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It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts 
to suit theories, instead of theories to suit facts.

Sir Arthur Conan Doyle

The COVID-19 crisis is an opportunity for scientists to showcase their skill and the impact that good science can have 
on society. However, not all scientists have risen to the occasion with the sense of responsibility and accountability 
that their work deserves. Scientists worldwide have shown, and continue to show, great enthusiasm regarding the 
use of specific scientific tools, mainly modelling and predictive analytics, to estimate how the virus spreads and 
behaves and to assess interventions against counterfactual scenarios. In this Commentary, we question whether 
the application of these tools has always been appropriately managed by discussing the underlying elements of 
modelling which need to be understood and evaluated for results to be meaningful and credible. 

A mathematical model must capture the principles that dictate the dynamics of what is being modelled: assumptions, 
constraints and relevant natural laws, for example. These principles serve as the ‘rules’ for understanding the 
results obtained and provide the context within which the model has meaning. Within this context, the model goes 
beyond being a mere collection of mathematical operations and represents – albeit in idealised or imperfect form 
– some feature of the actual world. Here we argue that these rules have often been ignored when engaging with 
the results obtained from mathematical models used for predictive purposes in the COVID-19 pandemic (including 
policy purposes) and from data-driven models designed via machine-learning methods. 

To make our case, we first provide some context of the origins of disease modelling and then offer a ‘current day’ 
frame of reference which illustrates why caution is needed when employing models for prediction. 

Infectious disease modelling
Infectious disease modelling is one small part of infectious disease epidemiology, which is a small part of 
epidemiology. How, then, did modelling come to dominate, not only the prediction of the spread of COVID-19, but 
also policy decisions with consequences reaching far beyond the death toll of the disease itself?

It is helpful to understand some of the conceptual evolution of epidemiology from its foundations, which were 
laid during the era of industrialisation in Europe.1 Cities grew, bringing people into close proximity, many of them 
malnourished, with poor or non-existent sanitation and hygiene practices. Infectious disease flourished in these 
newly swollen human ecosystems, and epidemics were a regular occurrence. At the same time, information on 
disease incidence and deaths became readily available in concentrated form for the first time. Enterprising medical 
thinkers realised they might infer the causes of outbreaks from this information. Thus two new ways of thinking 
were born together, with epidemics lending their name to one epidemiology and the state that collected information 
lending its name to statistics.

It was epidemiology that taught us the health significance of personal hygiene. Epidemiology helped us uncover 
the ‘germ theory’ of disease2, which ultimately turned out to account for infectious diseases and is central to 
contemporary Western medicine development.

Germ theory and hygiene theory were at odds during this period, with ‘hygienists’ seeing the germ theory as an 
attempt to let the authorities off the hook of ensuring more humane living conditions for the labouring classes.3 The 
germ theory ‘won’ in the theoretical sense. The ‘miasma’ theory of disease was ultimately discredited: diseases are 
not caused by bad smells, and vaccination proved very effective. However, the recommendations of the hygienists 
were effective in another sense, because personal hygiene and good sanitation are necessary for people to dwell 
together in city conditions even with the technology of vaccination.

Fast forward to the mid-20th century, and the advent of antibiotics and other innovations such as ventilation put 
many infectious diseases even further on the back foot, even though viruses remained stubbornly resistant to direct 
medical solution. In the 1940s and 1950s, epidemiological attention shifted to another ‘epidemic’: that of lung 
cancer, which had rocketed from a virtually unknown condition during the previous two decades. Why?

Through a remarkable methodological development, Sir Austin Bradford Hill and others perceived the significance 
of an apparently tiny difference between the odds of smoking among people living with lung cancer and among 
people living with other cancers, which translated into a remarkably large risk ratio.1 They were able to anticipate 
and check for an extensive range of plausible confounders. With others, such as Jerome Cornfield4, they were able 
to corral evidence from other domains for a causal connection between smoking and lung cancer and against the 
leading rival hypothesis: the ‘constitutional hypothesis’ that some gene caused both.

In this episode, the modern discipline of epidemiology was born. Two characteristics are relevant to the present 
narrative. Firstly, this was a discipline of campaigning. The real ‘win’ for these epidemiologists was not the scientific 
case that smoking caused lung cancer, but the recognition in 1964 in the US Surgeon General’s report that smoking 
causes lung cancer.5 This led to a series of regulations and public health advice – changes that were fought by 
tobacco companies and continue to be fought in many Asian countries today.6
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James Lind had sought to convince the naval authorities to provide limes 
to sailors against scurvy, eventually succeeding (hence the term ‘limeys’ 
for British sailors). Less successfully, the problematic and abrasive 
Ignaas Semmelweis had sought to instigate hand washing in the General 
Hospital in Vienna. In London, John Snow persuaded authorities to 
remove the water pump handle in Broad Street, which was drawing 
water from the polluted River Thames to create an epicentre of cholera 
in the district.1

But with the smoking and lung cancer episode, the political engagement 
of epidemiology was affirmed for chronic diseases. Contemporary 
epidemiologists continue not only to seek the scientific truth about, 
for example, sugar and all-cause mortality but also to campaign for 
sugar taxes.

The second feature of the Bradford Hill story is its informality, 
immortalised in nine ‘viewpoints’ for assessing causality.7 Bradford 
Hill urged epidemiologists to consider causal hypotheses from various 
perspectives. How strong is the association? Is a causal link biologically 
plausible? Does evidence from basic sciences support it? Is there a 
dose-response relationship? And so forth. These were subsequently 
interpreted as a checklist and remain in use today. But that was never 
the intention. They were not meant as sine qua non for causal inference 
but as guides to the ultimate question: Is there any hypothesis that better 
explains the evidence than that of cause and effect?

While epidemiology subsequently developed in mathematical complexity, 
this relatively informal, subjective approach did not. Causal inference 
remains a stubborn philosophical problem, and so the inability to 
define and proceduralise it is not surprising. But it is something of a 
challenge when peers seek to assess each other’s work. It is also hard 
to teach and something of an embarrassment for those who prefer to 
think of epidemiology as closer to the natural than the social sciences. 
Efforts to formalise causal inference now form a considerable part of 
the epidemiological methodological agenda, and are a growth area for 
the discipline.8,9

In infectious disease epidemiology, modelling provides a way to 
formalise the central question, which concerns predicting the course of 
a disease, even after the cause is known (as is more often the case 
now, where it was not a hundred years ago). Modelling makes use of 
new computing power and enables the consequences of assumptions 
to be worked out in detail. This highlights the nature and justification 
of the assumptions themselves, the sensitivity of predictions to those 
assumptions and inaccuracies in the data – all of which is beneficial. 
It also enables predictions that are much better supported than would 
otherwise be the case – provided the assumptions themselves are well 
supported and the data reliable.

Thus, contemporary epidemiology is influenced by two paradigm-
shaping instincts: the sense that campaigning for public health policy is 
part of the epidemiological mandate and the desire for methodological 
progression within the science towards more formal approaches.

Models in the making
All models are wrong, but some are useful.

George E. P. Box

During the COVID-19 pandemic, the tradition of campaigning and 
the associated sense of urgency may have contributed towards 
some unfortunate lapses in the use of models. Models are abstract 
representations of real phenomena, and are useful for making 
predictions. At best, a good model has two facets: accuracy and 
simplicity. The accuracy is vital in linking the model to reality, while 
simplicity is paramount for understanding. Despite their usefulness, 
models are always shrouded with limitations. We discuss some of these 
in the present section.

Two important considerations – assumptions and reliable data – were 
often not transparently communicated or verified, which naturally 
had an impact on the effectiveness of South Africa’s response which 
mathematical models primarily influenced. A significant number of 

these models has been published globally since the beginning of the 
pandemic.10,11 Given that there is no known effective pharmaceutical 
treatment for COVID-19 (at the time of writing), mathematical models 
have shaped policy with respect to non-pharmaceutical interventions, 
intending to limit transmission between persons and contaminated 
environments, and in so doing ‘flatten the curve’ of infected persons. 

Lessons learnt from the SARS outbreak in 2003 and the MERS outbreak 
in 2002 provided a medical understanding of how coronaviruses affect 
the lower respiratory tract. Taiwan was one of the first countries to 
implement the non-pharmaceutical interventions learnt from SARS. 
Some of these strategies include the wearing of masks and contact 
tracing. Modelling helps us to quantify the impact of these preventative 
measures on the spread of the disease. 

From a modelling perspective, the integrity of a mathematical model is 
in its assumptions, consanguineousness to the available data, and the 
power to predict the epidemic trends in the short or long term. In building 
mathematical models for the pandemic in South Africa, it is crucial 
to consider the following: heterogeneity in the population densities, 
economic realities, inconsistent policies and inharmonious enforcement 
of regulations. Model-building is thus not an abstract exercise but 
requires deep contextualised knowledge. In South Africa, appreciation 
of socio-economic dynamics is critical in the modelling process, such 
as overcrowding, a large informal sector, and high levels of poverty. 
Within this context, social distancing in South Africa, for instance, 
should be understood within the context of a heterogeneous distribution 
of populations and varied patterns of movement within and between 
cities and provinces. These social realities have implications for the 
pandemic’s spread as densely populated areas, such as public transport 
hubs and spaces, are hotspots for transmission. The resurgence of 
the epidemic in many countries has seen the emergence of a more 
recent dynamic termed a ‘superspreader event’, threatening the fragile 
equilibrium South Africa has achieved. Furthermore, as prevention 
fatigue sets in, the relaxation of preventative efforts can be a source 
of disease recrudescence. Models that capture such scenarios are of 
interest from a policy formulation and disease management perspective. 

There is always a trade-off between model complexity and its tractability 
– the more complex the model, the less tractable and vice-versa. 
Many of the recent models had a few noticeable challenges when it 
came to functioning as workable solutions. Firstly, the overestimation 
of predicted numbers led to panic amongst the public, given a poor 
understanding among most that, while models are useful tools, they 
should not be over-interpreted, especially when considering long-term 
projections. Being dynamic, the implementation of an intervention of 
any kind will immediately impact the progression and trajectory of the 
disease described by the model. Secondly, many models have been built 
to provide predictions for scenario planning without clearly explaining 
the underlying assumptions which inform these predictions. Lastly, 
models depend on assumptions, and the sensitivity to errors in these 
assumptions should be aligned to the social-economic dynamics of a 
given setting to create realistic outcomes.

Given the complexity of a functioning society with varied dynamics, 
models should ideally be interdisciplinary. The role of social, cultural 
and human behaviour and economic consequences of the pandemic 
and any possible interventions cannot be ignored when modelling a 
pandemic. Thus, while the role of mathematical models as tools for 
understanding the transmission dynamics of COVID-19 in South Africa 
cannot be underestimated, one thing needs to be kept in mind: all models 
are necessarily approximations of the real world, being simplifications 
of reality driven by the need to answer specific questions and in many 
cases one particular question. Models capture certain aspects of a 
phenomenon, under certain assumptions, while relying on relevant data 
sets where the quality, accuracy, specificity, availability and usability of 
the data are key to the usefulness of a model. 

The big difference in 2020/2021 has been the impact of social media 
and greater transparency, which meant that modelling as a tool took 
a leading role in combatting COVID-19. Scientists involved in the 
modelling of MERS/SARS did not benefit from exposure to social 
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media. During previous disease outbreaks, only mathematicians had 
access to resources to do the modelling, and often the products of such 
engagement were kept within the academic community. The power of 
modern computers allows anyone with basic knowledge to develop 
models of the spread of COVID-19. The effective use of social media 
provides for wide dispersal of the forecasts and information learnt from 
such models.

Data-driven models
There have been ongoing concerns about the quality and availability of 
data relating to the current pandemic.12 Yet, aside from being employed 
for the development of predictive models, these questionable data are 
underlying some of the most critical metrics that are being used to 
gauge our progress in fighting the novel coronavirus. Hugely debated 
results published in a preprint in April 2020 present two antibody tests 
conducted by universities in California. It was claimed that possibly 28 
to 85 times more people had been exposed to COVID-19 than had been 
detected using the PCR method.11 If so, a slight alteration in the relevant 
denominator used to calculate the mortality rate from COVID-19 would 
have shifted mortality from a figure of 2.5–3%, which public health 
officials had been working with, to between 0.12% and 0.20%. Given 
that seasonal influenza’s mortality rate is about 0.1%, it is clear that such 
a change in the mortality rate describes an entirely different pandemic.13

Recent events seem to support the argument that we may be 
overestimating the infection fatality rate of COVID-19. In September 
2020, it was indicated that upon taking into account asymptomatic 
cases, the infection fatality rate had shifted from between 2% and 3% 
to 1%.14 More recent updates by the CDC and WHO indicate an infection 
mortality rate of between 0.65% and 0.5–1%, respectively, while the 
work by Ioannidis15 indicates a median infection fatality ratio of 0.23% 
across 51 locations. The conclusion to be reached is that when there are 
errors in raw data or our data sets are limited and constantly changing, 
we need to be cautious about reaching conclusions regarding the nature 
of a phenomenon. Inappropriate or inaccurate statistics can generate an 
image that differs vastly from the reality they are trying to capture.

It is no secret that, similar to mathematical model development, data 
science relies heavily on assumptions made in the scientific process. 
One of these assumptions is that the data set used in the scientific 
process represents the studied entity/population. Hence, when data are 
skewed, limited, or contextually inappropriate, the results of the whole 
scientific process are most likely to be incorrect. The idea of ‘wrong 
data’ has been identified as artificial intelligence’s (or AI’s) biggest risk 
factor.16

There are concerns regarding the quality of data from all countries, often 
for similar reasons.12 Instead of national health surveillance systems 
that can be relied upon to provide reasonably accurate data, there is 
a patchwork of voluntary data-gathering processes in place at most 
hospitals. Naturally, not all hospitals report the data, and the data are not 
consistent from hospital to hospital.12 Furthermore, delays in obtaining 
data from hospitals and other health facilities lead to data that do not 
reflect the current situation on the ground.17 When models employ such 
data for predictive purposes, they end up predicting the past. The use 
of contextually inappropriate data to design a model is also concerning. 
An example of this is the use of data from China to predict the spread 
of South Africa’s epidemic. Where machine learning has been used with 
inappropriate data, the results that have been obtained are misleading. 
Yet the implementation and reporting of results obtained from machine-
learning models are on the increase. Why is that?

Conclusion
Epidemiology has a long and fine tradition of engaging public policy to 
change it. The discipline also naturally seeks technical development 
of its methodology. In the case of COVID-19, these two instincts – 
campaigning and formalising – came together in an unfortunately unholy 
alliance. As has been remarked, infectious disease modelling is only one 
part of infectious disease epidemiology; but it is particularly striking 
because it appears to represent methodological progression. When the 
campaigning instinct kicks in, there is a danger of overreach. Policies are 

pushed that simply fail to consider all factors because the models do not 
consider all factors. Both epidemiology and public health can do better in 
the future by considering a more extensive range of health consequences 
beyond the deaths of people with the virus in their bloodstream, by being 
less belligerent about the importance of these consequences above 
other policy priorities. Humility is an epistemic virtue.

As current data on the coronavirus are not reliable in the sense that we 
are constantly adjusting for inaccuracies or obtaining new information, 
our aim should rather be to create opportunities for further research 
on the novel coronavirus in the future. As such, our goal should be 
to create data repositories, structure data cleaning processes, design 
data pipelines, and develop better tools to model past pandemics to 
gain a deeper understanding for further comparison. Learning from the 
past should be our strategy to become a society that reflects on past 
mistakes, assesses current inadequacies, and then moves forward with 
greater awareness and humility.
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