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ABSTRACT 

The objective of this study was to evaluate the contribution of particular muscle 

groups during the Flat Bench Press (FBP) with different external loads. 

Additionally, the authors attempted to determine whether regression models or 

Artificial Neural Networks (ANNs) can predict FBP results more precisely and 

whether they can optimise the training process. A total of 61 strength-trained 

athletes performed four single repetitions with 70, 80, 90 and 100% of one repetition 

maximum (1RM). Based on both kinematic and electromyography results, a 

regression model and ANNs for predicting the FBP performance was created. In an 

additional study, 15 athletes performed the training session in order to verify the 

created model. The results of the investigation show that the created neural models 

9-4-1 structure (NRMSE [Normalised Root Mean Squared Error], for the learning 

series was 0.114, and for the validation and test series 0.133 and 0.118, 

respectively), offer a much higher quality of prediction than a non-linear regression 

model (Absolute regression error – Absolute network error =47kg–17kg=30kg).  

Key words: Non-linear models; Artificial neural networks; Bench press 

performance; Electromyography. 

INTRODUCTION 

The Flat Bench Press (FBP) is one of the most popular strength exercises performed by 

athletes of different sport disciplines (Van den Tillaar & Ettema, 2009). FBP performance is 

significantly influenced by the strength and power of several muscle groups and by proper 

technical execution of the movement (Lehman, 2006). A successful bench press lift is 

performed when the barbell is first lowered (descending phase) to the chest and then moved 

to a fully extended position (ascending phase). The recognised primal movers for FBP 

include the Pectoralis major (PM), Triceps brachii (TB) and Anterior Deltoid (AD), but the 

performance itself is strongly influence by their antagonists and synergists, such as the 

Pectoralis minor, shoulder external rotators or Latissimus dorsi (LD). Understanding the 
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relative contributions of different muscles and the kinematic changes across movement 

phases with increasing load can help to characterise the benefits and risks of the exercise, and 

can also improve training effectiveness.  

 

Prediction of one repetition maximum (1RM) by 10RM itself has been studied for the 

purpose of setting accurate training intensity in the early stage of a training session (Brzycki, 

1993; LeSuer et al., 1997; Reynolds et al., 2006). Many prediction equations take into 

consideration only the sport results, so in effect the conclusions are in high inaccuracy 

regarding to different motor tasks (Hoeger et al., 1987; LeSuer et al., 1997). Current 

development of technology enables researchers to measure 3D kinematics and muscle activity 

along with different exercise intensities. By the recognition of Hills curve, there are three 

parameters, which influence muscle strength production: length of muscle, muscle excitation 

and speed of contraction (Siff, 2003). The kinematics variables are described by movement 

acceleration, while the bioelectrical activity can describe the level of muscle excitation. The 

FBP during 1RM is recognised in importance of electromyography (EMG) mean amplitude 

for PM, AD and LD (Santana et al., 2007), but their study did not refer to the activity of the 

TB. In the study of Van Den Tillaar and Ettema (2009), FBP showed the same pattern of 

muscle activity, yet there were differences in kinematics. Thus, the 1RM flat bench press 

performance model should be described in a more complex form and by innovative methods.   

 

The prediction of exercise performance is complex and dependent on the modelling of 

frequently non-linear interactions (Zehr, 2005; Van Den Tillaar & Ettema, 2009). Non-linear 

tools (non-linear regression and neural models), are available to describe such phenomena. 

However, there is no agreement over the relative accuracy of such methods in predicting 

results (Maier et al., 2000; Zehr, 2005; Maszczyk et al., 2012). It is hypothesised that neural 

network modelling will better identify the potential of athletes in the FBP, compared to a 

typical regression model (Jolivet et al., 2008; Rahmani et al., 2009; Trebs et al., 2010; 

Maszczyk et al., 2011). 

 

Neural networks can be employed wherever a relationship between explanatory variables 

(inputs) and explained variables (outputs) exists (Gregor & Pink, 1985; Haykin, 1994). 

However, they are especially useful for seeking very complex input-output relationships, 

which are difficult to capture using statistical methods that are usually applied in such cases 

(for example, the analysis of relationships or the separation of taxonomically homogenous 

groups). Considering that the relationships between variables may be either linear or non-

linear, recently Artificial Neural Networks (ANNs) have been used more frequently to 

identify their actual nature (Lees, 2002; Bartlett, 2006; Maszczyk et al., 2011). At present, 

this tool is used frequently for solving modelling and prediction issues (Maier et al., 2000; 

Lees, 2002; Zadeh, 2002; Bartlett, 2006; Maszczyk et al., 2012).  

PURPOSE OF STUDY 

There were two objectives of this study: to determine the differences in EMG amplitude due 

to increased exercise intensity (70, 80, 90 and 100% of 1RM); and to create an ANNs 

prediction model for 1RM FBP performance and to determine the accuracy between ANNs 

prediction and typical regression prediction. Therefore, this study had two distinct phases of 

investigation. During the first one, the main objective was to determine the EMG activity of 
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particular muscle groups during the FBP with different external loads. The second was 

intended to determine whether regression models or ANNs predict sport results more 

precisely and was the primary goal of this investigation.  

METHODOLOGY 

Participants 

The study group consisted of 61 strength trained sportsmen (aged 23±2yrs, body mass 

79.2±3.6kg; body height 180.2±4.0cm; 1RM bench press: 90±12.4kg), from the MAX FIT 

CLUB POLAND. The participants (N=36) were selected randomly (from 75 sportsmen) for 

the construction group (CG) for the construction of the first model and 15 subjects were 

chosen for the new training cases group (NTC), in order to construct the model. Then, 10 

participants were selected (whose results were not built into the models), to be included as a 

test group (TG) for the second session (verification of models prediction).  

 

The core investigation was preceded by 3 months of general and specific physical fitness 

training in own clubs and in the Academy of Physical Education in Katowice (APEK) 

facilities. Each sportsman participated in 3 training sessions per week in his own sport club 

and 3 additional training sessions per week in the APEK facilities, for the purpose of this 

research. Written informed consent was obtained from all participants. The subjects were free 

from any upper limb injury, and had no cardiovascular or metabolic diseases as reported in a 

health questionnaire. Subjects with upper limb injury or previous surgery were excluded from 

the research group. The Bio-ethics Committee for Scientific Research at the Academy of 

Physical Education in Katowice approved the project.  

Test protocol 

After a general warm-up performed with recommendations of the American Society of 

Exercise Physiology (Brown & Weir, 2003), each subject performed a specific warm-up that 

consisted of 2 sets of 6 repetitions of the FBP with a load of 60% 1RM. The test protocol 

included 4 sets of 1 repetition of the FBP with 70, 80, 90 and 100% of 1RM. The participants 

performed a traditional bench press (descending and ascending the barbell). No marked pause 

between descending and ascending the barbell was necessary. However, the participants were 

not permitted to 'bounce' the barbell off the chest and were not allowed to raise the lower 

back from the bench. 

3D Kinematics and electromyography 

Multidimensional movement analysis was made with the Smart-E measuring system (BTS, 

Italy), which consisted of 6 infrared cameras (120Hz) and a wireless module to measure 

muscle bioelectric activity (Pocket EMG 1kHz, pass band 10-500Hz, 16 channels). 

Modelling in 3D space, as well as calculations of parameters was performed with the help of 

Smart software (Smart Capture, Smart Tracker and Smart Analyser, BTS, Italy). The set of 

passive markers permissive on delimitation of chosen parameters of the barbell and the 

participant was applied. Technical accuracy of the system after the calibration process 
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equalled 0.4mm (the distance between 2 markers in 3D). The motion of the bar in every 

repetition was divided into 2 phases: descent (D) and ascent (A) ones.  

TABLE 1. STANDARDISED VARIABLES USED TO CONSTRUCT MODELS 

Variables Mean SD CV 

Y1(FBP) 0.708 0.851 -0.755 

PMD -0.358 -0.432 -0.381 

PMA -0.357 -0.432 -0.515 

PMsum -0.352 -0.422 -0.540 

ADD -0.359 -0.431 -0.195 

ADA -0.357 -0.428 -0.301 

ADsum -0.352 -0.418 -0.354 

TBD -0.362 -0.438 -0.023 

TBA -0.360 -0.433 -0.306 

TBsum -0.357 -0.429 -0.339 

LDD -0.364 -0.442 -0.027 

LDA -0.363 -0.441 -0.184 

LDsum -0.363 -0.440 -0.208 

XD -0.174 0.138 0.079 

XA -0.168 0.285 0.375 

YD 3.556 3.373 -0.860 

YA 3.773 2.950 -0.929 

ZD 0.817 1.507 -0.554 

ZA 0.760 2.015 -0.312 

VmeanD -0.361 -0.439 -0.509 

VmaxD -0.359 -0.435 -0.515 

VminD -0.364 -0.442 1.433 

VmeanA -0.361 -0.438 -0.414 

VmaxA -0.359 -0.435 -0.479 

VminA -0.364 -0.441 3.509 

AmeanD -0.357 -0.424 -0.080 

AmaxD -0.335 -0.383 -0.359 

AminD -0.364 -0.440 2.490 

AmeanA -0.355 -0.419 -0.006 

AmaxA -0.330 -0.385 -0.520 

AminA -0.364 -0.441 2.421 

TD -0.347 -0.414 -0.512 

TA -0.347 -0.399 -0.128 

SD= Standard Deviation CV= Coefficient of Variances 
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Considering the data describing the kinematics of the bar, the following variables were 

calculated to define a quantitative motion of the bar. Before the 1-RM experimental test, the 

skin was prepared (shaved, washed with alcohol, abraded), for the placement of gel coated 

surface EMG electrodes. Electrodes (11mm contact diameter) were placed on the dominant 

side of the body on the belly of the muscle in the presumed direction of the underlying 

muscle fibres with a centre-to-centre distance of 2.0cm according to the recommendations by 

SENIAM (Hermens et al., 2000).  

 

PM electrodes were positioned halfway between the sternal notch and anterior auxiliary line. 

AD electrodes were placed 2 finger-breadths below the acromio-clavicular joint and angled 

towards the deltoid tuberosity. The electrodes for the TB were positioned mid-way between 

the acromion and olecranon processes on the posterior portion of the upper arm on the long 

head of the triceps. LD electrodes were placed in the middle part of the muscle, at the height 

of spinous process of the first lumbar vertebra. A ground electrode was placed directly over 

the right anterior-superior iliac spine. This method of electrode placement was similar to that 

of Cram and Kasman (1998). The normalisation procedure (MVIC) was carried out in 

accordance with the recommendations by SENIAM (Hermens et al., 2000; Konrad, 2005). 

 

In order to test the hypothesis, multidimensional statistical analyses were applied to 

measurements taken in the construction group (CG). The research problem was addressed by 

using an empirical and predictive investigation, based on the data obtained in the form of a 

multidimensional vector of variables, including independent Xn variables and 1 dependent 

variable Y-bench press results (1RM). Based on the results of the 51 participants, 

mathematical models were created. Then, an additional study was conducted on a group of 15 

participants, in order to verify previously created models.  

 

Numerous characteristics of the participants were measured and served as the independent 

variables, and included specific variables of the bench press (Table 1). The dependent 

variables included the results of the bench press. During the measurements, 32 variables were 

identified. To determine the optimal set of predictors, the R0 vector was determined for the 

explanatory variables and the R1 vector for the correlations generated by the R0 vector for 

variables showing a significant correlation with the explained variable Y1 – FBP result.   

 

This approach allowed determining 13 predictors, which significantly improved the models 

explained by variable Y1 (the result of the FBP). The mean values of this variable were used 

in the multiple regression models. However, 4 variables were removed from the model 

following statistical testing (testing the significance of the hypothesis and statistical 

verification of structural parameters of regression equation for dependent variable Y1- within 

the meaning of the equation: sign (r(xj,y))=sign (aj).   

 

Ultimately, the regression equation was re-estimated with the remaining 9 explanatory 

(statistically significant) variables:  

 

VmaxD= Maximal velocity during the descending phase (B=1.3) 

AminA = Minimal acceleration during the ascending phase (Beta=0.6) 

ZA = Anterior-posterior displacement during the ascending phase (Beta=0.5) 

AmaxA = Maximal acceleration during the ascending phase (Beta=0.8) 



SAJR SPER, 38(1), 2016           Maszczyk, Gołaś, Czuba, Król, Wilk, Šťastný, Goodwin, Kostrzewa & Zając  

96 

VminA = Minimal velocity during the descending phase (Beta=0.3) 

TBA = Triceps brachii during the ascending phase (Beta=0.4) 

XA = Lateral displacement during the ascending phase (Beta=0.4) 

YA = Vertical displacement during the ascending phase (Beta=0.6) 

TD = Time of the descending phase (Beta=0.7) 

Modelling procedure 

The data of the CG were entered into the neural net and regression models were obtained 

from the measurements using the Smart-E system (BTS), which identified 32 independent 

variables. The data set was subdivided into 3 series: learning series (24 cases); validation 

series (6 cases); and test series (6 cases). Then, to enhance the model, 15 new training cases 

were added and estimated again (33 cases: learning series; 9 cases: validation series; 9 cases: 

test series). Regression and the neural net models confirmed the predictors for the TG, who 

was of the same age and had the same training experience as the CG, and whose results were 

not used to construct the models. So, the results of the predictions for the TG were verified by 

comparing the model-generated predictions with the actual results achieved by the same 

group 3 months later.   

Statistical analysis 

The EMG and kinematic parameter results of the first session were expressed as group means 

and standard deviations were calculated for all the variables. The Kolmogorov-Smirnov test 

of normality and Levene's test of homogeneity of variance were performed to verify the 

normality of the distribution. The 1-way ANOVA was applied to determine the statistical 

differences in EMG amplitude due to increased exercise intensity (70, 80, 90 and 100% of 

1RM).  

Regression and neural network models 

Multiple stepwise regressions were used to select the explanatory variables offering the best 

prediction of results in the CG. These 9 predictor variables were log-transformed and used to 

form regression models predicting Y (results of the FBP).  

 

More formally, in a non-linear model, at least 1 derivative with respect to a parameter should 

involve that parameter. In this study, the Y1(t)=exp (a1t + b1t
2
) non-linear regression model 

was used and verified after being transformed to linear models using the transformation 

Xn1(t)=ln Y1 (t). For generalisation and prediction of sport results, Multilayer Perceptron 

(MLP) neural models were used to describe the bench press with the following structures: 9-

2-1, 9-3-1 and 9-4-1. In the Neural Network Statistica Module (NNSM), 100 epochs is the 

standard procedure, followed by 30 epochs of optimisation (Szaleniec et al., 2006, 2008). The 

networks were trained using the Levenberg-Marquardt algorithm. The level of significance 

for all analyses was set at p≤0.05. 

Testing data verifying model-generated predictions   

The primary goal of the investigation was to compare and assess the predictive abilities of the 

non-linear regression and neural models. This necessitated testing the prediction values 

against the actual FBP results. After data collection, regression and neural models were built 
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and a second phase of research was conducted. One month after the beginning of the 

investigation, 15 participants performed the same training protocol as the first sample, and 

once again, independent variables were measured. FBP results were predicted using the above 

regression and neural models for the TG (n=10). Three months after the prediction of the 

bench press using these models, their results were recorded (true values). Model-generated 

predictions were compared to actual results (kg), and absolute errors were calculated. The 

calculation of absolute errors was dictated by the specificity of the regression models.  

 

The regression function is built upon the method of least squares in which the sum of the 

squares in the numerator of the function must approximate as closely as possible that of the 

denominator. This creates a situation in which the model predicts results with great deviation, 

yet after adding up the deviations, the error will be close to zero. Thus, the model does not 

possess highly specific predictive possibilities. Only after adding up the values of absolute 

deviations in the neural and regression models can the superiority of non-linear neural models 

be detected, in which the absolute error is much smaller than in the regression models (Table 

1). All statistical analyses in both groups of sportsmen were carried out on a PC using the 

statistical package STATISTICA 9.1, STATISTICA Neural Networks Module (Release 9) and 

Excel 2010 from Microsoft Office 2010. 

RESULTS 

Numerous characteristics of the participants were measured, which served as independent 

variables and included specific variables of bench press (Table 1). All variables were 

normally distributed as suggested by the Kolmogorov-Smirnov test results. One-way 

ANOVA revealed statistically significant differences in EMG amplitude for the variables due 

to increased exercise intensity between 70 and 100% only: 

Pectoralis major EMG amplitude (MVIC) during descending phase (PMD);  

Anterior deltoid EMG amplitude (MVIC) during descending phase (ADD);  

Anterior deltoid EMG amplitude (MVIC) during ascending phase (ADA);  

Triceps brachii EMG amplitude (MVIC) during descending phase (TBD);  

Triceps brachii EMG amplitude (MVIC) during ascending phase (TBA);  

Latissimus dorsi EMG amplitude (MVIC) during descending phase (LDD); and  

Latissimus dorsi EMG amplitude (MVIC) during ascending phase (LDA).  

TABLE 2. ONE-WAY ANOVA IN EMG ACTIVITY OF MUSCLES 

AMPLITUDE BETWEEN 70% AND 100% 1-RM 

Variables F p 

PMD 6.588 0.014 

ADD 4.501 0.040 

ADA 5.737 0.021 

TBD 23.114 0.001 

TBA 34.117 0.001 

LDD 14.382 0.005 

LDP 23.216 0.001 
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The results of 1-way ANOVA suggested that if 1 or more muscles will be determined by a 

matrix for models, one could optimise their function for the best sport results (Y1-FBP). 

Table 2 shows the results of the 1-way ANOVA, which revealed a statistically significant 

difference in EMG amplitude due to increased exercise intensity between 70 and 100% only.  

The regression model for the FBP results had the following form: 

Y1(FBP) =281.8–209.4*VmaxD+780.5 AminA+0.3*ZA–25.2*AmaxA–267.2* 

VminA–112.7*TBA–1.4*XA+0.2*YA–32.3*TD 

where:  

Y1 = 1RM FBP result (kg) 

VmaxD = Maximum velocity during descending phase (m/s) 

AminA = Minimal acceleration during ascending phase (m/s
2
) 

ZA = Anterior-posterior displacement during the ascending phase 

AmaxA = Maximal acceleration during ascending phase (m/s
2
) 

VminA = Minimal velocity during ascending phase (m/s) 

TBA = Triceps brachii EMG amplitude (MVIC) during ascending phase 

XA = Lateral displacement during the ascending phase (mm) 

YA = Vertical displacement during the ascending phase (mm) 

TD = Total time of the descending phase (%) 

  

Using the same variables of the perceptron models (Multilayer Perceptron: MLP) were 

constructed with the following structures: 9-2-1 (Normalised Root Mean Squared 

Error/NRMSE: learning data=0.478; testing data=0.488; validation data=0.476) and 9-3-1 

(NRMSE: learning data=0.363; testing data=0.321; validation data=0.355). For networks 9-2-

1 and 9-3-1, values of NRMSE for validation series were not satisfactory. Finally, the use of 

architecture 9-4-1 brought a breakthrough. For the group of 36 sportsmen, the quality 

measures for this network were 0.228 for the training subset, 0.284 for the validation subset 

and 0.278 for the test subset.  

 

However, with the 15 new training cases added to the model and following model re-

estimation, the results improved. With regard to the new 9-4-1 networks, the NRMSE for the 

learning series was 0.114 and for the validation and test series 0.133 and 0.118, respectively. 

Thus, the practical usefulness of this model was supported by correlation coefficients of a 

large magnitude between independent and dependent variables in each group.  

 

Table 3 includes the results of the verification procedure by which the prediction values 

generated by the non-linear neural networks and non-linear regression models for the 

sportsmen (n=10, the new group of the same age and the same training experience as the CG, 

and whose results were not used to build the models), in the FBP were compared with the 

actual results for the tested sportsmen. 
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TABLE 3. TRUE AND CALCULATED VALUES FOR Y1 VARIABLE OF FBP 1RM 

  MLP 9-4-1 Regression model 

 

 

Athlete 

True 

values 

[kg] 

Calculated 

network 

value [kg] 

Network 

error  

[kg] 

Absolute 

network 

error [kg] 

Calculated 

regression 

value [kg] 

Regression 

error 

[kg] 

Absolute 

regression 

error [kg] 

1 85.00 90.00 -5.0 5.0 100.50 -10.5 10.5 

2 90.00 90.50 0.5 0.5 87.50 5.0 5.0 

3 92.50 92.00 1.0 1.0 97.00 5.5 5.5 

4 102.50 101.50 -2.5 2.5 91.00 -3.5 3.5 

5 87.50 90.00 -0.5 0.5 97.00 -2.0 2.0 

6 95.00 95.50 -2.5 2.5 103.50 -3.5 3.5 

7 100.00 102.50 -2.0 2.0 88.50 -3.5 3.5 

8 85.00 87.00 -1.0 1.0 108.50 -3.5 3.5 

9 105.00 106.00 -1.5 1.5 95.00 -5.0 5.0 

10 90.00 91.50 -0.5 0.5 85.00 5.0 5.0 

  Sum: -14.0 17* Sum: -16.0 47* 

DISCUSSION AND CONCLUSIONS 

The main objective of the research was to identify the efficiency and predictive usefulness of 

artificial neural networks treated as a sportsperson’s tool for optimising training in contrast to 

the widely used regression models. In order to accomplish the intended goals, an attempt was 

made to define which variables were most informative and qualified best to play the role of 

explanatory variables of the model.  

 

The regression model identified the following predictors of sport results (Y1-FBP) as the 

most important: maximal velocity of the bar during the descending phase; maximal 

acceleration of the bar during the ascending phase; time of the descending phase; and vertical 

displacement during the ascending phase. The results of the analysis are in accordance with 

the conclusions of Requena et al. (2005) and Reynolds et al. (2006). Moreover, Van den 

Tillaar and Ettema (2009) also confirm that the maximum velocity during the descending 

phase (VmaxD), and lateral displacement during the ascending phase (Xa), is one of the most 

important parameters determining sport results - Y1-FBP. Unfortunately, there is little data 

about the application of regression and discrimination models in power lifting thus; it is 

difficult to compare the results of the current study to that of other studies. Therefore, these 

variables significantly influenced the sport results in the considered group of sportsmen.  

 

The same variables that were found to be most informative and qualified for the role of the 

explanatory variables in the regression models were used to build the neural models. For the 

network with a structure 9-2-1, NRMSE was too high and not satisfactory to claim that this 

model adjusted well. The network 9-3-1 reached better results than 9-2-1, yet networks 9-2-1 
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and 9-3-1 showed problems of decreased ability for generalisation (Kurz & Stergiou, 2005). 

However, the value in validation and test series and the correlation coefficient in those groups 

(0.96), indicated a necessity of building more models with a larger number of neurons in a 

hidden layer, which could approximately fit better into the network and learning data in the 

first set (Kurz & Stergiou, 2005). The quality measures for the network structured as 9-4-1 

built for the first 36 cases pointed to a good fit between the model and the training data. 

However, with 15 new training cases added to the model and following model re-estimation, 

the results improved. Additionally, the quality measures for all subsets provided strong 

arguments in favour of the network's high ability to generalise and predict results and this 

finding was the main reason for why the investigation was initiated. The practical value of the 

created model was confirmed by the already mentioned high correlation coefficients: 0.957, 

0.961 and 0.979.  

 

In order to test the comparisons of the results that were used to build the regression models 

and the neural networks, 10 sportsmen whose results were not built into the models were 

tested. Their FBP results were measured and the quality of the predictions was verified after 

training. The analysis of the results presented in Table 1 (absolute error modules), shows that 

the neural models' algorithms were superior to the regression models, as far as the prediction 

was concerned. The absolute values of the models' error differed by 30kg in favour of the 

neural model. Additionally, the neural model was of greater accuracy in cases of sportsmen 

achieving average or poor results. The negative total error of the network indicates that the 

model makes larger errors in sportsmen with better results in the FBP.  

 

The data collected on a group of 23-year-old sportspersons clearly showed that the neural 

model predicted sport results better than the regression model, confirming the findings of 

Bartlett et al. (1996), whose non-linear neural models provided predictions of better quality 

than the multiple regression models. Murakami et al. (2005) indirectly proved that neural 

models are capable of better predictions than non-linear or linear regression models. The 

opinion that networks with a small number of hidden layers (structure 9-4-1 or 9-3-1) should 

be preferred in constructing neural models for predicting relationships in the field of sport 

corresponds to the opinion of Shojaie and Michailidis (2010), expressed in their study, that 

the networks with one or two hidden layers had the greatest capacity for generalisation. 

 

This study is limited by the number of measured muscle groups, which can be attributed to 

the shortcomings of the measuring instrument. Another limitation of the study includes the 

choice of variables evaluated. Only kinematic variables were considered, while individual 

genetic profiles were not, yet they can significantly influence power (acceleration) and the 

result of the FBP (Petr et al., 2014). The small number of cases can also be considered a 

limitation of the study, especially when testing the regression model (Maszczyk et al., 2012).  

 

The results of the investigation show that the created neural model (9-4-1), offers much 

higher quality of prediction than created earlier with the regression model for Y1 (FBP). The 

former generates smaller prediction errors, which directly follow from the absolute error. The 

optimal set of variables that are most informative and usable as explanatory variables of the 

non-linear regression models and neural models, for the tested group of the 23-year-old 

sportsmen for Y1 (FBP results) consists of: maximal velocity during the descending phase; 

minimal acceleration during the ascending phase; anterior-posterior displacement during the 
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ascending phase; maximal acceleration during the ascending phase; minimal velocity during 

the descending phase; Triceps brachii activity during the ascending phase; lateral 

displacement during the ascending phase; vertical displacement during the ascending phase; 

and the time of the descending phase. 

 

The results explicitly demonstrate that neural models are a tool, which is useful in predicting 

FBP performance, classifying sportspersons and in optimising the training process.  
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