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The energy sector is an essential part of a country’s economy – it drives innovation and advances 
industrialisation. Coal is the primary source of energy in South Africa. Coal contributes 95% of energy 
production; coal-fired power also contributes to greenhouse gas emissions, and is thus a hazard to 
human health and the environment. This calls for an energy mix that is renewable, sustainable, and 
affordable and that is carbon neutral (climate action). We investigated the potential of anaerobic mono- 
and co-digestion of goat manure, chicken manure, potato peels, maize pap, and cow manure inoculum 
for mesophilic recovery of renewable energy using the biomethane potential test. The substrates were 
characterised through proximate and ultimate analyses to determine the composition preferable for 
mono- and co-digestion. The key considerations in the determination of both the yield and production 
rate of methane from digestion of biomass are the substrate composition and characterisation. A high 
percentage of volatile solids favoured optimum biomethane production as highly volatile components 
provide microbes with balanced nutrients that enhance metabolic processes to produce biomethane. 
The mono-digestion process produced lower biomethane than did co-digestion. Higher production 
of biomethane by co-digestion was due to the balance of the micronutrients and macronutrients that 
favoured microbial metabolism and regulation of pH. 

Significance:
•	 The results highlight the need for appropriate techniques in combining energy and waste management. 

Biogas could provide solutions for some of South Africa’s energy necessities, particularly in rural areas 
that have abundant biogas substrates in the form of waste from goats and chickens, as well as from 
kitchen waste. 

Introduction
South Africa is fortunate to have an abundance of assorted energy resources that are yet to be exploited and 
contribute to the energy mix. The primary sources of renewable energy are solar, wind, hydro, and biomass.1 
Renewable energy is taking its rightful place in the South African energy sector and playing a significant role in 
contributing towards sustainable development.2 South Africa is ranked as the sixth highest contributor to greenhouse 
gas emissions worldwide. Carbon dioxide emission per capita is 77% of the total emission in the country. In 
accordance with the European Union’s Renewable Energy Directive3, energy generation from renewable sources is 
deemed to be a necessary target for reducing the impact of greenhouse gases, in particular fossil fuel combustion4. 
Negative health impacts and environmental degradation are driving the country’s drive towards policies that are in 
line with Sustainable Development Goals 7 (Affordable and Clean Energy) and 13 (Climate Action). 

Biomass and anaerobic digestion
Biomass is currently one of the country’s main contributors to renewable energy, with 9–14% of the overall energy 
mix.5 Production of energy by anaerobic digestion can be a noble resource channel if appropriately harnessed, 
as in the case of China and India. Renewable energy provides an easily accessible alternative for rural areas 
that are off the grid and have decentralised production capabilities. By contrast, anaerobic digestion is a viable 
technology for the production of biogas derived from organic waste. Anaerobic digestion treatment of organic 
feedstock to produce biogas offers a two-pronged solution to biomass waste management: generating energy and 
simultaneously solving the ecological and agrochemical problem. Anaerobic digestion technologies can be divided 
into three major groups based on the substrate’s total solids (TS) content: wet anaerobic digestion with TS less 
than 15%, dry anaerobic digestion with TS less than 25%, and solid-state anaerobic digestion with TS content 
of up to 40%.6 In an anaerobic environment, symbiotic microorganisms convert organic matter into biogas, a 
constituent mixture of methane (CH4) and carbon dioxide (CO2) together with some nutrients, digestion-resilient 
organic materials and other cell components like salts. This is a four-stage process: hydrolysis, acid-genesis and 
acetogenesis are induced by a specific consortium of bacteria, with the final step of methanogenesis undertaken 
by a consortium of methanogenic archaea (Figure 1).6

Anaerobic co-digestion
Additionally, anaerobic co-digestion entails two or more feedstocks being digested simultaneously. This is a 
sustainable and economically viable option which results in higher yields of methane with added advantages 
of minimising the challenges associated with mono-digestion. Problems with anaerobic digestion, such as the 
presence of hazardous materials, unbalanced nutrients or obstinate compounds in the substrate, have rendered 
anaerobic co-digestion of multi-substrate a common field of research in the advancement and upgrade of 
conventional anaerobic digestion technology. Work on anaerobic co-digestion has grown dramatically over the last 
15 years, demonstrating its capacity to make progress in the production of biogas.7-10 
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The main objective of anaerobic co-digestion is to increase methane for 
renewable energies. As shown in Figure 2, a variety of substrates can 
be co-digested by blending into different ratios and maintaining optimum 
conditions needed for the metabolic activities and improvement in the 
biogas production.

Unlike wastewater, the solid feedstock contains high levels of insoluble 
organic matter and chemical oxygen demand. These organic matters 
can be recycled to provide bioenergy. Animal manure is an organic 
product that is used in horticulture and agriculture as a natural fertiliser. 
It is a combination of faeces, urine and products that may be used in 
waste control, such as grass, sand, washing water and other bedding 
products.11 Animal manure from livestock farming has been customarily 
reused as organic fertiliser for the provision of nitrogen and phosphorus 
for crops and plants. However, the environment was negatively impacted 
due to increased concentrations of carbon and discharge of soluble 
phosphorus and nitrogen. Animal manure from dairy cattle12 and buffalo 
farming13 produces large quantities of greenhouse gases, second only 
to enteric methane. Furthermore, manure generates volatilised ammonia 
that is up to 70% of the excreted residual nitrogen which enters water 
systems and natural ecosystems or contributes to climate change and 
eutrophication through conversion into N2O emissions.14 

Goat manure is commonly found in South Africa. It is an excellent 
substrate for anaerobic digestion due to its optimum range of C/N 
ratio and robustness of growth. The amount of manure produced by 
a goat with a typical body weight of 20–40 kg is approximately 0.32–
0.63 kg/day, which is comparable to approximately 0.3 tons/year.15 For 

instance, a nation with around 1 million goats is estimated to produce 
approximately 0.3 million tons of organic fertiliser per year.

Chicken manure is a semi-solid biodegradable material. Therefore, it can be 
used to generate cheap energy.16 Fresh chicken manure contains 0.4–0.5% 
phosphorus, 0.8% potassium and 0.9–1.5% nitrogen. It has been reported 
that the daily production of chicken manure varies from 80 g to 125 g (wet), 
of which 20–25% of the production comprises total nitrogen-rich solids and 
55–65% contains volatile solids (VS) which are a valuable energy source.17 
However, the higher content of nitrogen in chicken manure compared with 
that in manure from other farm animals (i.e. cattle, pig, horse, goat, sheep, 
and rabbit)18-26 makes it unsuitable for the anaerobic digestion process27. 
Ammonia inhibition is one of the common problems with the anaerobic 
digestion process when using substrates like poultry manure28 and pig 
manure29. The inhibitory impacts of free ammonia on the methanogen’s 
digestive mechanism was observed by Zhang et al.30 In general, one of 
the tricks to avoid ammonia inhibition is to dilute the chicken manure with 
water31, which assists in decreasing the high percentage of TS. This dilution 
step is said to reduce the production of biogas per unit of fermenter volume, 
increase the use of water and increase the processing costs for the slurry 
discharge. Several researchers have assessed the co-digestion of chicken 
manure with other animal manures such as cow manure32 or pig manure33, 
or with other substrates, such as potato peels34.

Leftover, lost or uneaten food is food waste and can originate throughout 
the entire food supply chain. This value chain starts from preparation 
to production, processing, delivery, storage and sale to cooking and 
presentation.35 Consumer stage food waste from restaurants, homes, 
schools, and hospital cafeterias is usually targeted.36 

VAF, volatile fatty acids

Figure 1:	 A schematic of the microbial processes involved in anaerobic digestion.
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Developing countries generally have scant information with regard to food 
wastage. Food wastage is globally reported to be higher in developed 
than in developing countries.37,38 An annual per capita average of food 
waste in developed countries ranges from 100  kg to 170  kg, which 
is double that of developing countries.39 A few developing countries, 
including India and China, are considered to have greater challenges in 
food waste disposal despite the broad total population.39 More than 40% 
of the food (about 222 million tons) is lost or wasted in the retail pathway 
and consumer stages in developed countries, which is nearly as high as 
the total net food production in sub-Saharan Africa (230 million tons).39 
Although anaerobic digestion technology is a well-known technology for 
energy recovery, there are still unaddressed issues related to economic 
and environmental concerns, food security, technology choice, organic 
loading rates, nature of substrates, parameters variation in different 
locations globally, disposal of digestate after digestion, and mitigation to 
climate change.40,41 In the present study, we investigated the potential of 
anaerobic mono- and co-digestion of potato peels, maize pap, chicken 
manure, and goat manure for renewable energy recovery. 

Methodology
Substrate quantification
Food waste was collected from the cafeteria and animal manure 
samples were collected from the Department of Agriculture farm of the 
Mangosuthu University of Technology (KwaZulu-Natal Province, South 
Africa). Samples were collected into 5-L plastic containers, closed 
airtight, and stored at 4 °C in the refrigerator. The samples were labelled 
as chicken manure, goat manure, potato peels, maize pap, and inoculum 
from the cow manure. To pre-treat the samples and minimise the 
maturing effect, as well as to limit the microbial activities, the feedstock 
was dried in the oven at 60 °C, reduced to a 2-mm size diameter, and 
stored in the fridge at 4 °C until utilised. The inoculum was prepared by 
digesting cow dung samples until no biogas was produced. This was 
done in order to ensure that the microorganisms digest all the substrate 
in cow dung completely before adding new substrate to ensure that 
biogas produced was from new substrate and not from substrate in the 
cow dung. The retention time for the inoculum preparation was 14 days. 

Experimental procedure
The biomethane production rate was determined by feeding the 
substrates and the inoculum into a batch digester. Chicken manure, 
goat manure, potato peels, maize pap, and inoculum of cow manure 
were fed as a mono-substrate for mono-digestion. Chicken manure and 
potato peels, chicken manure and pap, goat manure and potato peels, 
goat manure and maize pap, maize pap and potato peels, and a mix of 

chicken manure, potato peels, goat manure and maize pap were co-
digested in the ratio of 1:1. The substrates were fed with the control. The 
conditions were set at mesophilic temperatures of 37 °C and the working 
pH of 6.5–7.5 was adjusted using sodium hydroxide and sulfuric acid. 
A bioprocess controller (AMPTS II) by Dürr Systems, Inc. (De Pere, WI, 
USA) was used to perform the biomethane potential test. The AMPTS 
II consisted of an automated digester, CO2 fixing unit, and biomethane 
collection unit. Bioreactors with a volume of 500 mL and a headspace of 
100 mL were used. Sodium hydroxide was used to remove CO2 from the 
production of biogas to biomethane. A 3-M sodium hydroxide solution 
was used to remove CO2 and H2S. A pH indicator solution with 0.4% 
thymolphthalein was applied to the sodium hydroxide solution where the 
pH indicator was used as a scrubber. Before preparing the substrates 
and feeding into the digesters, the prepared NaOH with pH indicator was 
used to determine the saturation point for the cleaning solution to be 
replaced. Thus, the digesters were purged with nitrogen gas to create an 
anaerobic state by discharging the oxygen. The gas that exited the CO2 
fixing unit was sent to the stream cell (gas collection unit) and assessed 
on a daily basis using water downward displacement technique until the 
retention time was completed. Figure 3 shows the bioprocess controller 
(AMPTS II).

Analytical techniques

Proximate analysis

The chemical and physical compositions, moisture content, total solids 
(TS), volatile solids (VS), and hydrogen potential (pH) were calculated 
using standard methods (APHA 1995).42 

Ultimate analysis

A Flash 2000 CHNS-O element analyser (Thermo Fisher Scientific Inc., 
Waltham, MA, USA) fitted with an autosampler was used to analyse the 
elemental (C, H, N, S) composition of the substrate. In replicates per 
sample, a dry mass of 1 mg of each substratum was weighed into a tin 
capsule. CHNS was then determined by an autosampler by placing the 
samples in an electrolyte-filled quartz reactor and then inserting them 
into the reactor cell. After combustion in an oxygen-rich environment, 
the gases given off were carried by a helium flow past a copper-filled 
layer, through a gas chromatography column where the combustion 
gases were separated and detected by a detector (Thermal Conductivity 
Detector, Waltham, MA, USA) with a column oven temperature of 65 °C 
detection.

Figure 2:	 A diagram of multi-feedstock co-digestion in energy recovery.
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Results and discussion
Characterisation of substrate 

Proximate analysis
Characteristics of the mono-substrates chicken manure (CM), goat 
manure (GM), potato peels (PP), maize pap (MP) and inoculum co-
substrates CM + GM, CM + MP, GM + MP, CM + PP, GM + PP, MP + 
PP are shown in Figure 4. Substrate composition and characterisation 

can be a major factor in deciding the levels of methane production 
and methane generation from biomass digestion. VS are the organic 
component of TS that biodegrade, where TS is the total amount 
of suspended solids and dissolved solids. Optimum production of 
biomethane is attained when the %VS is low, as this helps bacteria to 
provide volatile compounds with methane and metabolic processes. VS 
therefore play an important role in optimal digestion, because they allow 
the digestion process to generate high-quality biomethane.

Figure 3:	 The bioprocess controller (AMPTS II) used to perform the biomethane potential test. The AMPTS II consisted of an automated digester, carbon 
dioxide fixing unit, and biomethane collection unit.

Chicken

Potato

Goat & Pap

Potato Peels;

Figure 4:	 Results of the proximate analysis of the substrates and absolute pH on biogas accumulation.
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Goat manure and chicken manure had a %VS of 43.46% and 54.28%, 
respectively. These values indicate a good potential to convert biosolid 
to bioenergy. The inoculum had lower VS due to initial digestion during 
the preparation. Potato peels had the highest moisture content in the 
composition. Due to variation in composition, this called for co-
digestion of samples to reach the optimum range for the digestion of 
substrate to energy (biomethane). The VS/TS ratios for mono-substrates 
were 63.52%, 91.45%, 99.76% and 96.61% for GM, CM, MP and PP, 
respectively. The higher the VS/TS ratio, the higher the organic content, 
which is favourable for the production of biomethane. 

Ultimate analysis
The C/N ratio was imperative in the microscopic organism’s stability 
within the anaerobic process. However, examination of the organic 
components showed that CM, PP, and MP had C/N ratios of 42.91%, 
99.70% and 37.30%, respectively, which are unsuitable for anaerobic 
digestion and out of range of the optimum (10 to 30) C/N ratio.42,43 
However, GM had a C/N ratio of 20.47, which is within the optimum 
range. A high C/N ratio leads to a deficiency within the anaerobic digestion 
system due to the methanogens’ fast nitrogen consumption leading to 
lower gas production. A lower C/N ratio indicates high nitrogen that can 
transform into ammonia. Ammonia inhibits the microbes’ activities. Co-
digestion enhanced the nutrient balance of the substrates and provided 
an optimal C/N range. Figure 5 shows the results of the ultimate analysis 
of the mono-substrates. 

Biomethane potential test of biomass

Mono-digestion of biomass
The biomethane potential test was vital in assessing the biomethane 
production of the respective organic feedstock amid its anaerobic 
deterioration. Figure 6 shows the biomethane production from the mono-
digestion of substrates. 

The retention time for substrate digestion to yield biomethane was 21 
days. The organic loading rate ratio of substrate to inoculum was 1:2 
of %VS. It was observed that the inoculum produced lower methane 
than did the other substrates because it was previously digested for 

14 days and the nutrients were exhausted. Maize pap produced the 
most methane (1650.8 NmL CH4/g  VS) because of the high nutrient 
composition and balance. Carbohydrates are generally considered to 
be rapidly degradable. The shortest lag phase as observed in Figure 6 
was due to the introduction of inoculum that supplied microorganisms. 
Within 8 days, the production of biomethane was at equilibrium due to 
the rapid aggregation of unstable greasy acids that led to a reduction 
in biomethane production. Lower production of the biomethane was 
attributed to lower growth and metabolism of the methanogens due 
to poor nutritional structure (C/N ratio) and insufficient micronutrients. 
PP, GM, and CM produced 1423.6, 726.9, and 120.7 NmL CH4/g VS, 
respectively.

Co-digestion of biomass
Figure 7 shows the biomethane production from the co-digestion 
of substrates. It was observed that most of the highest biomethane 
accumulation was achieved within the initial 9 days of retention time for 
all the co-digested substrates except for MP and PP. After the ninth day, 
all production became steady and reached equilibrium for the remainder 
of the 21 experimental days. The highest biomethane production of 
1332.2 NmL CH4/g VS was achieved for GD and PP substrates. This 
was due to the availability and balance of nutrients, and microbial 
balance. The CM and MP substrates recorded the lowest biomethane 
potential of 474.6 NmL CH4/g VS. In the anaerobic digestion process, 
a synergistically decomposition of organic matter caused a bacterial 
consortium generating biogas and biomethane. Inhibition in some 
substrates occurred because of imbalanced rates between hydrolysis and 
methanogenesis. It was necessary to have a suitable balance between 
those levels to obtain higher biomethane production. A rapid pathway 
for methanogenesis was necessary to prevent the over accumulation of 
the organic acid and reduction in pH, as well as high ammonia and an 
increase in pH to a degree that would inhibit methanogenesis. For the 
production of methane-forming microbes, certain nutrient components 
are required.44 Relevant trace elements such as nickel, cobalt, iron and 
molybdenum are important for the ideal development and production of 
biomethane because they stimulate methanogenic activity. 
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Figure 5:	 Results of the ultimate analysis of the substrates.
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The microbial activity in biomethane development was stimulated 
by boron, manganese, molybdenum, aluminium and selenium in 
substrates.45-47 According to Duran and Speece48, the addition of metal 
ions to anaerobic digesters plays a key role in improving the performance 
of the anaerobic digestion system through co-digestion. Co-digestion of 
substrates enhanced nutrients to microbial balance. 

The influence of pH on biomethane production is shown in Figure 4. The 
highest biomethane production of 1332.2 NmL CH4/g VS was observed 
at a pH of 7.11, whereas productions of 1248.2, 1154.2, 949.2, 846.4 
and 474.6 NmL CH4/g VS were observed at a pH of 5.97, 7.15, 7.52 and 
7.54, respectively. 

Chicken manure and potato peel substrates had lower pH of 7.23 and 
7.21, respectively, within the range of 6.5–7.5. Goat manure and maize 
pap substrates had higher pH of 7.56 and 7.65, respectively, slightly 

above the optimum range. Co-digestion of substrates assisted in 
adjusting the pH to 7.31, within the optimum range.48-51

Conclusions
Volatile solids, moisture content and total solids played an important 
role in optimal digestion, by enabling the digestion process to generate 
high-quality biomethane. Goat manure and chicken manure had %VS of 
43.46% and 54.28%, indicating a good potential to convert biosolids 
to bioenergy. Higher VS/TS ratios of the organic content enhanced 
higher production of biomethane. Co-digestion regulated nutrients and 
created a nutrient balance of the substrates that were out of the optimum 
range (C/N ratio of 10–30). Mono-digestion of maize pap resulted in the 
highest biomethane production of 1650.8 NmL CH4/g VS because of the 
high nutrient composition and balance. Co-digestion of goat manure and 
potato peels resulted in the highest biomethane production of 1332.2 
NmL CH4/g VS among the co-digested substrates. This was due to the 

B
io

m
et

ha
ne

Potato

Figure 6:	 Biomethane production through mono-digestion of substrates.

Figure 7: Biomethane production 

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

Bi
om

et
ha

ne
 A

cc
um

ul
at

io
n 

(N
m

l)

Hydraulic Retention Time (Days)
Chicken & Goat Volume [Nml] Chicken & Potato Peels Volume [Nml]

Chicken & Pap Volume [Nml] Goat & Potatoes Volume [Nml]

Goat  Pap Volume [Nml] Pap & Potatoes Volume [Nml]

Mix: Chicken & Potatoes & Goat & Pap Volume [Nml] Inoculum Volume [Nml]

Figure 7:	 Biomethane production through co-digestion of substrates.

Anaerobic mono- and co-digestion of waste
Page 6 of 8

https://doi.org/10.17159/sajs.2021/10362


7 Volume 117| Number 11/12 
November/December 2021

Research Article
https://doi.org/10.17159/sajs.2021/10362

nutrient and microbial balance. The anaerobic digestion process assisted 
in energy recovery. Co-digestion addressed issues related to economic 
and environmental concerns, microbial-nutrient balance, organic loading 
rates, regulation of parameter variation, and mitigation to climate change. 
Co-digestion is efficient, economically viable, produces higher yields 
of methane and has the ability to mitigate some of the problems that 
may arise from mono-digestion. The problems in anaerobic digestion 
– such as unbalanced nutrients, the presence of poisonous materials 
or persistent elements in the substrates – make co-digestion a viable 
technology.
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