THE IMPORTANCE OF INITIAL NEPHRECTOMY TO THE SUBSEQUENT FUNCTION OF THE TRANSPLANTED KIDNEY

J. R. W. ACKERMANN, M.B., Ch.B. AND C. N. BARNARD, M.D., M.Med., M.S., Ph.D., F.A.C.S., Department of Surgery, University of Cape Town

Renal transplantation entails handling of the kidney at 3 different stages of the procedure: (1) at the initial nephrectomy, (2) during the intermediate period between nephrectomy of the donor and vascular suture into the recipient (including any storage procedure used), and (3) during vascular suture into the final recipient, i.e. the actual transplantation.

Virtually no handling of the kidney is necessary between the initial nephrectomy and completion of the actual transplantation, and these procedures should not entail traumatic damage to renal parenchyma. During the initial nephrectomy, however, considerable manipulation is usually essential, and must constitute a considerable danger of destruction for the parenchyma.

These experiments were carried out to assess the magnitude of functional damage caused by the initial nephrectomy and to modify the technique used, in an attempt to improve subsequent renal function.

MATERIALS AND METHODS

Adult mongrel dogs, weighing between 35 and 50 lb., were anaesthetized with intravenous pentobarbitone sodium. They were intubated and manually ventilated for the duration of the surgical procedure.

Experimental Groups

Group I. 10 dogs: 4 auto- and 6 homotransplants. In this group, 'ideal' nephrectomy was performed, paying scrupulous attention to the criteria considered important to successful post-transplant function of the kidney.

Group II. 7 dogs, all autotransplants. A routine nephrectomy was performed without unusual care. In none was the kidney deliberately traumatized, nor was there ever interference with the blood supply.

(a) 'Ideal' Nephrectomy (Group I)

This whole operation was directed at minimal trauma to the kidney during nephrectomy. The procedure was as follows:

1. A right, subcostal, muscle-splitting incision to afford easy access and wide exposure.
2. Non-touch technique for freeing and stripping the kidney from its peritoneal attachments.
3. No traction on (or compression of) the kidney during dissection of the vascular pedicle and ureter.
4. Fastidious dissection of the vessels and ureter, commencing at the hilum and extending distally down to the inferior vena cava, together with exposure of as great a length of renal artery as feasible: during this manoeuvre the kidney was allowed to lie free, assuring patency of venous drainage and preventing compression trauma to renal parenchyma.
5. Extreme caution exercised in the ligation of any hilar vessels and particularly of arterial branches.
6. Simultaneous ligation of renal artery and vein, or of the artery immediately before vein (venous occlusion before arterial ligation is impermissible).

(b) Routine Nephrectomy (Group II)

To clarify the technique of nephrectomy used in this group, a fuller explanation follows:

1. The incision and exposure were similar to group I.
2. After incising the peritoneal covering, this was stripped digitally from the capsule.
3. Pedicle dissection was facilitated by traction on the kidney, which continued during delivery of the kidney through the wound (Fig. 1).

4. No hilar branches were ligated.
5. The hilar branches were ligated just before occlusion of the renal vein, never simultaneously.

Transplantation

After cold perfusion and capsulotomy the renal artery and vein respectively were anastomosed to common carotid artery and external jugular vein—a 'Neck' re-implant. A mucocutaneous ureterostomy was carefully constructed and the transplanted kidney placed deep to the panniculus carnosus in the dog's neck.

Investigations

Only simple parameters of renal function were investigated: urinary output volume, proteinuria, urinary urea, blood urea nitrogen graft size, survival time and histology.

RESULTS

A. Survival

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of dogs</th>
<th>Number of survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>II</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Survival time was selected as 14 days after transplant. All investigations were continued for this period. None of the group I animals succumbed. In group II one died from renal failure after 6 days.

B. Functional Results (Figs. 2 and 3)

1. Urine volume. In both groups, urine flow was immediate and clear. In group I animals, however, increased volume was apparent from the outset. In both groups there was a prompt response to an intravenous water load. After 7 - 10 days no discrepancy in urinary output volume between the survivors in the 2 groups was observed.

2. Proteinuria. Generally, in all transplantation experiments, there is an initial transient proteinuria (a trace to
+400 - 100

DOG 117 AUTOTRANSPLANT FOLLOWING 'ORDINARY' NEPHRECTOMY

DAYS POST-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
TRANSPLANT	400	300	200											
PROTEIN														
BLOOD UREA														
URINARY UREA														

Fig. 3. Deranged renal function following an 'ordinary' nephrectomy. (Note residual abnormality 14 days after transplant.)

DISCUSSION

This series of experiments was directed exclusively at the determination of the functional outcome of the kidneys removed in these 2 sets of circumstances. Although histological examination was carried out, it should be emphasized that no attempt was made to compare the 2 techniques of nephrectomy from this point of view.

No significant difference in the percentage of survival is demonstrated in these 2 procedures and it is pertinent that no routine nephrectomy was deliberately traumatic to the extent of rendering post-transplant survival impossible. However, although post-transplant function following a routine nephrectomy is adequate, the functional results are far inferior to those present after 'careful' nephrectomy.

At first glance the results are obvious, but they acquire greater significance when it is realized that the difference lies not between a deliberately traumatic procedure and a routine one, but between an inordinately careful nephrectomy and a so-called routine procedure.

Prompted by inexplicable poor initial function after transplant, followed by progressive improvement over the next 14 days, the requirements for a correctly performed 'ideal' nephrectomy were sequentially evaluated previously in some 40 procedures. At first ischaemia was felt to be a contributory factor, but this could not be substantiated, either by histological examination or by the prolongation of ischaemic time. Only when the nephrectomy technique was improved were better functional results obtained.

It is alarming that such a marked degree of functional improvement hinges upon relatively simple and minor technical variation. Compression trauma by handling—particularly if the kidney is used as a lever during vessel dissection—has a more marked deleterious effect on the organ than any other single factor.

Some importance has been attached to the simultaneous occlusion of both renal artery and vein. After arterial occlusion, the kidney is virtually exsanguinated owing to the negative pressure of the inferior vena cava. Severe arterial spasm of the intra-renal arterioles ensues, resulting in definite evidence of renal parenchymatous ischaemia after revascularization, post-transplantation. By the simul-
taneous ligation of both vessels, functional capacity is improved.

The importance of the application of these results to clinical transplantation is easily recognizable. Live donor procurement has been of greater functional success than cadaver graft organs. Although ischaemic time plays a major role in the difference, it is obvious that nephrectomy in a live donor is perform a procedure fastidiously performed. On the other hand, the acquisition of kidneys from cadavers is an emergency procedure where time is all-important. Trauma to the organ in the latter cases is a real danger and, in addition, if the organ is to be stored, the possibility of parenchymatous damage is even greater.

CONCLUSIONS

Nephrectomy is a routine operation frequently performed. For this reason the important role it plays in successful renal transplantation may have been neglected. In relation to successful functional result, however, it is singly the most important stage in the technique of renal transplantation.

We wish to thank Prof. J. H. Louw, of the University of Cape Town Department of Surgery, for his continuous encouragement and enthusiastic support. We also thank Dr. M. S. Barnard and Mrs. I. du Toit for technical assistance. Acknowledgements are due to the University of Cape Town J.S. Marais Surgical Research Fund and staff research grants.

REFERENCES

Second Documented Case Report in South African Medical Literature

GOODPASTURE'S SYNDROME

NORMAN GITLIN, M.B., CH.B. (CAPE TOWN) AND WOLFGANG LOSKEN, M.B., CH.B. (CAPE TOWN), Department of Medicine, Groote Schuur Hospital, Cape Town

Despite the protean clinical manifestations of nephritis and the multitude of classifications dealing with this disease, several specific and distinctive entities have been identified in recent years. One of these is Goodpasture's syndrome. The first description of this disorder is attributed to Goodpasture, whose name Stanton and Jange applied to the association of haemoptysis with later pulmonary infiltration, severe anaemia, renal failure, azotaemia and a short fatal course. It was not until 1955 that case reports of this syndrome became more prevalent. Since then some 53 case reports have appeared indicating a world-wide distribution: Australia, England, Germany, Ireland, New Zealand, Norway, the United States and South Africa. The following patient appears to be the second documented case of Goodpasture's syndrome in South Africa.

CASE REPORT

The patient, a Coloured male carpenter, aged 21 years, was admitted to Groote Schuur Hospital on 16 November 1964.

History

For 4 months before admission the patient had repeated episodes resembling influenza, characterized by myalgia, headaches and coughing, but he continued to work. During this time he had recurrent small attacks of haemoptyses (about 12 all told), spitting up about a teaspoonful of bright red blood, but he continued to work, but experienced repeated fainting episodes. About this time he noticed some degree of puffiness of the eyelids and extreme pallor. The day before admission sudden frank haematuria occurred for which he consulted his doctor and was referred to hospital.

Interrogation failed to show any episodes of sore throat, rash, previous renal or pulmonary pathology. There was no family history of tuberculosis, no associates with a similar disease and no known exposure to noxious or chemotherapeu tic agents. He had suffered no dyspepsia, melena or haematemesis. In fact, the patient had been perfectly fit and active until the onset of haemoptysis 4 months earlier.

Physical Examination

On admission. He was an extremely pale, well-built young male, not toxic but mildly pyrexial—99°F. No bone tenderness, oedema, icterus, clubbing, purpura, bruising or significant lymphadenopathy were noted. No evidence of embolic phenomena or dehydration was obtained. The fauces were slightly reddened.

Circulatory system. The pulse was 120/minute and regular; the blood pressure measured 105/70 mm.Hg. The venous pressure was normal. There were no cardiac murmurs and the peripheral pulses were equal and synchronous. No bruits were detected over the peripheral vessels. He was not dyspeptic at rest; full thoracic respiration rate was 22/min. Examination of the chest showed diffuse coarse bilateral crepitations and basal rhonchi. Abdominal examination was normal; the kidneys were neither enlarged nor tender.

Central nervous system. No abnormality except for numerous fleshy flame-shaped haemorrhages and occasional hard exudates in both fundi were found. There was no evidence of arteriolar degeneration. The optic discs were normal.

Special Investigations

X-ray examination of the chest showed a normal heart, but a diffuse pulmonary infiltration was seen, extending from both hila in a fanwise manner, most marked on the right side and at the bases (Fig. 1). Close magnification study of the parenchyma showed a fine stippled punctate lesion and the pathology appeared intra-alveolar rather than in the interstitial tissue. Straight X-ray examination of the abdomen was normal.

Intravenous pyelography was technically unsatisfactory because of the elevated blood urea, but showed normal-sized kidneys and no calcification.

Barium meal suggested an active duodenal ulcer.

Biochemical determinations gave the following results. Serum sodium 137 mEq./l.; serum potassium 4.4 mEq./l.; serum chloride 100 mEq./l.; serum bicarbonate 21.5 mEq./l.; blood urea 80 mg./100 ml.; blood cholesterol 189 mg./100 ml.; total serum bilirubin 0.4 mg./100 ml.; serum alkaline phosphatase 3.5 units; thymol turbidity 1; zinc turbidity 3; serum electrophoretogram showed a normal pattern—albumin 3.4 G/100