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Foetal alcohol syndrome (FAS) is a preventable condition caused by maternal alcohol consumption during 
pregnancy. The FAS facial phenotype is an important factor for diagnosis, alongside central nervous 
system impairments and growth abnormalities. Current methods for analysing the FAS facial phenotype 
rely on 3D facial image data, obtained from costly and complex surface scanning devices. An alternative 
is to use 2D images, which are easy to acquire with a digital camera or smart phone. However, 2D images 
lack the geometric accuracy required for accurate facial shape analysis. Our research offers a solution 
through the reconstruction of 3D human faces from single or multiple 2D images. We have developed a 
framework for evaluating 3D human face reconstruction from a single-input 2D image using a 3D face 
model for potential use in FAS assessment. We first built a generative morphable model of the face from a 
database of registered 3D face scans with diverse skin tones. Then we applied this model to reconstruct 
3D face surfaces from single frontal images using a model-driven sampling algorithm. The accuracy of the 
predicted 3D face shapes was evaluated in terms of surface reconstruction error and the accuracy of FAS-
relevant landmark locations and distances. Results show an average root mean square error of 2.62 mm. 
Our framework has the potential to estimate 3D landmark positions for parts of the face associated with 
the FAS facial phenotype. Future work aims to improve on the accuracy and adapt the approach for use 
in clinical settings.

Significance:
Our study presents a framework for constructing and evaluating a 3D face model from 2D face scans 
and evaluating the accuracy of 3D face shape predictions from single images. The results indicate low 
generalisation error and comparability to other studies. The reconstructions also provide insight into specific 
regions of the face relevant to FAS diagnosis. The proposed approach presents a potential cost-effective and 
easily accessible imaging tool for FAS screening, yet its clinical application needs further research. 

Introduction
Early detection of foetal alcohol syndrome (FAS) allows for early intervention, mitigates the onset of secondary 
disorders such as mental breakdown or improper sexual behaviours, and leads to significantly better clinical 
outcomes.1 The diagnosis of FAS is based on the evidence of central nervous system abnormalities, evidence of 
growth abnormalities, and a characteristic pattern of facial anomalies, specifically short palpebral fissure length, 
smooth philtrum, flat upper lip, and flat midface.2,3 The FAS facial phenotype has been emphasised clinically for 
diagnosis.4-7 However, clinical evaluation requires the expertise of trained dysmorphologists. This requirement 
limits efforts for large-scale screening in suspected high prevalence regions, such as South Africa, which has a 
prevalence rate estimated to be between 93 and 128 per 1000 live births8, and a shortage of highly trained clinical 
personnel. Alternative methods for assessing the FAS facial phenotype are possible but require careful acquisition 
of face data. Face data collection methods include direct anthropometry using handheld rulers and callipers. Indirect 
anthropometry, on the other hand, is possible through the acquisition of face data through 2D photogrammetry, 3D 
stereophotogrammetry, and 3D surface imaging scanners.2,9,10 Direct anthropometry introduces inaccuracies due 
to the indentation of some features during contact measurements with physical instruments. For this reason, more 
efforts have been put into indirect anthropometry, which has the added benefit of near-instantaneous patient data 
acquisition. Furthermore, with indirect approaches, measurements on the images can be repeated in the absence 
of subjects. Indirect evaluation on 3D image data is typically more accurate than on 2D images.11 However, 
acquiring 3D face images using 3D surface scanners tends to be costly and precludes large-scale deployment in 
low-resource settings. 

Reconstruction of the 3D human face from a single 2D image is a popular topic of research, with applications in 
face recognition, face tracking, face animation, and medical analysis of faces.12 However, to date, there has not 
been any report on the quantitative suitability of 3D from 2D face reconstruction for FAS-related facial phenotype 
characterisation. In this study, our aim was to evaluate the geometric accuracy of a 3D human face reconstruction 
from a single 2D facial image, using a 3D morphable model of the face.13 We focused on 3D reconstruction of 
the complete face to enable surface-based approaches, and to allow us to evaluate landmark and distance-based 
measurements. We tested if such a reconstruction algorithm could be suitable for automated analysis of facial 
features related to FAS.

Related work
Three-dimensional morphable models (3DMMs) are high-resolution generative models containing shape and texture 
variations from sample populations.13-17 Typically, 3DMMs are built from a set of 3D face scans after establishing 
anatomical dense correspondences across the face data set. Establishing correspondences ensures that similar 
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features across a set of 3D face scans match each other (e.g. the tip of 
the nose or the eye corners) – we call this process ‘registration’. 

Several methods for building 3DMMs from a set of 3D face scans 
have been presented over the years.12 In pioneering work, Blanz and 
Vetter13 built a 3DMM from a set of face scans after computing dense 
correspondences with an optical flow-based registration technique. 
The shape and texture variations in a collection of face scans were 
then modelled using principal component analysis (PCA), resulting in a 
low dimensional representation. The learned face models were used to 
estimate a 3D face surface from a single 2D face image. Early 3DMMs 
were built using just hundreds of face scans. However, a recent study 
by Booth et al.16 constructed a 3DMM known as the Large-Scale Facial 
Model using 9663 3D facial scans. Booth et al.16 used the non-rigid 
iterative closest point (NICP) algorithm18 for registration of the template 
face surface to each target face scan in the data set, aided by generalised 
Procrustes analysis (GPA) for similarity alignment of the registered face 
scans. They then used PCA19 for statistical analysis of the registered 
face scans. The 3DMMs have already been successfully applied in 
various application areas including face tracking, face recognition, face 
segmentation, and face reconstruction.12 However, additional research 
focusing on human face variations would still be required before the 
morphable model could be used for medical purposes.16

Blanz and Vetter’s13 work was seminal, but their approximate 3D face 
meshes were only qualitatively evaluated. Romdhani and Vetter20 took 
a different approach, extracting multiple features from a single image. 
The extracted features were then used to estimate a 3D face surface by 
minimising a cost function. In 2009, 3DMM, the Basel face model, was 
made available for research purposes and enabled the community to grow 
faster.21 Aldrian and Smith22 developed the first publicly available inverse 
graphics algorithm based on a 3DMM. Schönborn et al.23 employed a 
sampling-based approach to fit a Gaussian process morphable model 
to a single 2D image. The face shape reconstruction accuracy as 
measured by a root mean squared average was 3.79 mm. Recently, 
a first benchmark was established for 3D reconstruction from 2D 
images.24 This benchmark is, however, strongly biased towards light 
skin tones, which is a narrow subset of the world’s population and might 
not be representative for general clinical application. The state-of-the-art 
method on this benchmark is a deep learning based method for 3DMM 
reconstruction, with an average reconstruction error of 1.38 mm.25

While reconstruction algorithms are reported in the literature, there is 
limited research evaluating the accuracy of these algorithms, which 
has implications for the algorithm performance on medical-related 
applications. Additionally, to the best of our knowledge, model-based 3D 
face reconstruction from 2D image approach has not been evaluated with 
a focus on FAS applications, perhaps because 3D ground truth data may 
not be available. A robust single image-based reconstruction approach 
could offer a cost-effective alternative to 3D surface capturing systems.

Methods
Data description
We based our experiments on the BU-3DFE face database, which is a 
publicly available data set of high-quality 3D scans, acquired using the 
3dMD face system.26 It consists of face scans of 98 subjects of different 
ethnicities (56 female and 42 male subjects aged between 18 and 
70 years). We used only the facial scan with a neutral expression for each 
identity (see Figure 1 for an example of the images). The data were used 
with ethical approval from both the University of Cape Town and the State 
University of New York. To maximise the number of faces for training, we 
performed a leave-one-out cross-validation scheme for our experiments. 
From each face scan, we derived the 3D ground truth face shape, 
established correspondence to our model template, and rendered a frontal 
2D image for our 2D to 3D reconstruction task. To reach maximal accuracy, 
we used 12 manual landmarks to initialise the 2D to 3D reconstruction 
process: right outer and inner canthi, glabella, left inner and outer canthi, 
right and left alares, pronasale, subnasale, right and left cheilions. We did 
not rely strictly on these landmarks as the fitting framework used has been 
shown to work with automatic landmark detection. This gave us a set of 

2D images with known ground truth 3D shapes for learning and evaluating 
our model and reconstruction framework.

Figure 1:	 Some examples of the 2D images in the test set generated from 
the BU-3DFE face data set.

Rigid alignment of face scans
The goal of rigid alignment is to bring all the face scans into a common 
coordinate system without deformations. Given a set of pre-processed 
3D face scans (pre-processing involves trimming the face scans to 
remove the unwanted regions such as the hair and neck regions) and 
a set of facial landmarks for each face scan, the facial landmarks were 
used to calculate a least-squares alignment that brought landmarks 
corresponding across scans as close together as possible (Procrustes 
alignment). The training face scans were mapped, using rigid 
transformations, to the mean of the Basel face model27, which represents 
a common reference face surface. The results of these alignments are a 
collection of rigidly aligned 3D face scans.

Registration of face scans
After rigid alignment, we used a deformable model to establish dense 
correspondences between a reference face surface and each target face 
scan in the training data. By dense correspondences, we mean finding 
the mappings between similar features across the data set. The goal of 
registration is to re-parameterise the face scans to have the same number 
of vertices and triangulations across face scans in the training set with 
the key feature that each vertex corresponds to the same point on each 
face. The reference face surface is fitted to each target face scan, using 
a Gaussian process fitting approach27, to obtain dense face surface 
deformations, which best match a target face scan to a common reference 
face surface. The time for registering the reference to each target face 
was 5–8 minutes computed on an Intel(R) Core (TM) i5-8350U CPU @ 
1.7 GHz. This registration approach builds on a Gaussian process defined 
by mean and covariance functions to model smooth deformations of the 
template shape.28,29 During registration, we searched the optimal set of 
parameters of our Gaussian process model to match the 3D scan at hand. 
The results of applying the fitting approach are registered 3D face scans. 
As we wanted to build a 3DMM, at this stage, we also extracted the colour 
per vertex from the closest vertex on the face scan – this enabled us to 
not only build a shape but also a texture model.

Building face models
With dense correspondences established among the training data, 
we removed translations and rotations on the data to retain shape 
deformation. To perform these non-shape-related transformations on 
the training data, we applied the Procrustes analysis approach.30-32 After 
removing alignments, the principal modes of variation were extracted 
from training data using PCA28,29 to build 3D morphable face models 
(3DMMs). The 3DMMs consisted of the face means and the principal 
components as modes of variation. The 3DMMs are expressed as 
linear combinations of shape and texture vectors in the face subspace. 
The time required to build a surface model from each registered face 
scan was 10–20 minutes computed on an Intel(R) Core (TM) i5-8350U 
CPU @ 1.7 GHz. An example of registration results as well as a resulting 
3DMM built from all 98 scans are illustrated in Figure 2.

3D from 2D face reconstruction
The key application of a 3DMM that we were interested in was the 
estimation of 3D face surfaces and 3D landmark positions for FAS 
measurements from 2D images. In the reconstruction setting, the 3DMM 
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acts as a prior of 3D face shape, and we searched for the most likely 
reconstruction given only 2D images. This is potentially useful because 
2D images, in contrast to 3D scans, are easy to acquire using either a 
mobile phone or a portable camera. One of the goals of this study was to 
reconstruct a neutral 3D face with shape and texture information from a 
single frontal 2D image and evaluate how close that reconstruction was 
to the known ground truth.

Given single 2D images, we estimated 3D face reconstructions by fitting 
the morphable model. The reconstruction time measured on an Intel(R) 
Core (TM) i5-8350U CPU @ 1.7 GHz was 58 minutes. We applied an 
approach proposed by Schönborn et al.23 to fit a 3DMM to a single 
2D image. The fitting algorithm recovers a full posterior model of the 
face by simultaneously optimising facial shape and texture as well as 
illumination and camera parameters for a test face image. We used 
a spherical harmonics illumination model which can recover a broad 
range of natural illumination conditions in combination with a pinhole 
camera model. Illumination estimation is a critical step and optimised 
early and regularly in the sampling process. The fitting algorithm tries 
to reconstruct the 2D image, producing a rendering from the 3D model 
that matches the 2D image as closely as possible. The results for fitting 
a morphable model to a single 2D image are 3D face shape and texture 
reconstructions, as illustrated in the pipeline in Figure 2.

Experiments and results
Evaluating the face shape model 
Before applying the 3DMM in our downstream reconstruction of a 3D 
face surface from a single 2D image, it was necessary to evaluate the 
quality of the built face model in terms of generalisation, specificity, and 
compactness. The details of the model evaluation metrics are discussed 
by Styner et al.33

Shape model generalisation: This refers to the ability of the shape 
model to accurately represent an instance for which it was not trained. 
The leave-one-out approach33 was used to evaluate the generalisation 
ability of the face shape model. For each iteration, a shape model was 
constructed from a set of training face surfaces, leaving out one face 

shape instance. With all the training data in correspondence, the left-out 
face instance was projected into the shape model space to generate 
a face estimate. To evaluate the geometric accuracy of the estimated 
face, the distance between the face estimate and the original left-out 
face instance was calculated. The average vertex-to-vertex root mean 
squared (RMS) distance between the left-out face instance and the 
estimated face instance was computed. The procedure was repeated 
until all the face instances in the training set were used and each time the 
evaluation metric was calculated. The model generalisation ability results 
are presented in Figure 3, which demonstrates the generalisation error 
represented as RMS distance (y axis), plotted against shape principal 
components (x axis). After 5 principal components, the generalisation 
accuracy was close to 1.5 mm, and with 50 principal components, we 
reached an accuracy of approximately 0.5 mm.

Figure 3:	 Generalisation: root mean squared (RMS) distances as 
a function of the number of principal components in the 
reconstruction. 

Shape model specificity: This is defined as the ability of the shape model 
to randomly generate valid synthetic shape instances that are similar 
to real shape instances present in the training data set.33 To evaluate 
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Figure 2:	 Statistical face modelling and model fitting pipelines. The yellow box on top shows the model building steps and the green box at the bottom 
illustrates the 3D from 2D estimation. In Step 1, 3D face scans are registered based on the reference scan, and in Step 2, the registered 3D scans 
are used to build the face model. Step 3 illustrates the 3D from 2D reconstruction process and Step 4 presents the 3D reconstruction result based 
on the single input image. In the reconstruction step, R is the rendering function, p represents rendering parameters, αn are shape parameters, and 
βn are colour parameters. Note that the images used are for illustrative purposes only.
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model specificity, a set of 90 shape instances was randomly generated 
from a distribution of the 3D morphable face model. The RMS distance 
between the randomly generated shape instances and the closest face 
surfaces in the training set was calculated as a specificity estimate. 
Lower RMS deviations are desirable because they indicate that the 
synthesised shape instances are close to the real shape instances in 
the training set. Figure 4 shows the specificity results. The results are in 
common ranges for specificity.15 Note that it is typical that the specificity 
decreases (distance increases) with greater model complexity (number 
of principal components).

Figure 4:	 Specificity: root mean squared (RMS) distances as a function 
of the number of principal components.

Shape model compactness: This indicates the percentage of variability 
accounted for by increasing numbers of principal components. Fewer 
principal components capture variability in shape information more 
efficiently. To validate the model compactness, the cumulative variance 
accounted for by the shape model was plotted as a function of the 
number of principal components of the shape model (illustrated in 
Figure 5). The line reflecting cumulative variance flattens as the number 
of shape principal components increases. Using only the first 20 shape 
principal components, the shape model accounts for more than 90% of 
shape variation in the training data set. This implies that the shape model 
is compact as it describes the training data set using a small number of 
principal components.

Figure 5:	 Compactness: cumulative variance against the number of 
principal components.

Evaluating 3D from 2D reconstruction results
To evaluate the geometric accuracy of face shape reconstructions from 
a single 2D image, the predicted 3D face surfaces were compared to the 
ground truth 3D face scans. We performed the reconstruction for each 
of the 98 2D images separately and build a separate 3DMM, removing 
that identity from the training data (leave-one-out cross-validation).

To measure the reconstruction error, we first rigidly aligned each 
predicted face mesh with the associated ground truth face shape. 
Following surface alignment, we computed the difference between the 
aligned face surfaces using the RMS distance metric.34 The RMS metric 
gives the surface-to-surface assessment value for each pair of surface 
comparisons. To visualise the reconstruction error distribution on the 
face surface, we additionally generated the surface colour maps from 
the comparisons of the predicted face surfaces and the associated 
ground truth face scans. 

The overall average RMS error between the pairs of the predicted 3D 
face surfaces and the ground truth 3D face shapes is 2.62 mm with a 
deviation of 1.41 mm, with errors ranging from 1.00 mm to 6.75 mm. 
Furthermore, the visual shape comparisons between the predicted face 
surfaces and the corresponding ground truth face shapes are represented 
using colour gradients as illustrated in column (e) of Figure 6. 
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Figure 6:	 Visualisations of the global best and worst face predictions. The first column (a) indicates the target 2D face images (input). The second column 
(b) represents the ground truth face shapes. The third column (c) illustrates the reconstructed face textures (output). The fourth column (d) shows 
the predicted face shapes (output). The fifth column (e) illustrates the face surface colourmap comparisons. The best reconstruction is in the top 
row, and the worst in the bottom.
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Figure 6 shows the identities with the best and worst RMS values for 
the predicted face shapes, and their corresponding ground truth face 
shapes, including the face surface colour map comparison. We observe 
that the largest reconstruction errors are found in regions of the face that 
are not relevant when screening for facial phenotypes in FAS. However, 
we find that the philtrum, which is one of the discriminators for FAS facial 
analysis, shows larger errors in faces considered to be outliers.

Face surface analysis across skin tones
Foetal alcohol syndrome affects people of all ethnicities. Previous methods 
did not explore darker-skinned individuals well enough and structured light 
systems have acquisition issues when it comes to imaging darker skin 
tones.35 Furthermore, previous models have a strong bias towards lighter 
skin tones.36 We investigated what happens when darker and lighter skin 
tones are mixed. We can visualise the distribution of skin tones across our 
data set in Figure 7 and observe a heavy tail in the low intensity range. We 
also investigated the relationship between skin tone and the reconstruction 
error per mesh, and observe that we reach comparable reconstruction 
accuracy for the heavy tail of low intensity skin tones even though they 
are underrepresented in the training data (Figure 8). Figure 9 shows faces 
with lowest and highest reconstruction error results across skin tones. 
The poorest face reconstructions are also indicated in Figure 8 with 
orange circles, while the best face reconstructions are illustrated in the 
same figure with green circles. We find that regions of the face that are not 
related to the FAS facial phenotype are most affected. We also present the 
average reconstruction error over the whole data set in Figure 10.

Figure 7:	 Distribution of skin tones represented in our data set ordered 
based on average greyscale intensities (scale 0–1, under the 
assumption that the illumination in the data set is constant) 
from low to high.

Figure 8:	 Relation between skin tone (measured as average greyscale 
intensity as in Figure 7) and the root mean squared (RMS) 
reconstruction error per mesh. The correlation between skin tone 
and reconstruction quality in this plot is -0.16 compared to the 
Basel Face Model (BFM)27 error which was -0.37. The orange 
circles represent predictions with high errors across the skin 
tone while green circles show predictions with low errors across 
the skin tones. The highlighted examples are shown in Figure 9.

Figure 9:	 Examples of lowest and highest face predictions across skin 
tones. The first column (a) shows the target 2D face images 
(input). The second column (b) illustrates the ground truth 
face scans. The third column (c) represents the textured face 
reconstructions (output). The fourth column (d) indicates the 
predicted face shapes (output) with the root mean squared 
(RMS) value for different skin tones. The fifth column 
(e) presents the face surface colourmap comparisons. 

Figure 10:	 Visualising the average reconstruction error of the whole face 
data set.
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3D surface distance measurements
During FAS facial phenotype assessments, distances between facial 
features on the face surface can be measured using either a physical 
instrument or a computer-assisted tool. These surface measurements 
are used to confirm the diagnosis of facial syndrome. A study by 
Douglas et al.37 extracted facial features and performed measurements 
on the following face distances  related to FAS: palpebral fissure 
length, inner canthal distance, outer canthal distance and interpupillary 
distance. However, these measurements were conducted on 2D stereo-
photogrammetry images projected in 3D space. We extracted landmark 
points from our face reconstructions and can derive such measurements 
directly from our 3D reconstruction without manual interaction. We 
present reconstruction accuracy of those landmark points as well as 
distance reconstruction accuracy (measured in 3D) based on our 3D 
reconstructions compared to the ground truth 3D shapes.

Landmark estimation. Landmarks are essential when taking measurements 
on a face surface. We identified and selected a subset of 14 landmark points 
which are related to FAS facial phenotype assessments. These landmarks 
are described in a study by Mutsvangwa and Douglas38. The results of the 
landmark estimation errors were computed and are illustrated in Table 1. 
The landmark error was computed by measuring position distance from 
reference surface to the reconstructed surface. As shown in Table 1, 11 of 
14 landmark errors were lower than 3.5 mm. The large standard deviations 
are mainly a result of the few outliers observed in Figure 8.

Table 1:	 Facial landmark estimation errors

Landmark ID Landmark name
Mean RMS error 

(mm)
Standard deviation 

(mm)

0 Right outer canthus 2.98 1.78

1 Right inner canthus 2.68 1.52

2 Glabella 3.36 1.87

3 Left inner canthus 2.57 1.51

4 Left outer canthus 3.01 1.74

5 Ring alare 2.74 1.25

6 Pronasale 4.21 2.34

7 Left alare 2.70 1.31

8 Subnasale 3.41 1.81

9 Right crista philtre 3.25 1.79

10 Labiale superius 3.38 1.95

11 Left crista philtre 3.19 1.79

12 Right cheilion 3.52 1.74

13 Left cheilion 3.45 1.73

RMS, root mean square

Facial feature distances. The distance measurements characteristic to 
FAS facial features include the palpebral fissure length, outer canthal 
distance, and inner canthal distance, as illustrated in Figure 11b. 
The landmarks required for the distance measurements are described 
in Table 1 and illustrated in Figure 11a. The corresponding distances on 
the reconstructed 3D face surface and the 3D ground truth face scan 
were compared and the difference calculated. Table 2 shows the results 
of average absolute distance errors and their standard deviations for 
the palpebral fissure length, outer canthal distance, and inner canthal 
distance facial feature distances.

Figure 11:	 Landmarks (a) and inter-landmark distances (b) used in the study.

Table 2:	 A comparison of inter-landmark facial distances that would be 
considered for foetal alcohol syndrome facial analysis. Note 
that these estimations are based on normal adult faces.

Inter-landmark distance Mean RMS error (mm) Standard deviation (mm)

Palpebral fissure length 1.25 0.93

Outer canthal distance 3.56 3.08

Inner canthal distance 2.23 1.97

RMS, root mean square

Discussion
We constructed a 3D face model from 2D face scans and evaluated 
the accuracy of 3D face shape predictions from single images. 
The constructed morphable model of the face was evaluated for 
generalisation, specificity, and compactness parameters. The lowest 
generalisation error was 0.5 mm which suggests that the face shape 
model described the unseen face shapes well when given data outside 
the training set. The generalisation results of the face shape model 
compare well with other results found in the literature.15,16 The specificity 
results of the face shape model are in the range of 13.2 mm to 14.5 mm, 
which is in the common ranges for specificity.15 The compactness 
results of our face shape model indicate that more than 90% of the 
variability in the training set is retained with just 20 principal components 
and this compares well with other results in the literature. For example, 
Booth et al.16 report that the first 40 principal components retained more 
than 90% of variability in their training set. Overall, our morphable model 
construction and evaluation seem successful.

The numerical average reconstruction error between the reconstructed 
face shapes and the corresponding ground truth face shapes in our data 
set was 2.62 mm. These findings are comparable to other results in 
the literature. For example, Zollhofer et al.39 compared reconstructed 
face surfaces obtained from 3D face scans via a Kinect sensor to 
ground truth face scans, reporting an average deviation of about 2 mm. 
Additionally, Feng et al.40 reported a root mean square error of 2.83 mm 
from surface comparisons between the predicted 3D face meshes and 
the corresponding ground truth 3D face scans.

For FAS facial phenotype assessment, we are interested in specific regions 
of the face such as the eyes, the midface, the upper lip, and the philtrum. 
These regions provide cues to clinicians when examining the FAS facial 
phenotype. The whole face surface reconstruction was examined using 
the colourmap surface comparisons shown in Figures 6, 9, and 10. From 
visual observation, the midface, the philtrum, and the regions around 
the eyes show lower levels of surface variation, as represented by the 
surface error colourmaps, whereas the upper lip areas show slight 
surface differences. The lower levels of surface variation around the eyes, 
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the philtrum, and the midface could be attributed to the ease of identifying 
landmarks in those regions. From Figures 9 and 10, we observe that 
regions of the face which are not relevant to FAS facial phenotype 
analysis are most affected. A study by Hammond et al.41 suggested that 
visual inspections of the 3D surfaces using heat maps can delineate and 
discriminate facial features. In Figure 8, we find that the reconstruction 
quality in our data set is not affected by skin tones. On top of the heatmap 
representation, we also evaluated the landmarks and distances previously 
explored for the facial phenotype in FAS, as shown in Tables 1 and 2, 
respectively. We show accuracies in a minimum range of 2.57 mm for 
landmarking errors and 1.25 mm for distance errors. Similar results are 
reported in the literature. Regarding landmark localisation error, a study 
by Sukno et al.42 reported an average error per landmark of below 3.4 
mm. For inter-landmark distances, Douglas et al.37 reported an average 
difference, between the manual and automated approaches, within 1 mm 
for palpebral fissure length, but with greater variations for outer canthal 
distance and inner canthal distance.

The highest face surface reconstruction errors belong to a relatively 
small set of 3D scans. Furthermore, the surface differences could imply 
that, during the model fitting phase of the reconstruction process, our 
statistical model did not completely capture all geometric cues in the 
2D image of the face. We define a geometric cue as the information 
contained in a 2D image of the face, such as shading or contours. 

Limitations and future research
Although we used a data set of scans of normal adult controls, with no 
known FAS indications, we assume that the framework is invariant to the 
data when built and applied to a population of interest. Ideally, training 
and test data sets would be collected from FAS and non-FAS control 
populations, with similar demographics. It is a challenge to access 
3D data of individuals with FAS; however, the acquired face database 
(BU-3DFE) is very diverse. Future work could focus on reducing the 
reconstruction errors to acceptable clinical standards by collecting and 
analysing larger data sets, including more training data, especially from 
underrepresented populations. This would broaden the applicability of the 
morphable models of the face. To improve on the surface reconstruction 
performance, future developments could consider using multi-view 2D 
images of the face to provide more geometric cues during the model 
fitting of the face.

Conclusion
In this study, we aimed to evaluate whether an inverse graphics-
based 3D from 2D reconstruction algorithm is suitable for acquiring 
3D face data for FAS facial shape analysis. The reconstruction task 
was accomplished by fitting a 3DMM to a 2D image to recover a 3D 
face representation. Additionally, 3DMMs were built from a collection 
of 3D face scans with shape and texture information. We provided an 
evaluation performance of face reconstruction for future applications to 
FAS diagnosis. The resulting accuracies are promising for these future 
applications, even across different ethnicities.
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