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Abstract
Background. Radiologists analyse both standard mammographic 
views of a breast to confirm the presence of abnormalities and 
reduce false-positives. However, at present, no computer-aided diag-
nosis system uses ipsilateral mammograms to confirm the presence 
of suspicious features.
Aim. The aim of this study was to develop image-processing algo-
rithms that can be used to match a suspicious feature from one 
mammographic view to the same feature in another mammographic 
view of the same breast. This algorithm can be incorporated into a 
computer-aided diagnosis package to confirm the presence of suspi-
cious features.
Method. The algorithms were applied to 68 matched pairs of cranio-
caudal and mediolateral-oblique mammograms. The results of this 
pilot study take the form of maps of similarity. A novel method of 
evaluating the similarity maps is presented, using the area under the 
receiver operating characteristic curve (AUC) and the contrast (C) 
between the area of the matched region and the background of the 
similarity map.
Results and conclusions. The first matching algorithm (using 
texture measures extracted from a grey-level co-occurrence matrix 
(GLCM) and a Euclidean distance similarity metric) achieved an 
average AUC of 0.80±0.17 with an average C of 0.46±0.26. The sec-
ond algorithm (using GLCMs and a mutual information similarity 
metric) achieved an average AUC of 0.77±0.25 with an average C 
of 0.50±0.42. The latter algorithm also performed remarkably well 
with the matching of malignant masses and achieved an average 
AUC of 0.96±0.05 with an average C of 0.90±0.21. In conclusion, 
texture analysis methods used with suitable similarity metrics allow 
a suspicious feature from one mammographic view to be matched 
with the same suspicious feature in other mammographic views of 
the same breast.

Introduction
According to the Cancer Association of South Africa, breast cancer 
is currently the most common cancer among women worldwide, 
and is second to cervical cancer among South African women. While 

sometimes fatal, breast cancer can be successfully treated, provided 
that it is detected early. The most common method of detecting 
breast cancer in its early stages is mammography. Unfortunately, 
mammography suffers from the problem that radiologists, in their 
visual interpretation of the resulting mammograms, can sometimes 
miss the subtle signs of breast cancer.1

Computer-aided diagnosis (CAD) was developed to consistently 
draw the radiologist's attention to suspicious regions in a mammo-
gram that could be missed. Commercial CAD systems are designed 
to be consulted after the radiologist has made an initial assessment 
of the mammogram, and it has been shown that prompting by a 
CAD system improves radiologists' detection performance.2

The basic algorithm in a CAD system is (i) the detection of 
suspicious features, (ii) the reduction of false-positives, and (iii) the 
classification of suspicious features as malignant or benign. While 
current CAD methods can achieve sensitivities of up to 100% in 
identifying microcalcification clusters, masses are detected with a 
lower sensitivity because of their variable appearance and similarity 
to normal tissue. Mass detection CAD algorithms also have high 
false-positive rates, which are not very practical because the radiolo-
gist would waste time examining the false-positive marks.

The minimum requirements of a CAD system should be to 
completely emulate the actions of a radiologist, who uses many 
methods to analyse a set of mammograms. These methods are sum-
marised in Fig. 1. Most methods generally used by a radiologist in 
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Fig. 1. Methods used by a radiologist to analyse a set of mammograms. 
Most methods have been implemented in a CAD system, but the 
examination of ipsilateral views has not.
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interpreting mammograms (e.g. examination of single views, bilat-
eral comparison, temporal comparison) have been implemented in 
CAD systems, mostly for the detection of abnormalities. In practice, 

radiologists also consider the distance from the nipple to the cen-
troid of a suspicious feature in one mammographic view, and then 
search an annular region in another mammographic view at about 
the same radial distance from the nipple corresponding to the suspi-
cious feature. This technique is known as the arc method and is used 
under certain circumstances to confirm a true-positive feature or to 
eliminate a false-positive feature.

While there have been a few studies indicating the usefulness of 
using two standard mammographic views for false-positive reduc-
tion,3-6 these algorithms have not been incorporated into CAD 
systems. Most importantly in these dual-view algorithms, the suspi-
cious features are identified in both standard mammographic views 
and information is correlated between pairs of suspicious features to 
identify matches and thereby reduce the number of false-positives. 
All these methods also rely on some form of training (e.g. linear 
discriminant analysis, artificial neural networks) and therefore only 
perform as well as the data set that was used for the training. Any 
algorithms based on training generally perform very poorly when 
applied to situations outside the scope of the training data.

This paper presents an algorithm that finds a suspicious feature 
in one standard mammographic view and then uses the position and 
characteristics of the feature to find it in another standard mam-
mographic view. Two image-processing matching algorithms were 
developed that perform an exhaustive search of a reduced breast tis-
sue region to match a suspicious feature identified in one mammo-
graphic view with the same feature in another mammographic view 
of the same breast. The algorithms developed have the advantage 
of not requiring any training and can be slotted into existing CAD 
systems as a method of providing further information to reduce 
false-positives.

Materials and methods
The general matching algorithm was based on three assumptions:4 
(i) at least two mammographic views of the breast are available, (ii) 
a mass is visible in at least two mammographic views, and (iii) a 
mass has similar image textural characteristics in all mammographic 
views.

A schematic of the image-processing matching algorithm is 
shown in Fig. 2. The steps in the matching algorithm were:
1.   �Identification: A radiologist identified a region of interest (ROI) 

in the reference image, as there was no access to a CAD system. 
The radiologist manually drew borders around suspicious fea-
tures in both standard mammographic views.

2.   �Pre-processing: The mammogram background7 and pectoral 
muscle8 were removed to reduce the area of the search image 
that was analysed. The arc method was used to further reduce 
the area analysed and is detailed in Fig. 3. Variations on the arc 
method have been used by Paquerault et al.4, Zheng et al.5 and 
van Engeland et al.6 to reduce the search region in their CAD 
algorithms.

3.   �Quantification of image texture: Textural characteristics of 
the ROI were quantified using Haralick’s texture measures9 and 
grey-level co-occurrence matrices (GLCMs). Texture measures 
extracted from GLCMs have been applied to the texture analysis 
of mammograms on numerous occasions.3,10

Fig. 2. Schematic (not to scale) of the matching algorithm. The location 
of the reference ROI was used to reduce the search region in the search 
image. Textural characteristics of the reference ROI are compared with 
textural characteristics of equivalently sized sub-images in the search 
image. The comparison process results in a similarity map. The brighter 
the regions on the similarity map, the greater the similarity. The similarity 
map is generally smaller than the search image because the sampling win-
dows are >1 pixel and the windows are stepped in increments >1 pixel.

Fig. 3. Geometry of the arc method used to reduce the search region in 
the search image with the CC view as the reference view and the MLO 
view as the search view. The position of the nipple               and the position 
of the centroid of the ROI              in the reference view were used to 
define the arc distance a. The maximum extent    of the ROI border from 
the centroid in the reference view was also determined. Then the nipple in 
the search view was used as an origin to draw two arcs (of radii             ) 
that were bounded by the breast border. The region enclosed between 
the arcs and the breast border defined the reduced search region in the 
search view. The method is independent of which view was used as a 
reference. The positions of the nipple in both standard mammographic 
views and the centroid of the selected ROI in one view were used to 
extract that portion of the breast in the other view where the ROI could 
possibly lie. The value of      was based on the size of the ROI in the 
reference view, which meant that the area of the annular region depended 
on the size of the selected ROI.
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4.   �Similarity: The similarity between the ROI and the reduced 
search image was quantified with a Euclidean distance metric 
and mutual information. This comparison process resulted in 
a similarity map where maxima corresponded to positions of 
greatest similarity between the ROI and the search image.
GLCMs and texture measures extracted from the GLCMs form 

the basis of the textural analysis in this study. GLCMs have the 
advantage of including information about the distributions of the 
relative locations of pixels and their grey levels.9 The GLCMs were 
computed at four angles (                              ) and then averaged to 
remove any directional effects that may be introduced by the change 
in orientation of the breast tissue between mammographic views. 
Texture measures were calculated from the averaged GLCM.9

Similarity metrics were used to quantify how similar the refer-
ence ROI was to the search ROI. The Euclidean distance and mutual 
information similarity metrics were used in this study.

•   �Euclidean distance metric, DE: The Euclidean distance met-
ric is the most commonly used metric to calculate distance. 
For two points  and                             in n-dimensions, DE  is 
defined as:

			   		  (1)

•   �Mutual information, MI: Mutual information has been 
shown to be a robust similarity metric in image registration 
problems,11 but has also been applied to template matching,12 
feature selection and segmentation problems. Mutual infor-
mation can be interpreted as a measure of the information 
that two quantities have in common and is defined as:13

						      (2)

Mutual information is an acceptable similarity metric because 	
MI>0  unless the two quantities are completely independent, then 
MI=0. Also, MI increases as the dependency between both quanti-
ties increases and is independent of the actual value of the probabil-
ity.13

In the first matching algorithm, referred to as texture measure 
matching or TM-matching, the image texture was quantified by 
13 texture measures calculated from averaged GLCMs: maximum 
probability, entropy, energy, inertia, inverse difference moment, 
correlation, sum average, sum entropy, difference entropy, sum vari-
ance, difference average, difference variance, information measure of 
correlation. A 13-dimensional texture measure vector was calculated 
for each position of the sampling window and was then compared 
with the texture measures of the reference ROI using Euclidean 
distance as a measure of similarity. The result was a 2-dimensional 
map of distance values.

In the second matching algorithm, referred to as mutual infor-
mation matching or MI-matching, GLCMs were used to quantify 
the image texture. Mutual information was used to quantify the 

similarity between the reference and search GLCMs. This study uses 
the full GLCM as an estimate of the probability density function that 
incorporates spatial information. The only application of the full 
GLCM that used mutual information was for image registration,14 
but the full GLCM has not been applied to template-matching prob-
lems or to any problem in mammographic CAD. For the calculation 
of mutual information, individual GLCMs of the reference and 
search images as well as a joint GLCM between the reference and 
search images were calculated.

The results of the TM- and MI-matching algorithms are maps of 
similarity, defined to have the optimal match at maximum similarity 
map values. The accuracy of each matching algorithm was evaluated 
by comparing the similarity maps to ground-truth maps. Ground-
truth maps were generated from the ROIs manually marked by a 
radiologist. Matching accuracy is defined as a combination of two 
quantities: the area under the receiver operating characteristic curve 
and contrast between the matched region and its background.

Receiver operating characteristic (ROC) analysis is a standard 
method of evaluating and ranking medical diagnostic tests.15 To 
perform any evaluation, the ‘truth’ must be known so that it can be 
compared with the output of the test. The evaluation and ranking of 
CAD algorithms is analogous to that of a standard medical diagnos-
tic test and is therefore perfectly suited to the use of ROC analysis. 
The basis of ROC analysis is the ROC curve, which is a plot of the 
true-positive fraction (TPF) v. the false-positive fraction (FPF).

For the evaluation of the results from the matching algorithms, 
the similarity maps were thresholded at grey-level values between 
0 and 255 (8 bits of information). The thresholded maps (Fig 4g 
- i) were compared with the ground truth data (Fig. 4c) to compute 
values of the TPF and the FPF at each threshold. The TPF and FPF 
values were used to generate the ROC curve. The area under the 
ROC curve, AUC, (computed using the trapezoidal rule) is used as 
an indication of what proportion of the matched region was actually 
matched and                       .

Contrast is used as a measure of how well the matched ROI 
stands out from its surroundings in the similarity map. Contrast 
refers to a local change in brightness and is defined as the ratio of 
the average brightness of an object to the average brightness of the 
background.16

	  						    
						      (3)

f is the average grey level of the foreground, b is the average 
grey level of the background and                  . Negative values arise 
when the foreground is darker than the background, and positive 
values arise when the foreground is brighter than the background. 
A contrast of 0 means that the object cannot be distinguished from 
its background. The ground-truth data were used to define regions 
in the similarity map used to calculate f and b. Ideally, the matched 
regions should be the brightest objects in the similarity map.

By definition, the best match should have the highest matching 
accuracy. The selection of the best combination of AUC and C values 
is facilitated by the novel use of a combined AUC-C value referred 
to as matching accuracy, κ, and calculated as follows:
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						      (4)

11 ≤≤− κ  because  10 ≤≤ AUC  and 11 ≤≤− C .
Acceptable matches should have AUC>0.5 as this indicates that 

the matching is better than random, and C should be positive as this 
indicates that the matched region is brighter than the background in 
the similarity map.

A PC with an AMD Athlon XP 2.4GHz processor and 512 Mb 
of RAM, running Microsoft Windows 2000, was used for the soft-
ware development. All algorithms were implemented in IDL 6.1, a 
programming environment providing mathematical functionality 
with a graphic interface.

The algorithms were applied to 34 pairs of cranial-caudal (CC) 
and medio-lateral oblique (MLO) mammograms. The mammograms 
were arbitrarily selected from the patient archives at the Inkosi 
Albert Luthuli Central Hospital, Durban, to represent a range 
of breast densities, mass sizes and patient ages. The images were 
acquired on a Siemens Mammomat 3000 Nova mammography unit, 
with a focal spot size of 0.3 mm, a molybdenum anode and a 30 µm 
molybdenum filter. The image reader was a Digiscan M (Fuji Photo 
Film Co. Ltd). The computed radiography images were exported 
in the digital imaging and communications in medicine (DICOM) 
format from the hospital data archives, at a bit-depth of 10 bits and 
0.05 mm per pixel. For processing, images were resampled to 0.254 
mm per pixel (100 dpi).

Since the matching results are independent of which view is used 
as a reference, each CC and MLO view was used separately as a refer-
ence image and a search image, resulting in the matching algorithms 
being applied to 68 pairs of mammograms. The 68 individual mam-
mograms were divided into four categories based on the pathology 
of the suspicious ROI or overall diagnosis of the mammogram: 
28 benign, 18 malignant, 10 normal and 12 indeterminate. Most 
patients are referred to the Inkosi Albert Luthuli Central Hospital for 
diagnostic tests, so not all the mammograms had a full pathological 
history, since not all referring physicians recommended a biopsy. In 
these cases, the radiologist's report was used as a basis for the diag-
nosis of the mammogram.

The ‘benign', ’indeterminate' and ‘malignant' diagnoses refer 
to masses, while the ‘normal' diagnosis refers to a suspicious-look-
ing region in a normal mammogram. Masses were categorised as 
‘indeterminate' if the biopsy was inconclusive or the radiologist was 
unable to render a diagnosis based on the mammographic appear-
ance. A radiologist marked the borders of the suspicious ROIs in 
MagicView, the software interface used to view standard digital 
imaging and communications in medicine (DICOM) medical imag-
es. The borders were saved as DICOM images and were automatical-
ly extracted in IDL, for use as ground truth data, which eliminated 
the need to register the ground truth data with the mammograms. 
The areas of the regions enclosed by the radiologist-drawn borders 
were automatically computed in MagicView.

The average area of the ROIs together with the average visibility 
of the ROIs is shown in Table I. Visibility was automatically deter-
mined from the original mammograms (at 0.254 mm per pixel) 

before pre-processing. Visibility was defined to be the contrast of the 
ROI compared with the surrounding tissue and was computed from 
Eq. 3. Visibility ranges between 0 for a very subtle ROI and 1 for a 
very obvious ROI. There is a wide range of ROI sizes, and some of 
these are very subtle while others are more visible.

Results
Examples of similarity maps for TM-matching and MI-matching are 
shown in Figs 4e and 4f respectively. While both maps show the ROI 
as the brightest feature, both maps also have other features that have 
been matched. These false-positive detections lower the AUC value 
and C value, and therefore lower the overall matching accuracy. For 
example, the TM similarity map (Fig. 4e) has AUC=0.94, C=0.44 
and κ=0.39, while the MI similarity map (Fig. 4f) has AUC=0.92, 
C=0.36 and κ=0.30.

The map for TM-matching has a bright band around the inter-
face between the breast and the segmented background. However, 
the bright region does not lower the overall accuracy of the match, 
because the evaluation focuses on the feature of interest and its 
immediate surroundings. The MI map does not display any artefacts 
at the interface between the breast and the segmented background.

The averages of the best matching results for TM-matching 
are listed in Table II. Results show that the malignant masses were 
matched with the highest matching accuracy compared with the 
other mammogram classifications. Results for the benign and 
indeterminate masses and the normal mammograms were scat-
tered across a range of AUC and C values, and there were 5 ROIs 
(2 benign, 1 indeterminate, 2 normal) that were not matched with 
TM-matching.

The average of the best matching accuracies for MI-matching 
are listed in Table III. The malignant masses were matched with the 
highest accuracy. The matching accuracy for the malignant masses 
was statistically different (p<0.002) from the matching accuracies 
for the other mammogram categories. All malignant masses were 
well matched, with the results generally clustered around AUC=1 
and C=1.

Mammograms classified as non-malignant were poorly matched 
in both methods. Possible factors that contributed to the poor 
matching results were the ROI area and the ROI visibility. Most of 
the ROIs on mammograms classified as benign, indeterminate and 
normal were either very small (<0.5 cm2) or had a low visibility, 
while the ROIs on mammograms classified as malignant were gen-
erally larger and more visible. Matching accuracy was generally well 
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κ Table I. Average area and visibility of ROIs for the 68 
mammograms used

Type Number
Average area 
(cm2)

Average 
visibility

Benign 28 1.54±2.50 0.18±0.08

Indeterminate 12 2.23±2.05 0.23±0.01

Malignant 18 11.0±12.8 0.40±0.19

Normal 10 1.46±2.26 0.14±0.04
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correlated with ROI visibility (71% correlation), and the ROIs with 
low visibilities had very poor matching accuracies.

Matching accuracy is spread over a wide range for the small, 
low-visibility ROIs, while the large, high-visibility ROIs generally 
have high matching accuracies. Regarding TM-matching, matching 
accuracy was correlated with ROI visibility (62% correlation). There 
were 12 image pairs (8 benign, 2 indeterminate, 2 normal) that were 
not matched with MI-matching. Areas of the non-matched ROIs 
ranged from 0.16 cm2 to 1.21 cm2 and all had low visibilities.

Discussion
Fig. 5 shows the best matching results for each of the 68 pairs of 
mammograms, for each matching algorithm. The AUC and C values 
are generally quite scattered for both. Some results have AUC<0.5 
and C<0, indicating that the match was unsuccessful. Matching 
accuracies are, however, generally quite high for both methods; this 
is confirmed by examining the average of the best matching accura-
cies (Tables II and III).

The results of performing a paired t-test analysis on the distribu-
tion of the best κ values for TM-matching and MI-matching yielded 
a t value of -1.40 and a p value of 0.16. For a significance level of 0.05, 
the average values of κ for TM-matching compared with MI-match-
ing are not statistically different. Overall, both TM-matching and 
MI-matching show potential as matching schemes, as both methods 
yielded quite accurate matches on the small data set.

Results at a significance level of 0.05 show that the average 
results for matching the benign and indeterminate masses and 
normal ROIs are similar for each method (p=0.78, p=0.46, p=0.97, 
respectively), but that the results of matching malignant masses are 

statistically different (p<0.01), with the MI-matching results better 
than the TM-matching results.

MI-matching required less computational time and was more 
accurate at matching malignant masses, but there were fewer 
unmatched pairs of mammograms for TM-matching (5 out of 68 
compared with 12 out of 68 for MI-matching). Therefore, a hybrid-

Table III. Average of the best matching results for MI-
matching

Diagnosis Average AUC Average C Average κ

Benign 0.68±0.26 0.29±0.36 0.21±0.30
Indeterminate 0.75±0.28 0.59±0.40 0.44±0.34
Malignant 0.96±0.05 0.90±0.21 0.84±0.23
Normal 0.71±0.24 0.26±0.29 0.17±0.23
All 0.77±0.25 0.50±0.42 0.41±0.39

Table II. Average of the best matching results for TM-
matching

Diagnosis Average AUC Average C Average κ

Benign 0.75±0.17 0.37±0.21 0.22±0.16

Indeterminate 0.80±0.15 0.50±0.26 0.34±0.27

Malignant 0.93±0.05 0.67±0.21 0.58±0.21

Normal 0.68±0.19 0.29±0.26 0.18±0.19

All 0.80±0.17 0.46±0.26 0.33±0.25

Fig. 4. Sample images: (a) reference image, (b) search image, (c) ground-
truth map, (d) distance map, (e) TM similarity map, (f) MI similarity map 
(g - i) MI similarity map thresholded at grey levels of 1, 64 and 128. The 
thresholded maps are compared with the ground-truth map in (c) to 
determine the TPF- and FPF-values that were used to generate an ROC 
curve.

Fig. 5. Scatter plot of AUC v. C with the best matching accuracies for 
each mammogram pair for (a) TM-matching and (b) MI-matching.
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matching scheme using the results of both methods could yield 
better matching results.

Both matching algorithms showed great potential for use in a 
CAD scheme. The average best matching accuracy for MI-match-
ing was κ=0.41±0.39, which corresponds with average best AUC 
and C values of 0.77±0.25 and 0.50±0.42, respectively. The average 
best matching accuracy for TM-matching was κ=0.33±0.25, which 
corresponds with average best AUC and C values of 0.80±0.17 and 
0.46±0.26, respectively. The average best results for these two meth-
ods were not statistically different (p>0.05)

MI-matching showed the best matching accuracy for matching 
malignant masses (κ=0.84±0.23 corresponding to AUC=0.96±0.05 
and C=0.90±0.21), while the results for the other types of ROI 
(benign, indeterminate, normal) were similar for both methods.

The TM- and MI-matching algorithms show potential for pro-
viding more information for use in a false-positive reduction scheme 
in a CAD system. The ideal solution would be to incorporate mutual 
information ideas into the texture measure method. If the suspicious 
object is present in both mammographic views, only one view needs 
to be analysed to detect the object, while the second view is analysed 
with information extracted from the object in the first view, for con-
firmation of a true object.

One advantage of using a distance similarity metric and mutual 
information for matching is that no training is required, which is 
quite important for a mammographic CAD system since breast 
tissue varies considerably from patient to patient. The TM- and MI-
matching algorithms can be applied to any image-matching prob-
lem. Unfortunately, the current algorithms are very time-consuming 
and will have to be optimised for implementation in a CAD system.

Two shortcomings of this study are the quality of the ground 
truth data and the small data set. Only one radiologist marked the 
borders of the ROIs in each mammogram, and there was no method 
of confirming the accuracy of the identified borders. Also, results 
will be strengthened if the algorithms are tested on a larger database 
of mammograms.

Conclusion
Texture analysis methods used with suitable similarity metrics allow 
a suspicious feature from one mammographic view to be matched 

with the same suspicious feature in other mammographic views 
of the same breast. The matching algorithms (using grey-level co-
occurrence matrices, distance similarity metrics and mutual infor-
mation) perform especially well in matching malignant masses. This 
dual-view analysis method can most probably be used to provide 
complementary information to a false-positive reduction scheme in 
a mammographic CAD system.
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