21 0.53±0.25 0.59±0.14 0.55±0.30 0.63±0.29 0.59±0.28 

Natural_100_DE 29.62±2.34 29.38±1.78 0.56±0.16 0.50±0.06 0.73±0.13 0.67±0.21 0.70±0.11 

Natural_100_PSO 30.54±4.53 24.47±5.36 0.38±0.23 0.48±0.10 0.44±0.15 0.73±0.15 0.54±0.21 

Natural_200_DE 30.70±1.91 29.06±2.20 0.62±0.19 0.58±0.07 0.62±0.13 0.61±0.15 0.55±0.03 

Natural_200_PSO 36.46±3.43 26.16±3.42 0.58±0.22 0.55±0.13 0.65±0.27 0.63±0.18 0.65±0.23 

Natural_300_DE 44.59±3.03 28.24±6.28 0.49±0.19 0.56±0.08 0.52±0.13 0.61±0.12 0.47±0.09 

Natural_300_PSO 41.92±1.42 26.62±3.76 0.68±0.20 0.59±0.17 0.54±0.31 0.73±0.23 0.60±0.27 

Reference 0.0 30 0.5 0.5 0.7 0.7 0.7 
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Figure 5 illustrates the average fitness traces of the fittest agent at each iteration of all the 

experiments conducted on the fields images.  The dotted line in the graph signifies the fitness trace 

corresponding to the lowest fitness value obtained in all 60 experiments.  Figure 6 shows the 

corresponding fitness traces for the six natural image segmentation experiments. 

 

 
Figure 5. Average fitness traces of the fittest agents of PSO and DE using the three fields 

experimental images 

 

 
Figure 6. Average fitness traces of the fittest agents of PSO and DE using the three natural 

experimental images 

 

Figure 7 gives an example of the segmentation results of the experiments and illustrates the 

Fields_300 image layered with the reference segments and segments generated with a parameter set 

that obtained a fitness of 16.2 with a scale parameter of 33.6 using DE as the search heuristic. The 

reference is represented by the green segments and the segmentation results by the red segments.  

The image (a) on the left is overlaid with the reference (green segments) while the image on the 

right is overlaid with the generated segments (red segments).  Similarly,  illustrates the 

Natural_300 image overlaid with the reference (green lines) and segments generated with a 

parameter set that obtained a fitness of 43.1 with a scale parameter of 29.8 for the PSO heuristic.  

The blue areas in Figure 8 are Cape thicket found within the reference and generated segments.  The 

yellow areas are Cape thicket found in either the reference or the generated segments. 

Figure 8
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(a) (b)

Figure  7. The Fields_300 image segmented with a parameter set that obtained a fitness of 16 with 

the PCM corresponding to the reference parameters. In (a) the reference segments are 

overlaid by the generated segments while in (b) the generated segments are overlaid with 

the reference 

 

 
(a) (b)

Figure 8. The Natural_300 image segmented with a parameter set that obtained a fitness of 16 with 

the PCM corresponding to the reference parameters. In (a) the reference segments are 

overlaid by the generated segments while in (b) the generated segments are overlaid with 

the reference 

 

The two images subjected to the experiments display very different land-cover element 

characteristics.  The fields image has more distinct edges while the only detectable edges in the 

natural image were those of the cliff face shadows and to a lesser extent the boundaries of the Cape 

thicket patches.  As observed in Table 1, the fields imagery experiments obtained substantially 

lower (better) fitness values over all three image sizes compared to the natural images.  As shown in 

Figure 5, the search heuristics were able to converge to a parameter set closely resembling the 

reference in the fields images.  The PCM with the given search heuristics was not able to replicate 

segment lines cutting through fields.  Trial-and-error experimentation with the fields images 

revealed that extremely small changes in parameter values (fourth-order decimals) resulted in vastly 

different segments in land-cover elements with weak or no edges.   

 

The phenomenon of the search heuristic being unable to match edges in areas with no or weak 

edges is prominent in the natural images, resulting in lower PCM scores.  The Baatz & Schäpe 

(2000) region-merging algorithm can generate a vastly different segment set with relatively similar 

parameter sets in images with weakly defined edges (see Figure 8).  Despite this disparity between 

reference and generated segments, the few land-cover features with identifiable edges (thicket and 

shadows) allowed the search algorithm (using the PCM) to converge to a scale parameter closely 
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resembling the reference for these two types of features.  Subjectively, the average achieved fitness 

value of 15-20 for the fields images and a fitness of 40 for the natural images correspond to good 

parameter sets which accurately delineate all features with identifiable boundaries.  In Figure 8, the 

blue areas are Cape thicket found within the reference and generated segments.  The yellow areas 

are Cape thicket found in either the reference or the generated segments. 

 

The PCM was able to converge closely to the reference scale parameter (30) in most of the test 

images except for fields_100 and to some extent, natural_100.  This is attributable to a small 

training area, with a larger range of different parameter sets able to replicate the reference.  For 

example, the fields_100_pso image obtained a fitness of 16 and scale parameter of 21 over five 

consecutive experiments with very little standard deviation. 

 

Note that although the critical scale parameter was consistently approximated, the remaining five 

parameters displayed less consistency in approximated values.  The fields_200_DE image attained a 

parameter set closely resembling the reference (Table 1).  All the other fields images attained 

similarly low fitness values and a scale parameter close to 30, but displayed greater variation in 

values of the other five parameters.  This is probably attributable to the weak edge phenomenon 

where an extremely small numerical margin is needed to accurately replicate the reference.  In most 

cases, the DE and PSO heuristics were unable to converge to the absolute reference in the allocated 

900 algorithm iterations, generating parameters (excluding the scale parameter) with relatively high 

standard deviations. 

 

One can deduce from Table 1 and Figures 7 and 8 that the DE search heuristic slightly 

outperforms the PSO search heuristic concerning convergence, accuracy and convergence speed.  

Over all six experimental images, the DE search heuristic converged to a scale parameter closer to 

the reference than the scale parameters generated by the PSO heuristic.  The DE heuristic attained a 

lower mean fitness value compared to the PSO heuristic in all but one experiment (fields_300).  On 

three occasions the DE heuristic achieved a considerably lower fitness value (as indicated by a high 

standard deviation in Table 1).  Through the course of the experiments, the DE heuristic attained a 

fitness of 7 and 8 in the Fields_200 images and a fitness of 4 in the Fields_300 image.  The fitness 

trace with a resulting fitness value of 4 is illustrated in Figure 5 (dotted line).  The lowest fitness 

score achieved by the PSO heuristic was 10.  Figures 7 and 8 suggest that for this domain-specific 

problem, despite both algorithms performing adequately, the DE search heuristic is preferred to the 

PSO search heuristic. Note that by performing metaparameter tuning (to the DE and PSO search 

heuristics) or using more recently proposed meta-heuristics, improved accuracy can be achieved. 

 

As the size of the images increases, so do the average fitness values: a direct relationship 

attributable to more weak edges cutting fields or fynbos that could not be replicated.  Prieto & Allen 

(2003) advance that this phenomenon relates to the robustness of a metric and they note that some 

other edge metrics do not display this behaviour. Bear in mind that the remarks by these authors are 
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not related to convergence experiments but that they are subjective observations suggesting that the 

PCM is a more accurate edge metric than other edge metrics. 

 

Interestingly, Melo et al. (2008) observed, when using the LSB metric and the Baatz & Schäpe 

(2000) region-merging segmentation algorithm, that near-optimal fitness values are normally 

achieved after 400 iterations (10 agents) of the search heuristic.  A similar number of iterations is 

necessary to achieve a near-optimal fitness when using the PCM (30-60 agents), as illustrated in 

Figures 7 and 8.  This implies that 400 iterations is a safe lower-minimum default value in the 

practical use of such a system. 

 

Table 2 lists the achieved accuracies of classifying Cape and Riparian Thicket using the LSB and 

PCM generated segments. The mean segment values of band 2, band 4 and band3/band4, the 

standard deviation of band3/band4, the GLCM homogeneity of NDVI and the GLCM contrast of 

NDVI and intensity attributes were presented to the classifier. The values indicated are the mean of 

25 runs with the standard deviation signified by ‘±’. The attribute columns denote the number of 

times the specific attribute was selected by the classifier over the 25 runs. The last column on the 

right in Table 4 lists the average number of attributes selected by the classifier when operating with 

variable attribute sets. The differences between “LSB fixed” and “PCM fixed” and between “LSB 

variable” and “PCM variable” are statistically significant (paired t-test with <0.0005 confidence). 

The boldface values indicate the metric/segments and attribute selection strategy delivering the 

highest classification accuracy. 

 

Table 2. Classification results of Cape thicket using both PCM and LSB generated segments with 

variable and fixed attribute sets 
  Gamma Nu Accuracy M 

B2 
M 
B4 

M 
B3/B4 

S 
B3/B4 

H 
NDVI 

C 
NDVI 

C 
Int 

# Attr 

LSB fixed 5.08 ±3.78 0.17 ±0.02 78.99 ±0.0027 25 25 25 25 25 25 25 7 

LSB 
variable 

15.88 ±17.01 0.17 ±0.03 79.58 ±0.0050 23 21 25 1 19 16 12 4.68 ±0.80 

PCM 
fixed 

3.29 ±1.59 0.27 ±0.11 80.34 ±0.0042 25 25 25 25 25 25 25 7 

PCM 
variable 

5.11 ±10.71 0.31 ±0.08 83.06 ±0.0053 22 13 0 3 24 19 11 3.68 ±1.07 

Note: M = mean; S = standard deviation; H = GLCM homogeneity; C = GLCM contrast. 

 

The PCM generated segments resulted in statistically significant higher classification accuracies 

than the LSB generated segments with a very low standard deviation. A difference of three per cent 

in geometric means accuracy separates the classifiers using the PCM and LSB segments with 

variable attribute subsets. Use of variable attribute subsets (Fourie, Van Niekerk & Mucina, 2011) 

also resulted in higher classifier accuracies compared to using all seven given attributes. 
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4 Conclusion 
In this work an edge metric, called the pixel correspondence metric (PCM), was evaluated as a 

fitness function for segmentation algorithm free parameter tuning via optimisation.  By using the 

PCM, the common PSO and DE search heuristics were able to converge to reference parameters in 

typical earth observation imagery when adequate training data were available.  The search functions 

displayed some difficulty in detecting segment lines on weak edges. 

 

The PCM was compared with an area-based metric (the LSB) for segment algorithm parameter 

generation on heterogeneous features with non-discrete boundaries.  The PCM delivered 

segmentation algorithm parameters that corresponded closer to the user input.  Moreover, for an 

arbitrary problem, a subsequent classification with the PCM-generated segments delivered superior 

classifier results compared to the LSB-generated segments. 

 

These results show a need for further investigation into the utility of edge-based metrics in 

methods that attempt to automatically tune segmentation algorithm parameters. It is recommended 

that hybrid approaches to segment evaluation, such as presented by Weidner (2008) or Derivaux et 

al. (2010) be examined for balancing notions of edge preservation and accuracy of overlap areas. 
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