Prospective audit of mandibular fractures at the Charlotte Maxeke Johannesburg Academic Hospital

J. DESAI, B.D.S., M.DENT. (M.F.O.S.), F.C.M.F.O.S. (S.A.)

J. F. LOWNIE, M.DENT. (M.F.O.S.), PH.D., F.C.M.F.O.S. (S.A.) (DECEASED)

Division of Maxillofacial and Oral Surgery, University of the Witwatersrand, Johannesburg

P. CLEATON-JONES, M.B. B.CH., D.SC. (DENT.), F.C.D. (S.A.)

Division of Maxillofacial and Oral Surgery, and Division of Experimental Odontology, University of the Witwatersrand, Johannesburg

Summary

Objective. This study was a prospective cross-sectional clinical audit of patients with mandibular fractures at the Charlotte Maxeke Johannesburg Academic Hospital.

Methods. Between 1 March and 31 August 2004, patients with mandibular fractures seen by one clinician had their details recorded.

Results. The female:male ratio of the study sample of 133 patients was 1:6. Seventy-seven per cent were aged 20 - 39 years. Most fractures (86%) were the result of interpersonal violence, and 65% were alcohol-associated. Open reduction (75%) was the most common treatment.

Conclusion. This study had the highest interpersonal violence and open reduction rates of all the studies reviewed.

The history of maxillofacial and oral injuries, including mandibular fractures, from 1650 BC to the present, is the topic of two publications.^{1,2} To summarise: the Greek 'Father of Medicine' Hippocrates was the first to describe fracture treatment - he recommended bandages and single jaw fixation. Celsus, a Roman (30 BC - 50 AD), was one of the earliest physicians to recognise the importance of establishing the occlusion in the treatment of fractures. His principle of fracture immobilisation was the forerunner of intermaxillary fixation (IMF), a system still in use. In 1275, Salicetti of Salerno continued Celsus' IMF principle, combining this with wiring together of teeth adjacent to a fracture (the tension band principle). From the late 18th century, the development and use of extra-oral splints was in favour, combined with closed reduction of fractures. Once anaesthesia was introduced in the mid-19th century, open reduction and immobilisation of fractures improved treatment and was further refined from the 1960s to today.

Whatever mandibular fracture management may be used, clinicians and service planners need to understand work loads. For this, a clinical audit³ is a useful method. The current study was a prospective clinical audit of mandibular fractures in the Division of Maxillofacial and Oral Surgery at Charlotte Maxeke Johannesburg Academic Hospital from 1 March to 31 August 2004, to determine presentation patterns for service planning and comparison with other audits in South Africa and elsewhere.

Methods

Before beginning the audit, ethics clearance was obtained from the Human Research Ethics Committee (Medical) of the University of the Witwatersrand (clearance M040324). Because the study was prospective, informed consent was obtained from each patient for their inclusion in the study.

The study sample was 133 patients with mandibular fractures attending the outpatient clinic of the Division of Maxillofacial and Oral Surgery. All were seen by the principal investigator (JD) to standardise diagnosis and data recording. The sample comprised 70% of the 190 patients with such fractures seen in the division over the period of data collection (1 March - 31 August 2004). The remaining patients were seen by other clinicians when the principal investigator, a trainee specialist at the time, was not available owing to duties elsewhere.

Each patient was assessed clinically and with radiographs: orthopantomographs and posterior-anterior views for all patients plus reverse Towne's view when a suspected condylar fracture could not be seen on the other 2 views.

Data recorded were:

- personal demographics, dates of injury, consultation, hospital admission and discharge
- mechanism of injury high- or low-velocity blunt trauma, high- or low-velocity penetrating trauma
- alcohol use

- loss of consciousness
- airway status
- Glasgow Coma Scale
- associated injuries
- details of the fractures and their treatment.

Data analysis was by SAS for Windows (version 9.02, SAS Institute Inc., Cary NC, USA) and Instat³ (Graphpad Software Inc, San Diego CA, USA).

An extensive online literature search was done for previously published audits in South Africa and elsewhere. These audits had to deal with all facial fractures or with mandibular fractures; articles were limited to specific fracture sites – the mandibular condyle was not included. Inclusion of papers published on non-South African samples were concentrated on audits in Africa, with inclusion of some representative studies from elsewhere.

Results

The age and gender distributions are listed in Table I. The female/male ratio was 1:6; >75% of the study sample were in the 20 - 39-year age range.

Table II shows the prevalences of general features of the patents and their injuries. The racial distribution is a typical profile of patients attending the state-funded hospital. Notable features are that unemployed people were the most common group, interpersonal violence was the most common cause, alcohol played a role in about two-thirds of all instances and, while 39% of patients lost consciousness during the causative event, only 2 showed a slight reduction in Glasgow Coma Scale on examination. The airway was seldom compromised.

Regarding the prevalences of fracture characteristics (Table III), single and multiple fractures occurred almost

TABLE I. F	REQUENCY DIST		OF PATIENTS B	Y AGE IN DE	ECADES AND GENDER
	Fen	nale	М	ale	Total
Age	N	%	N	%	<u>N</u> %
10 - 19	2	11	4	3	6 5
20 - 29	9	50	42	36	51 38
30 - 39	4	22	48	42	52 39
40 - 49	3	17	18	16	21 16
50 - 59	0	0	3	3	3 2
Total	18	100	115	100	133 100

TABLE II. PREVALENCE OF GENERAL FEATURES OF PATIENTS AND INJURIES (N=133)

Race Employment	Black 100 (75%), white 21 (16%), coloured 10 (8%), Indian 2 (1%) Professional 1 (<1%), private sector 38 (29%), public sector 4 (3%), labourer 24 (26%), student 10 (7%), unemployed 46 (35%)
Cause of injury	Accidental 18 (14%), interpersonal violence 115 (86%)
Alcohol-associated	Yes 86 (65%)
Loss of consciousness	Yes 52 (39%)
Associated injury	Yes 40 (30%)
Impact site	Left 59 (45%), midline 28 (21%), right 46 (34%)
Glasgow Coma Scale	15 131 (99%), 14 1 (<1%), 13 1 (<1%)
Airway	Patent 129 (97%), compromised 4 (3%)
Impact site Glasgow Coma Scale	Left 59 (45%), midline 28 (21%), right 46 (34%) 15 131 (99%), 14 1 (<1%), 13 1 (<1%)

TABLE III. PREVALENCE OF FRACTURE CHARACTERISTICS (*N*=133)

Fractures per mandible	Single 64 (48%), multiple 69 (52%)
Fracture sites	Total 203; angle 79 (39%), parasymphyseal 39 (19%), body 36 (18%), condyle 33 (17%), symphysis 11 (5%), dento-alveolar 5 (3%), ramus 0, coronoid 0
Type of fracture	Closed 32 (24%), open 101 (76%)
Tooth in fracture line	Yes 102 (77%)
Displaced	Yes 98 (74%)
Nerve damage	Yes 77 (58%)
Treatment	Open reduction 99 (74%), closed reduction 27 (20%), none 7 (5%)

		Facial				Number of				
	Academic	fracture		Age	Age with highest		F:M	Cau	Cause of injury (%)	(%) A.
Study	hospital	studied	Study period	range	prevalence	fractures	ratio	Ν	Accidents Other	ts Other
Snijman⁴	Pretoria	AII		09 - 0	21 - 30	1 699, 76		75	21	4
Smith ⁵	Johannesburg	AII	1971 - 1973	0 - 70+	20 - 29	1 703, 80	1:6		•	
Melmed & Koonin ⁶	Cape Town	Mandible	1968 - 1973	0 - 60+	20 - 29	909, 100	1:4		•	
Rosenberg & Smith ⁷	-	Mandible		10 - 59	20 - 39	162, 100	1:9		•	
Duvenage [®]		AII	1971 - 1976	mean 30		5 074, 83	1:3	61	28	11
Beaumont <i>et al.</i> ⁹	Johannesburg	AII	1979	5 - 72	20 - 29	389, 81	1:6	75	25	
Bamjee <i>et al.</i> 10	Johannesburg	AII	1989 - 1992	0 - 18	13 - 18	326, 69	1:2	48	51	
Roode <i>et al.</i> ¹¹	Pretoria	Mandible	1999 - 2003	21 - 30	21 - 30	501, 100	1:5	73	23	6
Current study	Johannesburg	Mandible	6 months 2004	16 - 59	20 - 39	133, 100	1:6	86	14	,
		TABI	TABLE V. COMPARISON OF NON-SOUTH AFRICAN STUDIES	JF NON-SOUT	H AFRICAN STUD	ES				
		Facial fracture	cture	Аде	Age with hiahest	Number of patients, % mandibular	N.	Caus	Cause of iniurv	
Study	Study area	studied	Study period		prevalence	fractures	ratio	IPV Act	IPV Accidents Other	ther
Olson <i>et al.</i> ¹²	lowa, USA	Mandible	1972 -1978	2 - 83	20 - 29	580, 100	1:4	34	59	7
Busuito <i>et al.</i> ¹³	Detroit, USA	Mandible	1980 - 1984	Mean 33		307, 100	1:4	75	23	2
Haug <i>et al</i> .¹⁴	Cleveland, USA	AII	1984 - 1988	0 - 70	26 - 30	402, 76	1:3	54	41	÷-
Adi <i>et al.</i> ¹⁵	Dundee, UK	Mandible			20 - 29	692, 100	1:3	54	40	9
Mwaniki & Guthua ¹⁶	Nairobi, Kenya	Mandible		0 - 62	20 - 40	355, 100	1:8	75	22	e
Dimitroulis & Eyre ¹⁷	London, UK	AII	1983 - 1989	7 - 92	21 - 30	439, 50	1:3	56	41	ო
Ugboko <i>et al.</i> ¹⁸	lle-Ife, Nigeria	AII	1982 - 1995	0 - 70	21 - 30	442, 64	1:4	7	88	-
Oji ¹⁹	Enugu, Nigeria	AII		1 - 61+	21 - 30	900, 73	1:3	œ	91	-
Sojat <i>et al.</i> ²º	Toronto, Canada	Mandible		14 - 90	21 - 30	246, 100	1:5	53	47	
Ferreira <i>et al.</i> ²¹	Porto, Portugal	AII	1993 - 2002	0 - 18	16 - 18	912, 49	1:3	5	86	6
Sakr ²²	Alexandria, Egypt	Mandible		0 - 60+	11 - 30	509, 100	1:4	16	76	8
Subhashraj <i>et al.</i> ²³	Chennai, India	AII	1999 - 2005	0 - 61+	21 - 30	1688, 30	1:4	e	97	
Adevemo <i>et al.</i> ²⁴	Lagos, Nigeria	Mandible	1998 - 2007	6 - 60	21 - 30	314, 100	1:4	25	73	2

SAJS ARTICLES

										Treatment	
Study	Condyle	Coronoid	Angle	Ramus	Body	Parasymphysis	Symphysis	Dento-alveolar	I	Closed Open None	None
Snijman ⁴	ი	0	14	2	56	œ	11		86	14	0
Melmed & Koonin ⁶	17	5	31	n	40		7		84	10	9
Beaumont <i>et al.</i> ⁹	14	0	30	2	36		17	0	'		
Bamjee <i>et al.</i> ¹⁰	14	-	33	4	65	22	7	-	'		
Roode <i>et al.</i> ¹¹	15	-	12	5	41	19	5 2	e	'	•	
Current study	17	÷	39	0	18	19	5	£	20	75	7
 no information available. 											
									F	Treatment	
Study	Condyle	Coronoid	Angle	Ramus	Body	Parasymphysis	Symphysis	Dento-alveolar	Closed	Open	None
Olson <i>et al.</i> ¹²	29	-	25	2	16	22 (both)	(H	ო	59	38	ო
Busuito <i>et al.</i> ¹³	18	7	22	9	30	16	5	4	31	42	27
Haug <i>et al</i> . ¹⁴	21	0.2	27	2	30	20 (both)	(Ч				,
Adi <i>et al.</i> ¹⁵	26	2	20	4	26	19 (both)	Ч)	4	99	Ħ	23
Dimitroulis & Eyre ¹⁷						, 1			80	20	0
Ugboko <i>et al.</i> ¹⁸	12	0.2	6	5	25	17	11	16	91	5	4
Oji ¹⁹	26	0.2	17	2	36	15 (both)	(ч	2			
Sojat <i>et al.</i> 20									46	52	2
Ferreira <i>et al.</i> ²¹	35	0.5	18	8	35	15	6		65	20	15
Sakr ²²	19	-	22	-	19	21	ø	5	48	40	12
Subhashraj <i>et al.</i> ²³	19	4	12	5	19	31	11	ŧ	19	80	-
Adevemo et al ²⁴	÷	~ ~ ~	ол С	-	÷	21	~	4	83	13	ν

ARTICLES SAJS

SAJS $\,$ Vol 48, No. 4, November 2010 $\,$ 125 $\,$

equally. The most common fracture site was the mandibular angle; 75% were open fractures with a tooth in the line of fracture. Both fracture displacement and nerve damage were common. Three-quarters of the patients were treated with open reduction.

Discussion

Main findings and comparison with other South African studies

In common with earlier prevalence studies on adults in South Africa^{4-9,11} (Table IV) from 1968 to 2003, males predominated, with the highest prevalence among 20 -39-year-olds. In studies where causes of injury were listed, interpersonal violence was about 3 times more frequent than accidents of any other type. The interpersonal violence prevalence in the current audit is higher than in any other South African reports. When mandibular fractures in individuals aged ≤18 years were considered, the female/male ratio was much lower at 1:2, with accidents and interpersonal violence occurring almost equally.10

The study shows a clear swing to open reduction and immobilisation of mandibular fractures in the Division of Maxillofacial and Oral Surgery. The reasons are a combination of more resources for the procedure and perceived late presentation of patients for treatment, which often necessitates surgical re-fracture.

Comparison with studies outside South Africa

Table V lists results from 13 studies: 5 from Africa,^{16,18,19,23,24} 3 from Europe,^{15,17,21} 1 from India,²³ and 4 from North America.^{2-14,20} The female/male ratios were mostly 1:3 or 1:4, rising in one instance (Kenya) to 1:8. In 8 studies, the highest prevalence was between 20 and 30. Accidents were the most common in 7 of the studies, and interpersonal violence in 6.

When compared with the current study, it is clear that interpersonal violence is a less common cause of mandibular fractures than in the current study – only in Detroit, USA¹³ and Nairobi, Kenya¹⁶ does this cause approach the rate in the current report. Similarly, only in Chennai, India 23 is the rate of open reduction high: 80% compared with 75% in the present study.

Regarding the site of fracture, the mandibular angle is more common in South African reports than elsewhere (Tables VI and VII).

Limitations of the study

Regular clinical audits of rates of patient presentation and management help to plan service delivery. It is unfortunate that the heavy service load on staff - notably trainee specialists - limits the frequency of such audits and delays the presentation of results.

Conclusion

The current study has shown a high rate of interpersonal violence as a cause of mandibular fractures in patients served

by the Division of Maxillofacial and Oral Surgery. The high rate of open reduction of fractures has cost implications. To understand the perceived late presentation of fractures that necessitates the open reductions, a study of time to presentation for diagnosis, time to treatment and length of hospital stay is in progress in the Division.

We gratefully acknowledge the advice and assistance in various ways of Professor M Lownie, Dr J Goosen, Dr P Struthers, Dr C Toi, fellow MFOS registrars and nursing colleagues. The study is dedicated to the memory of the late Professor John Lownie a remarkable clinician-researcher who trained a generation of maxillofacial and oral surgeons.

REFERENCES

- 1. Fonseca RJ, Marciani RD, Hendler BH. Oral and Maxillofacial Surgery. Philadelphia:WB Saunders, 2000: 85-132. 2. Mukerji R, Mukerji G, McGurk M. Mandibular fractures: historical
- perspective. Br J Oral Maxillofac Surg 2006; 44: 222-228.
- 3. Clinical Audit Support Centre. What is clinical audit? http://www. clinicalauditsupport.com/what_is_clinical_audit.html (accessed 6 March 2009).
- 4. Snijman PC. Fractures of the Bantu facial skeleton: a statistical analysis. J Dent Ass S Afr 1963: 18: 555-567. 5. Smith I. Facial fractures. S Afr J Surg 1973; 11: 187-195.
- 6. Melmed EP, Koonin AJ. Fractures of the mandible. Plast Reconstr Surg 1975; 56: 323-327.
- 7. Rosenberg I, Smith I. A survey of fractures of the mandible. J Dent Ass S Afr 1976; 31: 567.
- 8. Duvenage JG. Epidemiology of maxillofacial and oral trauma in South Africa. J Dent Ass S Afr 1979; 33: 691-693 9. Beaumont E, Lownie JF, Cleaton-Jones PE, Newton NPD. An analysis
- of fractures of the facial skeleton in three population groups in the Johannesburg urban area. J Dent Ass S Afr 1985; 40: 633-638.
- 10. Bamjee Y, Lownie JF, Cleaton-Jones PE, Lownie MA. Maxillofacial iniuries in a group of South Africans under 18 years of age. Br J Oral Maxillofac Surg 1996; 43: 298-302
- 11. Roode GJ, van Wyk PJ, Botha SJ. Mandibular fractures: an epidemiological survey at the Oral and Dental Hospital, Pretoria. J Dent Ass S Afr 2007; 62: 270-274.
- 12. Olson RA, Fonseca RJ, Zeitler DL, Osbon DB. Fractures of the mandible; a review of 580 cases. J Oral Maxillofac Surg 1982; 40: 23-28. 13. Busuito MJ, Smith DJ, Robson MC. Mandibular fractures in an urban
- trauma centre. J Trauma 1986; 26: 826-829.
- 14. Haug RH, Prather J, Indresano AT. An epidemiologic survey of facial fractures and concomitant injuries. J Oral Maxillofac Surg 1990; 48: 926-
- 15. Adi M, Ogden GR, Chisholm DM. An analysis of mandibular fractures in Dundee, Scotland (1977 to 1985). Br J Oral Maxillofac Surg 1990; 28: 194-199
- 16. Mwaniki DL, Guthua SW. Occurrence and characteristics of mandibular fractures in Nairobi, Kenya. Br J Oral Maxillofac Surg 1990; 28: 200-202.
- 17. Dimitroulis G, Evre J. A 7-year review of maxillofacial trauma in a central London hospital. Br Dent J 1991; 178: 300-302.
- 18. Ugboko VI, Odudanya SA, Fagade OO. Maxillofacial fractures in a semiurban Nigerian teaching hospital. Int J Oral Maxillofac Surg 1998; 27: 286-289
- 19. Oji C. Jaw fractures in Enugu, Nigeria, 1985-95. Br J Oral Maxillofac Surg 1999; 37: 106-109.
- 20. Sojat AJ, Meisami T, Sàndor GKB, Clokie CML. V. The epidemiology of mandibular fractures treated at the Toronto General Hospital: a review of 246 cases. J Can Dent Assoc 2001; 67: 640-644.
- 21. Ferreira PD, Amarante JM, Silva PD, et al. Retrospective study of 1251 maxillofacial fractures in children and adolescents. Plast Reconstr Surg 2005; 115: 1500-1508.
- 22. Sakr K, Farag IA, Zeitoun IM. Review of 509 mandibular fractures treated at the University Hospital, Alexandria, Egypt. Br J Oral Maxillofac Surg 2006; 44: 107-111.
- 23. Subhashraj K, Nandakumar N, Ravindran C. Review of maxillofacial injuries in Chennai, India: a study of 2748 cases. Br J Oral Maxillofac Surg 2007; 45: 637-639.
- 24. Adeyemo WL, Iwegbu IO, Bello SA, et al. Management of mandibular fractures in a developing country: a review of 314 cases from two urban centres in Nigeria. World J Surg 2008; 32: 2631-2635.