
1 Volume 117| Number 9/10 
September/October 2021

Research Article
https://doi.org/10.17159/sajs.2021/8898

Impact of heat and moisture stress on crop 
productivity: Evidence from the Langgewens 
Research Farm

AUTHORS: 
Beatrice Conradie1 

Jenifer Piesse2,3 

Johann Strauss4 

AFFILIATIONS: 

1School of Economics, University of 
Cape Town, Cape Town, South Africa
2Department of Management, King’s 
College London, London, United 
Kingdom
3Department of Agricultural 
Economics, Stellenbosch University, 
Stellenbosch, South Africa 
4Western Cape Department of 
Agriculture, Stellenbosch, South 
Africa

CORRESPONDENCE TO: 
Beatrice Conradie

EMAIL: 
Beatrice.conradie@uct.ac.za 

DATES:
Received: 16 Sep. 2020
Revised: 21 Apr. 2021
Accepted: 04 May 2021
Published: 29 Sep. 2021

HOW TO CITE: 
Conradie B, Piesse J, Strauss J. 
Impact of heat and moisture stress 
on crop productivity: Evidence from 
the Langgewens Research Farm. 
S Afr J Sci. 2021;117(9/10), Art. 
#8898. https://doi.org/10.17159/
sajs.2021/8898 

ARTICLE INCLUDES:
☒ Peer review 
☐ Supplementary material 

DATA AVAILABILITY:
☐ Open data set 
☐ All data included
☒ On request from author(s)
☐ Not available
☐ Not applicable

EDITORS: 
Teresa Coutinho 
Salmina Mokgehle 

KEYWORDS: 
total factor productivity, climate, 
rainfed arable farming, experimental 
farm environment, Langgewens 
Research Farm

FUNDING: 
None

We investigated the effect of heat and moisture stress on total factor productivity in crop farming under 
experimental farm conditions. Heat stress is the number of days during the growing season during 
which the maximum temperature exceeds 24.9 °C. Total rainfall is treated as a basic factor of production 
and periodic moisture stress, or lack thereof, is the number of rainfall days during the growing season. 
All models controlled for the cumulative soil benefits arising from minimum tillage, which is the main 
objective of the experiment. Model specification was evaluated using likelihood ratio tests and three are 
worthy of note. The study site received 329 mm of rainfall on average on 22 rainy days per season during 
the period 2002–2015, while the maximum temperature typically rose above 24.9 °C on 33 days per 
growing season. The average efficiency of the plots in the long-term crop rotation experiment increased 
at 3.4% per year from a base of 60% to the most recent level of 78%. Neither heat nor moisture stress 
changed significantly over the study period. Heat stress was found to reduce efficiency by 1.75% per hot 
day and rainfall increased efficiency by 1.45% for each additional rainy day. However, the interaction of 
heat and moisture stress lowered productivity overall.

Significance:
•	 This study contributes a new approach to modelling the effect of climate on agricultural productivity using 

a new metric of heat and moisture stress.

•	 We quantify the marginal effects of rising temperatures and rainfall events and evaluate several potential 
specifications of heat and moisture stress variables.

Introduction
A global rise in temperature is a feature of climate change and is likely to impact rainfall, both in the level and 
in the distribution. However, there remains some uncertainty about the heat and moisture stress relationship 
between these environmental phenomena. It is predicted that 20% lower rainfall combined with a 2 °C increase 
in temperature would reduce profitability in field crops in South Africa by 4.4%.1 That is, if the temperature rose 
by 3  °C, profits would fall by 11.7%, although should this increase be accompanied by moderate rainfall, real 
profits may increase. The prediction for the Northern and Western Cape Provinces of South Africa is a 1.5–2 °C 
rise in surface temperatures combined with a 5–10% lower median rainfall by the turn of the century.2 Thus, if the 
predictions are right, there is no real threat overall from climate change, except for wheat production in the winter 
rainfall area, which will be stressed by rising temperatures.

However, given the absence of any certainty with respect to long-term meteorological forecasts, we investigated 
the effects of current rainfall and temperature ranges on the performance of dryland wheat production in the 
Western Cape. Clearly, the more precisely the climate variables can be measured, the more valuable the efficiency 
of producers facing these environmental factors is to policymakers and practitioners alike. Our approach was 
based on Ricardian climate models, although here there is a different dependent variable from those used earlier, 
as well as an emphasis on capturing climate stress. In the Mendelsohn et al.3 analysis, land prices were used as 
a proxy for expectations about future income. By explaining land prices with average rainfall and temperature, 
cross-section variation can be used to predict how changing climate is likely to affect the global food system, given 
controls for soil potential etc. Due to the lack of suitable farm sales data, the World Bank abandoned land prices 
as a dependent variable in their studies in favour of net farm income or yield4, and this approach is replicated here. 
Sales and net farm income are closely correlated, with expected net revenue per hectare obtained from data on 
farm sales prices by assuming a suitable discount rate, whereas yield is equivalent to net revenue at fixed prices. 
In both cases it is important to assume a given level of technical progress and expectations about how climate 
change will present in the future. If either yield or net revenue replaces land prices, the model loses much of its 
original elegance, as these additional factors now have to be controlled for explicitly.

Review of the literature and contribution of this paper
Ricardian models are frequently used to analyse agricultural production and are derived from the simple observation 
that the value of land reflects its net productivity. Most authors use a cross-sectional approach. A major influence on 
this paper was Mendelsohn et al.’s3 study in which controls were included to account for eight soil characteristics, 
along with altitude, latitude (as a proxy for solar radiation), per capita income and population density, the latter to 
take account of opportunities in the non-farm sector. Yield was modelled as a quadratic function of rainfall and 
temperature whilst seasonal rainfall and temperature effects were included as separate variables. Gbetibouo and 
Hassan1 build on Mendelsohn et al.3 by using the Ricardian model to capture the effect of rainfall and temperature 
variability on land productivity and land values, although they only considered long-term spatial variation and 
ignored temporal variability between and within seasons. Kurukulasuriya et al.5 modelled net farm income per 
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hectare in several African countries, using access to electricity as a proxy 
for modern infrastructure, while Gbetibouo and Hassan1 introduced the 
size of the farm labour force in addition to population density to capture 
potential macroeconomic shifts.

The Ricardian approach has continued to evolve, such as moving 
to more interesting dimensions and transformations of the data, 
including panel data6 and first differences in a time series model7. 
Cabas et al.8 summarised many of the site characteristics in an area 
change variable based on the supposition that yields will fall and 
become more erratic when production expands onto marginal land. 
The same analysis included technical change and input price variation 
and introduced climate volatility using the mean of the coefficient of 
variation (the standard deviation divided by the mean) of both rainfall 
and temperature. Temperature is the mean daily value while rainfall is 
in total millimetres recorded during the growing season. Following the 
principles of phenology, the growing season begins when temperatures 
rise above 5 °C for five consecutive days and is computed from monthly 
average data. In Boubacar9, the yield response model was reduced to 
two moisture stress variables, beneficial temperature was measured in 
growing degree days, technical progress and a somewhat dubious area 
change variable accounted for unexplained dynamics. The first moisture 
stress variable captured drought periods as a percentage of expected 
rainfall while the second identified the month with the highest share of 
annual rainfall to capture variability. 

The literature on Ricardian modelling is clear about how to capture 
climate fixed effects; yield is usually specified as a quadratic function of 
total rainfall and mean temperature. Dinar et al.10 went a step further by 
defining an aridity index as mean temperature divided by mean rainfall, 
which formed part of the frontier sub-model. Roux11 expressed a similar 
idea by defining a relative drought tolerance index as rainfall squared 
divided by its standard deviation, although this index was never used in 
productivity modelling. With respect to estimation, it became important 
to consider seasonal differences as Ricardian models began to be 
estimated with panel data. Cabas et al.8 captured variability as a fixed 
effect with the coefficient of variation of rainfall, temperature and growing 
degree days, although this method still does not reflect the difference in 
variability between one season and the next. Employing adverse climate 
as an explanation for the observed differences in farm-level efficiency 
requires a specification that captures climate stress, which is site 
specific. In the northern latitudes of Canada, temperature stress comes 
in the form of low temperatures, best measured as growing degree 
days8, although this does not limit wheat growth in South Africa while 
heat stress does.12

This paper contributes to the literature in two ways. Firstly, there is 
currently no credible model that considers comprehensive weather 
changes in productivity. Therefore, we used time series data from a multi-
plot crop rotation experiment at a single research site and focussed on 
measuring year-on-year differences in the amount of heat and moisture 
stress. Secondly, we used a novel approach to estimation, by extending 
the standard stochastic frontier production function with inefficiency 
effects.13 In this model, a best-practice frontier was jointly estimated 
with an inefficiency model that explains individual performance relative 
to the benchmark. Inputs and outputs into the production process were 
considered and the typical explanations for inefficiency in this well-
rehearsed literature usually include some combination of technology, 
subsidies, governance and extension factors. Resource quality, such 
as access to irrigation, has formed part of the explanation right from 
the start and can appear as part of the frontier or in the inefficiency 
model.13,14 Finally, by adding enhanced proxies for moisture and heat 
stress, the standard model was adapted for monitoring climate change 
impacts on agricultural productivity.

Methods and data
The established dependent variable in the Ricardian model is yield, 
or profitability, where the latter is yield at current prices for a given 
technology. Alternatively, land values can be used, which is the 
present value of the expected future income stream at constant 
prices. We propose that a total factor productivity score replace yield 
as the dependent variable. This measure has the advantage of being 

independent of prices and capable of capturing both technical change 
and changing factors of production. 

The stochastic frontier production function model with climate-based 
inefficiency effects uses input and output data to fit a benchmark 
(Equation 1) and various proxies for temperature and rainfall limitations 
to production to explain deviations from the benchmark (Equation  2). 
Instead of referring to farms, as is usually done, the inefficiency scores 
predicted by this two-part model refer to experimental plots of a 
quarter hectare each. These plots form part of one of four crop rotation 
systems that are being compared to other crop–livestock rotation 
systems at Langgewens Research Farm in the Western Cape, South 
Africa (33°17’0.78’’S, 18°42’28.09”E). The data were provided by the 
researchers at the farm and we checked the information using standard 
robustness tests. The site’s average annual rainfall since 1964 is 403 
mm and almost 80% of it falls during the winter growing season, from 
April to September. 

The productivity model can be stated as:

ln Yit = α0 + ∑k=1 αk ln xkit + vit - uit
K 	 Equation 1

and

-uit = β0 + ∑m=1βm . zmit + wit
M 	 Equation 2

where Y is output, x is input, z potential explanations for deviations 
from the frontier (inefficiency effects), and α and β are parameters 
to be estimated. The error term wit in Equation 2 is a typical normally 
distributed error term. In Equation 1, the error term is decomposed 
into a normally distributed component, vit, and a one-sided inefficiency 
term, uit, which captures each observation’s degree of deviation from 
the benchmark. Output is measured as the natural logarithm of the 
real value of product sales and nominal values were deflated using the 
general consumer price index published in the Abstract of Agricultural 
Statistics.15 The rotations incorporated here are a wheat monoculture, a 
wheat–canola rotation and two systems that rotate wheat and canola with 
lupins. Two thirds of the observations are for wheat, while 21% apply to 
canola and 14% to lupins. The data are from one crop rotation trial at the 
research facility. Decisions like fertiliser applications and planting dates 
are jointly controlled by the responsible researcher and farm manager. 
Inputs are bought on tender and output is sold on the open market. The 
inputs are seed and fertiliser cost, chemicals (pesticides herbicides and 
fungicides), mechanisation cost and total seasonal rainfall. Rainfall is 
measured in millimetres recorded during the growing season (April – 
September). The inputs in value terms are in constant 2010 ZAR prices 
deflated according to the input specific deflators in the Abstract and 
logged. As in all well-behaved production functions, α is expected to be 
positive and significant.

Pooled descriptive statistics for the study period, 2002–2015, are shown 
in Table 1. Land is obsolete as plot data are expressed per hectare, and, 
because labour is used in fixed proportion to machinery, it is omitted to 
avoid collinearity. 

Instead of modelling crop performance as a function of mean rainfall and 
temperature as Ricardian models do, we specifically wanted to capture 
heat and moisture stress on the total factor productivity of each crop 
in the production system. The simplest formulation for heat stress is 
a count of growing days on which the maximum temperature reaches 
an arbitrary threshold. After experimenting with several, we opted for 
24.9 °C which is often used for wheat.12 While output is correlated with 
total rainfall, total rainfall does not capture the effect of periodic moisture 
stress. The standard deviation of rainfall, or its coefficient of variation, 
has been used as a measure of variability.8 Given the construction of this 
statistic, the higher the standard deviation for a given level of rainfall, 
the higher its coefficient of variation. With total rainfall already in the 
stochastic frontier, it was logical to use the standard deviation of rainfall 
in the inefficiency model. This was calculated from daily observations 
over the growing season (April – September) and predicted a higher 
standard deviation to cause more inefficiency. The product of the two, 
which would capture the interaction of temperature and moisture stress, 
was predicted to increase inefficiency.

https://doi.org/10.17159/sajs.2021/8898
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A number of specifications were estimated. Dinar et al.10 combined 
temperature and heat effects into an aridity index, defined as the ratio 
of annual mean daily temperature over total annual rainfall. This variable 
was tested independently and in combination with the seasonal heat 
and moisture stress variables described above. The aridity index is for 
the growing season only. Mean daily temperature was calculated by 
taking the average of the daily minimum and maximum and then the 
average over the growing season to compute the average mean daily 
temperature for the growing season. This was divided by total rainfall 
recorded during the growing season. The prediction was that greater 
aridity would increase inefficiency.

In another specification, the standard deviation of rainfall as a proxy for 
moisture stress was replaced by a count of rainy days, defined as 24-h 
periods that receive more than 5 mm of rainfall. For a given total seasonal 
rainfall an increase in the number of rainy days implies shorter periodic 
droughts, which ought to decrease inefficiency. Generalised likelihood 
ratio tests were used to choose between nested specifications, but this 
test does not allow the choice between the different ways of capturing 
periodic drought. There we were guided by the overall goodness of fit 
and the signs and significance of the input elasticities. 

This study took place against the backdrop of soil improvements after 
the adoption of zero tillage, which is expected to raise productivity. 
Langgewens Research Farm switched to minimum tillage in 1996 and 
adopted zero tillage in 2002. Dramatic improvements in soil conditions 
followed and this is captured in Equation 2 by a time trend, which is the 
usual method of accounting for technical change. Winter rains failed in 
2003 (67% of expected seasonal rainfall), 2004 (62%) and 2015 (54%), 
and 2007 was an exceptionally good year (141% of expected seasonal 
rainfall). In 2003, most plots performed sufficiently well to be harvested. 
By 2015, the same plots did well under similar conditions. The soil gains 
include higher carbon levels that improve soil structure, permeability 
and fertility, and on some plots rotating monocotyledon with dicotyledon 
crops lowers weed pressures enough to cut down on herbicide inputs.12 

As no new varieties or production methods featured in the experiment 
during the study period and given the low technical progress in dryland 
crop farming on commercial farms in the Western Cape during the 
second half of the 20th century16, it was unlikely that the system would 
also experience Hicks-neutral technical progress and so there was no 
need to include a time trend in the frontier model. 

f(xi :β)(vi-ui )
f(xi :β)(vi )

Yi

Yi
*TEi = = 	 Equation 3

Equation 4 gives the Battese and Corra17 parameterisation of the 
inefficiency term, in which gamma is calculated as follows:

γ=σu
2

σv
2+σu

2	 Equation 4

The efficiency scores predicted by Equation 3 vary from zero to one, 
or 0–100%. Observations close to 100% set the benchmark, but as the 
model allows for statistical noise, the best performing plots are usually 
no more than 97% efficient under optimal conditions, although mean 
scores vary with model complexity and sample size. For experimental 
plot data, where mismeasurement is negligible, gamma could approach 
unity.

The translog functional form has become standard in total factor 
productivity estimates, and is often accompanied by a log-likelihood test 
that compares its performance to that of Cobb Douglas. The benefit of 
estimating a more general functional form is that it relaxes the assumption 
of constant elasticities of substitution made by Cobb Douglas. However, 
in this case, in which there is a single manager in control of day-to-day 
production decisions for all plots on the experimental farm, the Cobb 
Douglas was considered sufficient, especially as it allows more degrees 
of freedom to experiment with climate variables.

Results and discussion
This section is divided into four parts. The first part presents the baseline 
model, which has only the cumulative no tillage benefits and heat stress 
in the inefficiency equation. The second part introduces periodic drought 
stress in the form of a standard deviation on seasonal rainfall as a third 
z-variable. The number of rainy days replaces the standard deviation of 
rainfall in the third part and the performance of the Dinar aridity index 
is evaluated in the fourth part. The same procedure was followed with 
all three proxies and all results in the tables first present the frontier 
specification and then the results of the inefficiency model. Once the 
suitability of the basic proxy had been confirmed, it was interacted with 
the heat stress variable to determine if there was a joint effect.

The baseline model with no tillage benefits and heat 
stress
The baseline specification works well here. All four Cobb Douglas input 
coefficients have the expected sign and are significant at p ≤ 0.10. The 
output elasticities indicate that output is most closely correlated to total 
seasonal rainfall, where a 1% increase in rainfall will result in a 0.49% 
increase in the real value of output. The second largest output elasticity 
is on seed and fertiliser, where a 1% increase in expenditure is predicted 
to result in a 0.40% increase in output. This is followed by mechanisation 
whose output elasticity is 0.179 and agro-chemicals whose output 
elasticity is 0.076. The relative unimportance of agro-chemicals in this 
production system explains why its coefficient is measured with such a 
relatively low level of certainty.

The inefficiency model performs equally well. By relaxing the mean 
response function assumption of independently and identically 
distributed error terms, the stochastic frontier model presented in Table 
2 is estimated with four additional parameters – sigma-squared, gamma, 

Table 1:	 Descriptive statistics for the pooled sample of 28 plots over 14 years (n=392)

Variable name Description and units Mean s.d.

Output Real income / ha 7620.64 4422.28

Seed and fertiliser Real cost / ha 2818.01 806.25

Chemicals Real cost / ha 1071.31 332.56

Mechanisation Real cost / ha 786.70 205.88

Rainfall mm, April – September 328.66 98.13

Heat stress Days ≥ 24.9 ˚C, April – September 33 6.14

Rainy days Days ≥ 5mm, April – September 21.71 5.83

Aridity index
Average over the growing season of monthly rainfall / 
average temperature in that month
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the no tillage benefit and the heat stress coefficient, all of which are 
significantly different from zero. The log-likelihood value of the mean 
response function was -752.99, while the stochastic frontier model 
yielded a value of -377.59. A likelihood ratio test was performed to test 
that the four restrictions were valid. The test statistic of LR = -2(-752.99 
– (-377.99)) = 750.80 rejects the mean response model at the highest 
level of significance. The critical value is 12.483 for p ≤ 0.01 . It is clear 
from these tests that the stochastic frontier function form fits the data 
better than the ordinary least squares estimation. The mean efficiency 
of the pooled sample is 55%, the cumulative benefit of the practice of 
zero tillage is 3.45% per year and an extra day of heat stress during 
the growing season reduces efficiency by 1.78% across all crops and 
rotations in the sample.

Table 2:	 Baseline grain productivity model (Model 0) with no till benefits 
and heat stress

Variable Coefficient s.e. t-ratio Significance

Constant 1.792 0.801 2.236 **

Seed and fertiliser 0.397 0.097 4.111 ***

Chemicals 0.076 0.039 1.953 *

Mechanisation 0.179 0.083 2.157 **

Rainfall 0.492 0.045 10.893 ***

Constant -32.284 1.834 -17.600 ***

No till benefit -1.523 0.152 -9.992 ***

Heat stress 0.925 0.049 18.954 ***

Sigma-squared 10.659 0.896 11.895 ***

Gamma 0.999 0.000 2809.206 ***

Log-likelihood statistic -377.59

Observations 392      

***p ≤ 0.01 , **p ≤ 0.05 , *p ≤ 0.10 

Is the coefficient of variation of rainfall a valid proxy for 
periodic moisture stress?
Introducing the coefficient of variation of seasonal rainfall into the 
inefficiency sub-model produced a plausible stochastic frontier 
production function and confirmed the expectations about the effects of 
zero tillage and heat stress on plot-level efficiency. The output elasticities 
are all significant and have similar magnitudes as before. The no tillage 
benefit increases fractionally to 3.54% per year. The negative impact 
associated with an additional day of heat stress goes up to 1.79%. 
The restrictions imposed by the mean response function are rejected 
with a log-likelihood test statistic of 793.79, and when compared to the 
result in Table 2, the hypothesis that the standard deviation of rainfall 
is unrelated to plot-level efficiency is rejected with a test statistic of LR 
= -2(-377.59 – (-356.09)) = 43.00. The regression coefficient on the 
coefficient of variation of rainfall is positive and significant, confirming it 
as a reasonable proxy for rainfall variability. A 1% increase in variability 
increases inefficiency by 0.36%.

The productivity frontier is less robust when the number days of heat 
stress is interacted with the coefficient of variation of seasonal rainfall 
(see Table 3). The relative sizes of the input elasticities in the production 
function sub-model change dramatically compared to the baseline and 

Model 1. The sign on the coefficient on chemicals becomes negative and 
heat stress changes from a stress factor to an enhancer of productivity. 
Another reason for rejecting this specification is that, in this model, the 
log-likelihood statistic is much lower than that of Model 1.

The analysis was repeated with the standard deviation of rainfall instead 
of the coefficient of variation, with much the same result. These are not 
shown. In the equivalent of Model 1, two important coefficients were no 
longer significantly different from zero, namely chemicals and the drought 
proxy, but all signs were as expected. The log-likelihood statistic was 
lower than in Model 1. Interacting heat stress with the standard deviation 
of rainfall caused fewer problems than it did in Model 2. In the equivalent 
of Model 2, the coefficient on chemicals was insignificant, although its 
sign remained positive. The coefficient on heat stress remained positive 
although the sign on the standard deviation of rainfall became negative 
and the sign on the interaction term was positive. The log-likelihood 
statistic was -383.42, an improvement on Model 2, but the interpretation 
on the coefficient of the interaction term is less straightforward than it 
had been in Model 2. Therefore, neither coefficient of variation on rainfall 
nor the standard deviation of rainfall worked particularly well as proxies 
for periodic drought.

Can rainy days capture periodic droughts or the lack 
thereof?
Conceptually, rainy days are an enhancer rather than a stressor of crop 
productivity and the simple count format is easy to interpret. Replacing 
the coefficient of variation with this count variable produced the results 
in Table 4. Model 3, the specification with no interaction term between 
heat stress and rainfall effects, performed almost as well as Model 1. 
The input elasticities were similar, the inefficiency sub-model’s results 
were as expected and the only difference was that the coefficient on 
mechanisation was not significantly different in Model 3. Mean efficiency 
was 56% and the scores increased by 3.43% per year due to the benefits 
of zero tillage. The magnitude of the heat stress penalty of 1.75% per 
additional day above 24.9 °C was similar to that in Model 2. That is, each 
rainy day increases productivity by 1.45%. Because the positive effect 
of a rainy day was smaller than the negative effect of a heat stress day, 
the interaction term was expected to carry the same sign as heat stress.

A likelihood ratio test was used to determine if the coefficient on the 
interaction term in Model 4 should be included. The result was that the 
coefficient is not zero. The test statistic of Model 3 as a restriction of 
Model 4 yielded a test statistic of LR = 75.47. This is an anomaly as 
neither chemicals nor mechanisation produced significant coefficients 
in Model 4. There were other problems in the inefficiency model too. 
All four coefficients were significant and the no tillage benefit and heat 
stress produced the expected signs, but rainy days became a stressor 
while the combined effect of heat stress and rainy days was positive. 
While the latter could mean that temperatures above 25  °C are not a 
problem if there is enough moisture in the soil profile, it is inconceivable 
that more frequent rainfall on its own would have a negative impact on 
productivity.

Does an aridity index simplify matters?
The aridity index used in the results in Table 5 was adapted from Dinar 
et al.10 In Model 5, the simplest specification, where the aridity index 
is combined only with the cumulative no tillage benefit, the coefficient 
on the former is positive and significant. This result is consistent with 
the result produced by Model 3 in Table 4 because the aridity index 
rises with heat stress and falls with more frequent precipitation. The 
differences between the two models are minor. In Model 3 heat stress 
is defined according to an arbitrary cut-off, while in Model 5 there is no 
temperature cut-off assumed. With respect to rainfall, Model 5 does not 
consider the distribution of rainfall, which Model 3 does. In both cases, 
only three of the four input elasticities are significantly different from 
zero, but the variables that are not significant are different between the 
models, including the elasticity on chemicals which is much lower than 
previously found.
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Table 3:	 Grain productivity model testing the standard deviation of rainfall as drought proxy

  Model 1 – no interaction Model 2 – interaction

  Coefficient s.e. t-ratio Significance Coefficient s.e. t-ratio Significance

Constant 1.554 0.793 1.96 * -11.162 3.215 -3.47 ***

Seed and fertiliser 0.430 0.066 6.47 *** 0.970 0.199 4.88 ***

Chemicals 0.084 0.035 2.38 ** -0.213 0.121 -1.76 *

Mechanisation 0.150 0.073 2.04 ** 1.546 0.307 5.04 ***

Rainfall 0.508 0.046 10.92 *** 0.660 0.211 3.13 ***

Constant -35.923 3.849 -9.33 *** -0.601 1.013 -0.59

No till benefit -1.595 0.091 -17.45 *** -0.443 0.088 -5.02 ***

Heat stress 0.273 0.068 4.00 *** -0.668 0.116 -5.76 ***

Coefficient of variation (CV) of rainfall 11.702 1.718 6.81 *** -7.257 0.891 -8.14 ***

Heat stress x CV rainfall 0.462 0.042 11.10 ***

Sigma-squared 7.288 0.453 16.10 *** 2.878 0.290 9.92 ***

Gamma 0.998 0.001 1162.85 *** 0.872 0.031 28.37 ***

Log-likelihood statistic -356.09 -444.79

Observations 392       392      

***p ≤ 0.01 , **p ≤ 0.05 , *p ≤ 0.10 

Table 4:	 Grain productivity model testing the number of rainy days as drought proxy

  Model 3 – no interaction Model 4 – interaction

  Coefficient s.e. t-ratio Significance Coefficient s.e. t-ratio Significance

Constant 1.534 0.952 1.61 0.738 0.756 0.98 ***

Seed and fertiliser 0.462 0.106 4.38 *** 0.620 0.072 8.57 ***

Chemicals 0.085 0.035 2.43 ** 0.053 0.034 1.56

Mechanisation 0.113 0.076 1.48 0.092 0.061 1.51

Rainfall 0.511 0.056 9.06 *** 0.494 0.037 13.23 ***

Constant -5.311 1.042 -5.10 *** -145.386 27.570 -5.27 ***

No till benefit -1.267 0.126 -10.07 *** -1.874 0.109 -17.17 ***

Heat stress 0.536 0.027 19.50 *** 4.534 0.762 5.95 ***

Rainy days -0.628 0.054 -11.72 *** 6.329 1.267 5.00 ***

Heat stress x rainy days -0.209 0.038 -5.56 ***

Sigma-squared 8.931 0.788 11.33 *** 13.938 1.058 13.17 ***

Gamma 0.999 0.000 2069.28 *** 0.999 0.000 2579.67 ***

Log-likelihood statistic -368.47 -330.70

Observations 392       392      

***p ≤ 0.01 , **p ≤ 0.05 , *p ≤ 0.10

	 Impact of heat and moisture stress on crop productivity
	 Page 5 of 7

https://doi.org/10.17159/sajs.2021/8898


6 Volume 117| Number 9/10 
September/October 2021

Research Article
https://doi.org/10.17159/sajs.2021/8898

In Model 6 the heat stress count variable was added. This specification is 
most like the baseline model in Table 2 because it does not include any 
rainfall proxy other than total rainfall in the production frontier. Including 
the heat stress count variable makes the aridity index insignificant, 
although a likelihood ratio test rejects its exclusion. The test value is LR 
= 109.34. This time all the elasticities are plausible and significant at p 
≤ 0.10, while the coefficient on the aridity index, although still positive, 
is no longer statistically significant.

The final specification in Model 7 added the number of rainy days 
recorded during the rainy season, which improved the fit slightly 
compared to Model 6. The frontier performs well, despite the smaller 
elasticity on mechanisation and its lack of significance. The results of 
the inefficiency model are better than all the earlier specifications. More 
time after the adoption of zero tillage significantly decreases inefficiency, 
more heat stress increases inefficiency and more rainy days decreases 
inefficiency. All of this is the same as in Model 3 in Table 4. However, in 
Model 7, the aridity index provides an interaction effect between rainfall 
and temperature. The coefficient is significant at  p ≤ 0.10 and negative, 
which means that inefficiency is negatively correlated with aridity. 
However, interpreted as an interaction term of rainfall and temperature, 
the negative sign could mean that the net effect is determined by rainfall 
and not by heat stress. The low level of significance suggests that the 
net effect is site specific, which seems eminently reasonable. The mean 
efficiency and the percentage change in efficiency scores per year of 
zero tillage, or heat stress or rainy day recorded during the growing 
season, are stable across specifications.

Conclusions
We used experimental farm data to investigate the impact of climate 
change on productivity in South Africa, importantly using a new 
approach for rainfall and temperature stress. The approach followed 
the Ricardian models used in the literature but extended these in two 
important respects. Firstly, the data are for a single location, although 
many different plots were included and the analysis was able to capture 

changes over time. Secondly, the standard Ricardian specification was 
estimated using a stochastic frontier with inefficiency effects, which 
made it possible to allocate the results to the plot level.

The many specifications in which proxies for heat and moisture 
stress have been used to explain crop plot efficiency and the result 
provide confidence that this approach is viable and can be extended 
to encompass other environments and other contexts. The main 
implications of the results are twofold. Firstly, climate change will have 
consequences for farm efficiency, and secondly, something can be 
done about it. This first conclusion is already visible in how plot level 
efficiencies respond to the temperature and rainfall variation documented 
at the site over the last decade and a half, regardless of whether this 
variation is considered normal or a sign of permanent climate change. If 
either rainfall or temperature is likely to become more variable in future, 
farm productivity will decrease as a result, and not just become more 
variable as previously suggested.18

The positive results of this research show that, while little can be done to 
influence rainfall or temperature, at least in the short term, producers can 
choose their production system. In the Langgewens experiment, the first 
14 years of zero tillage production practices resulted in an almost 3.5% 
increase in productivity every year, across good and bad seasons. This 
effect is unlikely to be linear, and so the marginal efficiency benefits will 
probably decline as soil benefits mature, and finding the shape and length 
of the lag structure involved is a topic for further research. Certainly, it is 
not known at this stage how long the benefits take to mature and there is 
a difference in the rate at which the benefits accumulate across different 
rotation systems. Finally, from a modelling point of view, efficiency can 
replace crop yield or its derivatives in climate models, and the Dinar aridity 
index is worth pursuing; capturing rainfall variability with a coefficient of 
variation does not work quite as well as a simple count variable. All 
of these preliminary conclusions can be usefully re-examined in other 
contexts. What is without doubt is that careful collection of climate data 
along with production variables is essential.

Table 5:	 Grain productivity model with aridity index

  Model 5 – no interaction Model 6 – interaction Model 7 – interaction

  Coefficient s.e. t-ratio Significance Coefficient s.e. t-ratio Significance Coefficient s.e. t-ratio Significance

Constant 2.644 0.752 3.51 *** 1.786 0.692 2.58 ** 1.804 0.870 2.07 **

Seed and fertiliser 0.342 0.078 4.40 *** 0.398 0.081 4.91 *** 0.456 0.092 4.96 ***

Chemicals 0.016 0.041 0.38 0.075 0.039 1.94 * 0.068 0.039 1.76 *

Mechanisation 0.143 0.050 2.87 *** 0.180 0.082 2.18 ** 0.122 0.084 1.46

Rainfall 0.543 0.025 22.04 *** 0.491 0.044 11.23 *** 0.484 0.044 10.95 ***

Constant 5.066 0.503 10.07 *** -32.295 1.308 -24.70 *** -5.421 1.052 -5.15 ***

No till benefit -2.761 0.292 -9.45 *** -1.524 0.098 -15.52 *** -1.241 0.143 -8.67 ***

Aridity index 9.533 2.312 4.12 *** 1.198 1.057 1.13 -1.903 1.023 -1.86 *

Heat stress 0.924 0.033 28.27 *** 0.538 0.028 19.06 ***

Rainy days -0.624 0.060 -10.34 ***

Sigma-squared 15.869 1.917 8.28 *** 10.671 0.791 13.49 *** 8.695 0.944 9.21 ***

Gamma 1.000 0.000 7309.11 *** 0.999 0.000 2804.99 *** 0.998 0.001 1355.65 ***

Log-likelihood statistic -432.14 -377.47 -368.98

Observations 392       392       392      

***p ≤ 0.01 , **p ≤ 0.05 , *p ≤ 0.10
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