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Abstract 

The usefulness of remote sensing to discriminate Seriphium plumosum from grass using a 

field spectrometer data was investigated in this study. Analysis focused on wavelength 

regions that showed potential of discriminating S. plumosum from grass which were 

determined from global pair spectral comparison between S. plumosum and grass. 

Assessment of reflectance differences done at individual and plot levels using original spectra 

and spectra simulated based on bands of Landsat and SPOT 5 images. The simulations were 

done to investigate the possibility of extending field based information into airborne and 

spaceborne remote sensing techniques. Results showed reflectance spectra of S. plumosum 

and grass to be relatively comparable. Comparisons at all levels of analysis using original 

spectra did not show noteworthy reflectance difference in all regions used in the analysis. 

Similarly, simulated spectra did not show significant differences. The results therefore did 

not appear to encourage the potential of upscaling the application to airborne and 

spaceborne remote sensing techniques. There were, however, some shortcomings that made it 

difficult to draw conclusive remarks on whether the plant can be differentiated from grass. 

These included, firstly, not all species were in the same phenology. Secondly, spectral 

measurements were not necessarily taken in an ideal scenario of optimal sunny conditions. It 

is therefore advised that a similar study be carried out that will address the shortcomings of 

this study. Furthermore, studies on the biochemical composition of both S. plumosum and 

grass species are needed, since they explain spectral properties of plants.  

1. Introduction 

Seriphium plumosum is an aggressive grass encroacher formerly known as Stoebe vulgaris 

(Snyman, 2012a, 2010). Although the plant is indigenous to South Africa, it has become 

naturalised in some parts of Africa (Angola, Madagascar Mozambique, Namibia, and 

Zimbabwe) and the USA (Snyman, 2012b). The species encroaches Fynbos and Grassland 

Biomes of South Africa in localities of the Eastern Cape, Free State, Mpumalanga, North 

West and Gauteng provinces (Snyman, 2012b). Generally, the species encroaches and 

proliferates in disturbed or overgrazed areas including grasslands in good condition, with 

reported rapid spread in farms (Eldridge et al., 2013; Snyman, 2012a, 2012b, 2010). 

http://dx.doi.org/10.4314/sajg.v5i1.202
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Infestation by the species results in reduced grass productivity, altered habitat value, altered 

availability of soil nutrients and soil water, including functions carried out by soil such as 

respiration, decomposition and infiltration (Eldridge et al., 2013; Snyman, 2010). Such and 

other effects of the species have led for it to be proclaimed as encroacher in the Conservation 

of Agricultural Resources Act (CARA) legislation in South Africa (Snyman, 2012a, 2012b). 

Currently, control of infestations by the species depends mainly on mechanical and chemical 

methods (Jordaan, 2009; Snyman, 2012b). These control methods have certain limitations 

which include, amongst others, inaccessibility of infested areas as a result of rough terrain 

and absence of temporal and spatial distribution maps of the species for development of 

efficient management strategies (Jordaan, 2009). Such limitations necessitate establishment 

of inexpensive and effective control methods for this species. Spatio-temporal distribution 

maps showing dynamics of infestations by the species can help improve efficiency of the 

currently used control measures. 

Mapping is a useful tool that provides information on spatial and temporal distribution of 

plants including invasive plant species and allows development of better management 

strategies.  In a number of mapping methods, remote sensing is the best due to cost effectives, 

time efficiency and  ability to cover large spatial areas (Hawthorne et al., 2015; Lu and 

Zhang, 2013; Rodgers et al., 2014). Remote sensing is the science of acquiring information 

about an object without being in direct contact with it by interpreting different responses of 

objects to electromagnetic radiation illumination (Alparone et al., 2015; Campbell and 

Wynne, 2011; Jensen, 2014). As a result, plants have been mapped and discriminated with 

mixed levels of success using both multispectral and hyperspectral remote sensing techniques 

(e.g. Abdel-Rahman et al., 2014; Azong et al., 2015; Dronova et al., 2015; Gavier-pizarro et 

al., 2012; Ghulam et al., 2014; Jia et al., 2014; Somers et al., 2015). Specifically, the ability 

of hyperspectral remote sensing to record electromagnetic radiations continuously and at 

narrow wavelength intervals allows for differentiation of vegetation types that appear similar 

on multispectral data (Carroll et al., 2008). As such, hyperspectral remote sensing has been 

applied successfully in a number of studies to characterise plants.  

Although hyperspectral remote sensing techniques are capable of identifying subtle 

differences between vegetation species, they make use of specific bands identified using 

different classifiers. These bands are narrow and often cannot be isolated from within 

broadbands of multispectral images. As a result, it is difficult to translate the findings of 

hyperspectral data analysis into multispectral remote sensing systems. This is critical due to 

the fact that current applications of hyperspectral remote sensing is predominantly limited to 

research efforts, despite the significant growth of the system over the past few decades. 

Multispectral remote sensing on the other hand remains the main source of earth observation 

applications. As much as possible, research efforts involving analysis of hyperspectral data 

must therefore factor in the potential of extending findings to multispectral remote sensing. 
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This study seeks to identify spectral regions bands for discriminating S. plumosum from grass 

using a field spectrometer data over a long spectrum. Unlike numerous studies that aimed at 

identifying suitable individual bands, this study uses spectral regions containing contiguous 

bands as the basic unit of information source. The main objectives of the study are (1) to 

determine whether or not S. plumosum can be discriminated from grass and (2) to investigate 

the performance of spectra simulated according to Landsat and SPOT 5 images in 

discriminating S. plumosum from grass species. The second objective is intended as a 

preliminary indicator on whether or not spaceborne or airborne sensors could be used in 

developing spatial distribution map of the species.  

2. Methods 

2.1. Study Area 

The study was conducted in the Klipriviersberg Nature Reserve in Johannesburg, South 

Africa (Figure 1). The reserve covers an area of approximately 680 hectares, making it the 

largest reserve in the City of Johannesburg. It is located in the Klipriviersberg area which is 

in transition between grassland and savanna biomes in the northern edge of the Highveld 

(Faiola and Vermaak, 2014).  The Highveld climate characterised by temperatures ranging 

between 17–26°C in summer and 5–7°C in winter (Kotze, 2002). Three geology types occur 

in the reserve: volcanic rock (basalt and andesite), quartzites and conglomerates, and 

dolomites (Faiola and Vermaak, 2014). Vegetation types of the reserve are classified as 

Andesite Mountain Bushveld and a section of Tsakane Clay Grassland at the flatter southern 

end (Faiola and Vermaak, 2014). The reserve holds a relatively rich biodiversity of 

approximately 650 indigenous plant species, 215 bird species, 16 reptile species and 32 

butterfly species. Mammals that occur in the reserve include lesser spotted genet, African 

civet, zebra, red hartebeest, blesbok, springbok, duiker, black wildebeest, porcupines, 

meerkats and otters. 

 
Figure 1. Map showing the Klipriviersberg Nature Reserve 
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2.2. Field Data 

Field surveys were conducted within the summer season between the 2nd and 14th of 

December 2014. This is the time when vegetation is green and it is the most preferred time 

for remote sensing applications on vegetation. S. plumosum infestations occur in scattered 

patterns which limited the number and size of samples and only fifteen stands that had the 

species were identified. As a result, fifteen plots of a radius of 2m circle with fairly 

considerable concentration of S. plumosum were identified and delineated. The size of the 

circle was adequate to accommodate imagery with high spatial resolution such as SPOT 

imagery that has 1.5m spatial resolution. A global positioning system (GPS) was used to 

record the position of each plot. Subsequently, line transects were laid between the centre and 

the periphery of the plot in each of the north, south, east and west directions. Spectral 

reflectance measurements of individual plants of S. plumosum and adjacent grass were taken 

at the centre and at 2m distance along each transect (Figure 2). In cases where no individual 

S. plumosum was not encountered along the transect line, one that was placed closest to the 

transect was sampled.  

Spectra were collected using a field spectrometer, namely, Spectral Evolution SR-3500 

Remote Sensing Portable Spectroradiometer (Spectral Evolution Inc., Lawrence, MA, USA). 

The spectrometer has 1.6nm spectral resolutions that range between 340nm to 2503nm. 

Target radiance in energy units was converted into percent reflectance using a white 

reference measurement. (Prospere et al., 2014). Three spectral measurements were taken 

from individual S. plumosum plant and grass in close proximity. These measurements were 

taken from different canopy parts of the plant at nadir, under sunny conditions. Such 

conditions are best achieved at local noon time. This position permits attaining most of the 

reflected electromagnetic radiation (Cho et al. 2008; Fernandes et al. 2013; Mansour 2013; 

Olsson et al. 2011; Rudolf et al. 2015). However, not all measurements were taken using this 

protocol due to time constraint of the study that forced data acquisition outside of the ideal 

time.    

 

Figure 2. A layout of sampling design for spectral measurements of individual target plant 
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2.3. Analysis of Spectral Reflectance per Region 

Wavelength regions that were better at differentiating S. plumosum from grass were 

identified. To accomplish this, an average reflectance spectrum was computed from the three 

spectral measurements taken for each individual plant. Subsequently, an average reflectance 

was computed from all individual plants of S. plumosum and grass plants to create two 

‘global’ spectral curves, respectively (Figure 3). The separate pools were mainly made to 

determine if S. plumosum could be differentiated from grass using reflectance spectra. 

Comparing the pairs using global spectral curves offers results that are more representative of 

the study area. In contrast, comparing each pair separately would yield a plethora of results 

and complicate choice of a result that would represent all individuals. 

Wavelength regions that were not useful in discriminating between the S. plumosum and 

grass were excluded from further analysis following visual observations of global spectra pair 

comparisons (Figure 3). Two criteria were used for the exclusions; these are, regions that 

returned random reflectance properties commonly referred to as noise (1824-2016nm and 

2282-2503nm) and those which did not show noticeable spectral reflectance differences 

between S. plumosum and grass (580-758nm and 1095-1422.2nm). This resulted in four 

discontinuous regions (Figure 3) to be used as reference in further analysis. Region 1 

included wavelengths in the ultraviolet to visible (340-579nm); region 2 included 

wavelengths in the near infrared (NIR) (759-1091nm); region 3 included wavelengths in the 

NIR to shortwave infrared (SWIR) (1425.9-1821nm); and region 4 included wavelengths in 

the SWIR (2019-2279nm). 

 
Figure 3. Global reflectance of S. plumosum and grass across the full spectrum. Shaded 

regions show spectral regions that were excluded from further analysis. 

Analysis involved comparisons of S. plumosum and grass reflectance spectra at individual 

and plot levels. The individual level analysis compared all individual pairs of S. plumosum 

and grass encountered in each of the plots, while plot level analysis involved comparisons of 
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plot level mean reflectance of S. plumosum against plot level mean reflectance of grass in all 

plots. At both levels, analysis was done per region determined from the global reflectance 

pair comparison (Figure 3). Reflectance spectra were extracted according to these regions. 

Comparisons were made using graphical and statistical methods. The graphs made use of 

mean reflectance of all individual plants encountered per plot. Statistical tests involved the 

use of the analysis of variance (ANOVA) and t-test.  

2.4. Simulation of Landsat and SPOT 5 Imagery Bands 

Although the size of sample plots was not enough to accommodate spatial resolution of 

Landsat (30m), the competence of its bands to discriminate the species were tested. 

Accordingly, reflectance data acquired from the field spectrometer were extracted according 

to bands of Landsat and SPOT 5 images. This was done to investigate the potential of 

upscaling the technique to airborne or satellite based remote sensing. Although Landsat 5 and 

later missions have seven or more wavebands, only the blue, green, red and NIR bands were 

simulated, while on the other hand the green, red and NIR bands of SPOT 5 imagery were 

simulated. These bands have been widely used in studies focusing on remote sensing of 

vegetation characteristics (e.g. Calvini et al., 2015; Dale et al., 2011; Glenn et al., 2008; 

Manevski et al., 2011; Pflugmacher, 2007; Tuxen et al., 2008; Xu et al., 2009). Simulations 

were done for all individuals of S. plumosum and grass, resulting in two separate pools per 

spectral band. Comparisons were made using these pools, and the significance of differences 

between S. plumosum and grass were tested using t-test.   

3. Results 

Comparisons at the individual level showed an overall significant difference between S. 

plumosum and grass in all plots, based on ANOVA results for all individuals per plot. There 

were, however, within species differences from individual pair comparison per plot using the 

least significant difference (LSD). Graphical presentation of individual reflectance difference 

of S. plumosum and grass within each plot did not exhibit strong distinction between the two. 

S. plumosum was fairly discriminated in the NIR to SWIR region (region 3) with eight plots 

at most showing similarity amongst individuals of S. plumosum. Only six plots in NIR 

(region 2) and SWIR (region 4) regions exhibited similarity amongst individuals of the 

species, while only three plots showed clear separation in the ultraviolet to visible region 

(region 1). Figure 4 illustrates a typical plot that shows similarity among individuals of S. 

plumosum and grass, respectively, in the NIR region (region 2) and NIR to SWIR region 

(region 3). 

Plot level results of reflectance comparisons between S. plumosum and grass showed 

significant difference in all plots. Figure 5 illustrates such a result for a typical plot. Note that 

results for other plots are not presented here. It is important to note that the differences were 

not considerable (Figure 5). S. plumosum had slightly high reflectance than grass in 11 plots 



South African Journal of Geomatics, Vol. 5. No. 2, September 2016 

207 

in the ultraviolet to visible region (region 1), 10 plots in the NIR region (region 2) and SWIR 

region (region 4), with eight plots in the NIR to SWIR region (region 3). 

 

Figure 4. Reflectance of the regions used for analysis at individual plant level for a typical 

plot at α=0.05. Region 1 (Ultraviolet to visible region), region 2 (NIR region), region 3 (NIR 

to SWIR region), region 4 (SWIR region). 

 

 
Figure 5. An illustration of plot level mean reflectance of S. plumosum and grass. Different 

letters indicate significant differences at α=0.05. 

 

3.1. Landsat and SPOT Simulations 

The statistical results for reflectance comparisons using Landsat simulated spectra showed 

significant difference in only the blue band while the differences were insignificant in the 

other bands (Figure 6). The mean reflectance of all band comparisons between S. plumosum 

and grass were comparable as illustrated in Figure 6. Comparison between S. plumosum and 

grass using SPOT simulated spectra showed no significant differences in all the bands, as 

illustrated in  

Figure 7.  
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Figure 6. Mean reflectance comparisons of simulated Landsat bands between all S. plumosum 

and grass individuals. Different letters represent significant differences at α=0.05. Note that 

the comparison are per spectral band. 
 

 
Figure 7. Mean reflectance comparisons of simulated SPOT 5 bands between all S. plumosum 

and grass individuals. Different letters represent significant differences at α=0.05. Note that 

the comparison are per spectral band. 

4. Discussion 

In this study, the efficiency of data acquired using a field spectrometer to discriminate S. 

plumosum from grass was investigated. Reflectance spectra comparisons were made using 

original spectra and spectra simulated according to bands of Landsat and SPOT sensors. The 

simulation was to determine the possibility of upscaling field based data into spaceborne or 

airborne remote sensing techniques. Visual comparison of the global spectra of S. plumosum 

and grass were highly comparable, with no distinct spectral separation between the two 

(Figure 3). 

Even though the individual level analysis using ANOVA showed overall significant 

differences in all plots, these differences were not necessarily the result of reflectance 

differences between S. plumosum and grass individuals per plot. This is because there were 

within species differences when comparing individual pairs using least significance 

difference (LSD). Graphical presentation of reflectance differences for all individuals per plot 

further showed poor separability between S. plumosum and grass. The outcome was not 

surprising given comparable spectral reflectance patterns of both S. plumosum and grass 

(Figure 4). As such, only eight plots at most in the NIR to SWIR region (region 3) showed 

best separability between S. plumosum and grass, while a few plots showed distinction in 

reflectance differences between S. plumosum and grass, with three plots in the ultraviolet to 

visible (region 1) and six plots in the NIR (region 2) (e.g. Figure 4). The clear distinction that 

is observed in the SWIR (region 4) from global pair comparisons was not evident when 
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comparing individuals of S. plumosum and grass (Figure 3), only six plots showed clear 

differences in this region (e.g. Figure 4). Reflectance differences that appear in the first part 

of ultraviolet to visible reference region (region 1) and NIR reference region (region 2) were 

not observed in the analysis (Figure 3). Had the analysis not focused on the entire wavelength 

region of the ultraviolet to visible region (region 1) and the NIR region (region 2) and instead 

focused on regions that showed distinction (340-335 nm and 759-829 nm), the species could 

have been clearly differentiated.   

Significant differences that were observed at the plot level may not be considered large as 

illustrated by Figure 5. The slight differences are supportive of poor seperability that is 

observed in visual comparison of global spectra (Figure 3). These slight differences could 

have been the result of a number of factors. These include limited number of samples per 

plot, different phonological stages of S. plumosum and grass, as well as taking of spectral 

measurements under overcast conditions or when there were slight cloud covers. These 

factors make it uncertain to make conclusive remarks regarding the similarity or disimilarity 

of reflectance of S. plumosum and grass.  

The simulation results do not suggest possibility of upscaling of field data into spaceborne 

and airborne remote sensors such as Landsat and SPOT. Reflectance comparisons using 

bands simulated according to Landsat showed significant difference only in the blue band, 

with no significant difference in the green, red and NIR bands (Figure 6). Likewise, 

reflectance comparisons using simulated bands of SPOT imagery showed no significance 

difference in the green, red and NIR bands (Figure 7). This was not surprising, given the 

similarity of global spectra of S. plumosum and grass (Figure 3). 

Different classifiers have been used to identify best bands for discriminating between plant 

species in a number of studies using hyperspectral data. For example, Fernandes et al. (2013) 

found the visible and the mid infra-red region best at discriminating giant reed (Arundo donax 

L.) from adjacent vegetation. Abdel-Rahman et al. (2014) found 50 bands located in the red 

edge (670–780 nm), blue (400–500nm) and green edge (500–600nm) of the electromagnetic 

spectrum of the AISA Eagle image best at detecting Sirex noctilio grey-attacked and 

lightning-struck pine trees. Dumont et al. (2015) identified 1310nm, 1710nm and 1985nm 

bands located in the SWIR region as best at identifying viable seeds, empty seeds and seeds 

infested by Megastigmus sp. Larvae using hyperspectral image and thermal data. Information 

provided using the technique of selecting specific bands and cannot be extended to 

broadbands of multispectral remote sensing techniques.  

However, the method of analysing continuum spectra in this study made up for the 

ineffectiveness of selecting specific hyperspectral bands best at differentiating between 

vegetation species.  Because hyperspectral data is not freely available, multispectral remote 
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sensing techniques would have been given preference in providing spatio-temporal 

distribution maps of S. plumosum. These are in main realm of earth observation due to the 

fact that their data are available in public domain.  Unfortunately, the species could not be 

differentiated from grass in this study, most likely as a result of shortcomings that were 

encountered.  As such, the results did not show the potential of extending field based data 

into airborne or spaceborne remote sensing techniques. Therefore, a same study 

discriminating S. plumosum from grass needs to be undertaken, using more samples and take 

all measurements using a standard method (at nadir under sunny conditions) to draw more 

conclusive remarks on this basis. The suggested study should consider a dry season as well to 

see if there is a better chance of differentiating the species than in the wet season the current 

study was undertaken. This should be consolidated by a study profiling biochemical 

constituents of S. plumosum and of any adjacent land cover types (such as grass) in 

coexistence as biochemical composition of plants strongly affect reflectance patterns 

(Campbell et al., 2008; Jensen, 2014; Zhang, 2011).   

5. Conclusion 

The potential of field spectral data to discriminate S. plumosum from grass was 

investigated in this study. The study specifically aimed to determine whether or not S. 

plumosum can be discriminated from grass using reflectance spectra. It also sought to test the 

potential of upscaling field based spectra into airborne and spaceborne remote sensors. 

Analysis was done using the original spectral and spectra simulated according to bands of 

Landsat and SPOT imagers, at individual and plot levels. However, spectral discrimination 

between S. plumosum and grass was achieved with limited success. Only a maximum of eight 

plots showed statistical difference (ANOVA at α=0.05) at individual level of analysis. 

Although statistically significant differences (t-test at α=0.05) were observed at the plot level, 

they were not large (e.g. Figure 6). Only the blue band of the Landsat simulated spectra 

proved significant, while there was no significant difference for other bands, including SPOT 

simulated bands. As such, the results do not suggest a possibility of upscaling field based 

information into remote sensing technologies such as airborne or spaceborne sensing 

technologies. A study with enough number of samples is, however, suggested as a follow up 

study. Such a study would need to consider taking spectral measurements during ideal time 

frames when there is enough illumination. Other factors that need to be considered are the 

possibility of stratifying samples based on phenological stages and assessment of biochemical 

compostion of S. plumosum and grass to draw conclusive remarks on whether they truly share 

same reflectance pattern.  
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