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Although South Africa is known as one of the most biodiverse countries in the world, based on its 

unique plants and animals, microorganisms have received much less attention. Microorganisms in 

general and actinobacteria in particular are an underexplored source of new medicines. Recent studies 

have demonstrated the presence of diverse cultivable actinobacteria from various biomes. However, 

investigations of the natural product diversity associated with these microorganisms are lacking. We 

hereby present a review of natural products isolated from South African actinobacteria together with 

their biological activities. Many of these natural products are structurally novel and include compounds 

belonging to the following classes: anthraquinones, isoflavonoids, ketolides, macrolides, macrolactams, 

tripeptides and depsipeptides. They show a wide range of biological activities including antibacterial, 

antifungal, cytotoxic and antitumour activities.

Significance:

 • This review highlights the importance of actinobacteria in the discovery of new medicines and 
summarises the state-of-the-art on their research in South Africa.

 • We reveal a gap in the exploitation of this resource and emphasise the opportunities for multidisciplinary 
research.

Introduction
Natural products from plants, invertebrates and microorganisms have played an important role in the development 
of new medicines and agrochemicals.1 Microbial natural products, in particular, offer significant advantages over 
natural products produced by macroorganisms. These advantages include a reduced impact on the environment 
(ecosystems), and hence reduced competition with food crops for arable land, as well as relative ease of production 
and manipulation of biosynthetic pathways to produce novel compounds for commercial exploitation.

As one of the most biodiverse countries in the world2, South Africa has a rich tradition of natural products research.3 
However, the main focus of these endeavours has been on plant natural products, and more recently marine natural 
products4,5, with much less attention on microbial natural products.

One of the most important sources of medicinally important natural products are the actinobacteria. Actinobacteria, 
also known as actinomycetes, are filamentous Gram-positive bacteria with high guanine and cytosine (G+C) content 
in their DNA. The phylum Actinobacteria comprises 20 orders and more than 50 families.6 This bacterial phylum 
is widely distributed in terrestrial and both fresh and marine aquatic environments. Some can thrive under extreme 
conditions such as hyperaridity, high salinity, cold, high pressure, low pH (acidic) and heavy metal contaminated 
ecosystems.7 Actinobacteria are either free living, such as soil-dwelling bacteria, or living in association with 
other organisms, like the plant commensals or those living in and/or on the surfaces of animals like ants, termites 
and marine invertebrates.8-10 Some actinobacteria are also plant and animal pathogens11, while others find use 
in agriculture, biotechnology, and medicine. In agriculture, they are saprophytic and break down dead plant and 
animal remains, hastening decomposition.8 They also aid in nitrogen fixation and are known to produce plant 
growth promoters, insecticides, herbicides and fungicides.9 Natural products produced by actinobacteria are 
structurally diverse and have shown diverse biological activities, including antioxidant, antimalarial, anthelmintic, 
antifungal, enzyme inhibitory, antibacterial, anticancer, immunosuppressive and cardiovascular properties.9,12,13 
Antibiotics are the largest class of drugs discovered from actinomycetes, as they produce about 70% of all naturally 
derived antibiotics currently in clinical use.9 Most of these antibiotics were discovered during the ‘golden era’ of 
antibiotic drug discovery and include the aminoglycosides, β-lactams, glycopeptides, macrolides, rifamycins and 
tetracyclines.12

In this review, we discuss the natural products produced by actinobacterial strains isolated from South African 
environments. The many excellent studies focusing only on the distribution and description of new actinobacteria 
species, as well as those only reporting on the biological activity of crude extracts and the discovery of enzymes 
fall outside the scope of this review.

Natural products from South African actinobacteria
Several novel actinomycete strains have been isolated from South African soils, flora and fauna, in both terrestrial 
and marine environments, and have been shown to contain bio-active secondary metabolites (Table 1). These 
strains include species of the ubiquitous Streptomyces genus and the less isolated rare genera Actinomadura, 
Actinosynnema, Amycolatopsis, Gordonia, Kribbella, Nocardia, Nonomuraea, Rhodococcus, Streptosporangium, 
Saccharopolyspora and Tsukamurella.14-22

Streptomyces

The first report of a South African actinomycete-derived secondary metabolite was a tetraene macrolide natamycin 1  
(Figure 1) (also known as pimaricin, natacyn, tennecetin and E235) which was patented in 1955 for its antifungal 
activity.23,24 This antibiotic was first purified in 1955 from the extract of the culture broth of Streptomyces natalensis, 
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isolated from a soil sample collected from Pietermaritzburg (giving rise to 
its original name, pimaricin) in the KwaZulu-Natal Province, South Africa.24 
Natamycin 1 was later also isolated from Streptomyces gilvosporeus, 
Streptomyces chattanogenesis and Streptomyces lydicus.25-27 It is active 
against a variety of saprophytic and parasitic fungi and is therefore 
used commercially as a preservative.28 It acts by binding to ergosterol 
in the fungal cell wall, thereby inhibiting fungal growth.29,30 Natamycin 1 

therefore has a wide spectrum of antifungal activity and minimal toxicity 
to mammalian cells. It also displays in vitro activity against numerous 
protozoa including Trypanosoma and Acanthamoeba.31,32 Clinically, 
natamycin 1 is used to treat keratitis, and especially that caused by 
Aspergillus fumigatus, Candida albicans and Acanthamoeba sp.28,32 It is 
also used to treat fungal infections caused by Cephalosporium, Fusarium 
and Penicillium, and has shown activity against Alternaria, Colletotrichum, 
Curvularia, Lasiodiplodia, Scedosporium and Trichophyton.28 It is a 
commercial food additive which has been used for about half a century to 
prevent fungal growth on foods such as cheese, sausages, yoghurt, 
fruits, meats, baked confectioneries and beverages.28

A soil microbe antibiotic screening programme led to the isolation of 
actinomycete strain AB 1246E-26 from South African bushveld soil.33 
Although the genus of this actinomycete strain was not determined, 
preliminary characterisation narrowed the taxonomic assignment to 
either Nocardia or the defunct Micropolyspora.33 Strain AB 1246E-26 
showed activity against the antibiotic-sensitive strain of Pseudomonas 
aeruginosa K799/61 among other P. aeruginosa strains.33,34 The organic 
extract of the whole fermentation broth of strain AB 1246E-26 was 

Compounds Name Structural class Bioactivity Producing species Discovery tool reference

1 Natamycin Tetraene macrolide Antifungal
Streptomyces 

natalensis
23-32

2–10 Altromycins
New anthraquinone 

pluramycin type

Antibacterial, antitumour 

and cytotoxicity
Strain AB 1246E-26 Antibiotic screening 33-37

11–51
Platensimycin, platencin, their 

analogues and unrelated compounds
New ketolides Antibacterial

Streptomyces 

platensis strain 

MA7327

Antisense screening 38-48

52–60
Natalamycin A, reblastatin, 

geldanamycin and its derivatives

Ansamycin 

macrolides
Antifungal

Streptomyces strain 

M56
49

61 17-Hydroxycyclooctatin Cytotoxicity
Streptomyces sp. 

M56

Liquid 

chromatography–

mass spectrometry 

(LCMS) based

50

62–75
Termisoflavones A–D and other 

isoflavonoids
Isoflavonoids

Streptomyces sp. 

RB1
Antibiotic screening 51,52

76
1-O-(2-aminobenzoyl)-α-L-

rhamnopyranoside (ABR)
Cytotoxicity

Streptomyces sp. 

RB1
Bioactivity 53

77–80 Dentigerumycin, Dentigerumycin C–D Cyclic depsipeptides Antifungal
Streptomyces sp. 

M41

Bioactivity and LCMS 

based
54

81–83 Krisynomycins
Cyclic nonribosomal 

peptides
Antibacterial

Streptomyces canus 

strain CA-091830

Bioactivity and LCMS 

based
55,56

84–89 Rubterolones A–F Tropolone alkaloids Antifungal
Actinomadura sp. 

5-2

Bioactivity and LCMS 

based
57

90–92 Natalenamides A–C Cyclic tripeptides Cytotoxicity
Actinomadura sp. 

RB99
LCMS based 58

93–107
Polychlorinated and polybrominated 

analogues of daidzein and genistein
Isoflavonoids

Antibacterial and 

antifungal

Actinomadura sp. 

RB99
LCMS based 59

108 Fridamycin A
Type II polyketide 

synthase-derived

Antibiotic and 

antitumour

Actinomadura sp. 

RB99
LCMS based 60

109–112 Macrotermycins A–D

Glycosylated 

polyketide 

macrolactams

Antifungal
Amycolatopsis sp. 

M39

Bioactivity and LCMS 

based
61

113–122

Speibonoxamine, dehydroxylated 

desferrioxamine analogues and 

diketopiperazines

Desferrioxamine
Kribbella speibonae 

strain SK5

Bioactivity and LCMS 

based
62,63

table 1: Secondary metabolites from South African actinomycetes and their biological activities. Structures of compounds 1–122 are shown in the text.

Figure 1: Natamycin 1 from Streptomyces natalensis.
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subjected to a bioactivity guided isolation protocol to yield the novel 
anthraquinone-derived class of antibiotics called altromycins.34,35 The 
altromycins A-I 2–10 (Figure 2) are nine closely related members of 
the pluramycin class of compounds with a single epoxide substituent, 
an amino-disaccharide and/or a 6-deoxy-3-O-methylaltrose attached 
to the conjugated ring systems of an anthraquinone-γ-pyrone core.34-36  
Altromycin B 3 was screened against 30 bacterial strains including 
Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus 
luteus, Enterococcus hirae, Streptococcus bovis, Streptococcus 
agalactiae, Streptococcus pyogenes, Escherichia coli, Enterobacter 
aerogenes, Klebsiella pneumoniae, Providencia stuartii, Pseudomonas 
aeruginosa, Pseudomonas cepacia and Acinetobacter sp. clinical 
isolates.33 Altromycin B 3 exhibited potent antibacterial activity against 
the clinical isolates of Staphylococcus and Streptococcus with a 
minimum inhibitory concentration (MIC) range of 0.39–3.12 µg/mL 
and 0.2–3.12 µg/mL, respectively, but displayed moderate to weak 
antibacterial activity against Gram-negative bacteria with an MIC range 
of 25 to >100 µg/mL.33 The altromycins also showed cytotoxic activity 
against various cancer and tumour cell lines including cervical cancer 
(HeLa), human lung cancer (A549), colon tumour (HCT-8), murine 
leukemia cell (P388) lines and ovarian sarcoma (M5076).37

In their search for antibiotics that inhibit fatty acid biosynthesis in bacteria, 
researchers at Merck discovered the novel broad-spectrum antibiotic 
platensimycin 11 (Figure 3) from Streptomyces platensis strain MA7327, 
which was originally isolated from a soil sample collected in the Eastern 
Cape Province of South Africa.38 An organic extract of the fermentation 
broth of S. platensis strain MA7327 was subjected to a unique antisense 
differential sensitivity whole-cell two-plate agar diffusion bioassay-guided 
fractionation process to yield platensimycin 11.38 Platensimycin 11  
consists of a 3-amino-2,4-dihydroxybenzoic acid tethered via an 
amide bond to a C-17 tetracyclic enone which includes a bridge-head 
oxygen.38,39 Another closely related compound, platencin 12 (Figure 3), 
was produced by Streptomyces platensis strain MA7339 using the same 
bioassay-guided fractionation procedure, although its biosynthetic gene 
cluster was also identified in strain MA7327.40 Several other analogues 
13–49 (Figure 3) – with modifications on or loss of the aromatic ring, 
modifications on the terpenoid and anilide moieties and a change in the 
length of the enone acid portion of platensimycin and platencin – have 
also been isolated from strain MA7327.41-48 Compounds 50 and 51 
(Figure 3), which are structurally different from the platensimycin group 
of compounds, were also isolated from strain MA7327.41,42 Furthermore, 
other glycosylated analogues of platensimycin 11 and platencin 12 have 

Figure 2: Altromycins A-I 2–10 from South African actinomycete strain AB 1246E-26.
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been produced by an engineered mutant strain S. platensis SB12600.40 
Platensimycin 11 selectively inhibits the elongation-condensing enzyme 
FabF of the bacterial fatty acid synthesis pathway, while platencin 12 
equally inhibits both the initiation condensing (FabH) and elongation 

(FabF) enzymes.39 Platensimycin, platencin and their analogues 
have shown potent in vitro activity against both cell-free and whole-
cell systems including methicillin-resistant Staphylococcus aureus, 
vancomycin-resistant Enterococcus and Mycobacterium tuberculosis.39 

Figure 3: Secondary metabolites 11–51 from South African actinomycetes Streptomyces platensis.
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Although the isolated analogues and synthesised ones did not exhibit 
improved activity compared with compounds 11 and 12, they provide 
important structure–activity relationship information to determine the 
pharmacophore of 11 and 12.

In their quest to isolate biologically active metabolites from termite-
associated actinobacteria, Kim et al. discovered that Streptomyces strain 
M56, isolated from the fungal comb of a South African Macrotermes 
natalensis Mn802 colony, exhibited potent broad-spectrum antifungal 
activity.49 Bioassay-guided isolation resulted in the purification of the novel 
fused bicyclic ansa macrolide natalamycin A 52 (Figure 4) alongside 
other ansa macrolides including reblastatin 53, geldanamycin 54 and its 
derivates, 17-O-demethyl-geldanamycin 55, 19-S-methylgeldanamycin 
56, 17-amino-17-demethoxy-geldanamycin 57, methyl geldanamycinate 
derivative 58, 17-amino-17-demethoxy-methyl geldanamycinate 59 and 
19-[(1′S,4′R)-4′-hydroxy-1′-methoxy-2′-oxopentyl]geldanamycin 60.49 
Although the fractions that yielded the isolated compounds showed 
strong antifungal activity against some strains, the natalamycins exhibited 
weak or no activity against Saccharomyces cerevisiae and other fungal 
isolates.49 An untargeted dereplication of the liquid chromatography–
mass spectrometry (LCMS) data of the methanol extract of Streptomyces 
strain M56 signified the presence of new metabolites.50 The methanol 
extract of a large-scale culture of strain M56 was subjected to several 
chromatographic methods to yield the fused 5-8-5 tricyclic diterpene 
17-hydroxycyclooctatin 61 (Figure 4).50 Compound 61 is a potential ERα 
antagonist and exhibited weak cytotoxicity activity against MCF-7 human 
breast cancer cell lines with an IC

50
 value of 566.95 ± 0.48 μM.50

Further studies on the metabolites of the actinobacteria associated 
with the fungus-growing South African termite M. natalensis led to the 
isolation of Streptomyces strain RB1 which exhibited antibacterial activity 
against Staphylococcus aureus and Candida albicans.51 Fractionation of 
the methanol (MeOH) extract of strain RB1 yielded the new isoflavonoid 
glycosides, termisoflavone A-C 62–64. and other isoflavonoids 66–70, 
72–74 (Figure 5).51 The isolated compounds showed no antifungal or 

antibacterial activity when screened against C. albicans, C. neoformans, 
S. aureus, and E. coli, but compounds 69 and 73 ameliorated cisplatin-
induced kidney cell damage.51 Further investigation of the MeOH extract 
of strain RB1 using LCMS- and NMR-based dereplication strategies led 
to the identification and subsequent isolation of another new isoflavonoid 
glycoside, termisoflavone D 65, together with the known isoflavonoids 
66, 67, 69, 71–73 and 75 (Figure 5).52 Isoflavonoid 69 displayed activity 
against glutamate-induced HT22 cells by preventing accumulation 
of intracellular reactive oxygen species.52 Another study exploring the 
termite associated actinobacteria for reno- and kidney-protective drug 
discovery found that the MeOH extract of Streptomyces sp. RB1 exhibited 
a protective effect against cisplatin-induced cytotoxicity.53 A bioassay 
(LLC-PK1 cells)-guided isolation process yielded the renoprotective 
1-O-(2-aminobenzoyl)-α-L-rhamnopyranoside (ABR) 76 (Figure 5).53

Analysing the chemical and metabolomic profiles of actinobacteria 
derived from termite nests with an unbiased high-throughput high-
performance liquid chromatography−high-resolution mass spectrometry 
based dereplication strategy revealed that Streptomyces sp. M41 
isolated from the South African termite M. natalensis produces new 
complex nonribosomal peptide polyketide synthase (NRPS/PKS) hybrid 
compounds.54 Chromatographic purification of a large-scale culture of 
strain M41 interestingly yielded new analogues (two linear 77, 78 and one 
cyclic 79) of the cyclic depsipeptide dentigerumycin 80 (Figure 6).54

The South African soil actinomycete, Streptomyces canus strain 
CA-091830, is a producer of the cyclic depsipeptides krisynomycins 
A–C 81–83 (Figure 7).55,56 Krisynomycin A was initially isolated based 
on a screening project with the aim of identifying and isolating imipenem 
potentiators against methicillin-resistant Staphylococcus aureus (MRSA).55  
Further investigation led to the isolation of Krisynomycin B and C, which 
are chlorinated analogues of Krisynomycin A.56 Although compounds 
81–83 showed weak activity against MRSA, the activity was improved 
when they were tested in combination with sub-lethal concentrations of 
imipenem.56

Figure 4: Secondary metabolites 52–61 from South African actinomycetes Streptomyces strain M56.
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Rare actinomycete strains

The rare actinomycete Actinomadura sp. 5-2, which was recovered 
from the gut of the fungus-growing termite M. natalensis, produced 
novel, highly substituted tropolone alkaloids, rubterolones A–F 84–89 
(Figure 8).57 These compounds were detected by both bioactivity and 
high-resolution mass spectrometry based dereplication techniques, and 
subsequently isolated from the organic extract of a culture of strain 5-2.57 
Curiously, compounds 84–89 did not show any significant antifungal 
activity.57

The crude extract of another Actinomadura isolate, strain RB99, isolated 
from the surface of the termite M. natalensis, was analysed by liquid 
chromatography (LC)/ultraviolet (UV)/mass spectrometry (MS) and 
shown to produce new compounds.58 A spectrometry guided isolation 

led to the discovery of three new cyclic tripeptides named natalenamides 
A–C 90–92 (Figure 9).58 The isolated compounds exhibited weak 
cytotoxicity when screened against HepG2 and HeLa/A549 cells.58 
Compound 92 showed significant activity against IBMX-mediated 
melanin synthesis in a dose-dependent manner.58

Analyses of the high-resolution tandem mass spectrometry (HR-MS2)  
data of the MeOH extract of strain RB99 and fur ther exploration 
of the HR-MS2 data on the Global Natural Product Social (GNPS) 
molecular networking platform showed that strain RB99 produces 
polyhalogenated isoflavonoids.59 Seoung et al. proved that 
Actinomadura sp. RB99 can bio-transform the plant-based daidzein 
74 and genistein 75 isoflavonoids contained in the ISP2 growth 
medium to polyhalogenated derivatives.59 Optimisation of the growth 

Figure 5: Secondary metabolites 62–76 from South African actinomycetes Streptomyces strain RB1.

Figure 6: Dentigerumycins A–D 77–80 from South African actinomycetes Streptomyces sp. M41.
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medium (ISP2 augmented with NaCl or KBr) led to the production 
and subsequent MS-guided purification of eight polychlorinated 
analogues 93–100 (Figure 9), of which six were new, and seven 
novel polybrominated analogues 101–107 (Figure 9), of daidzein 
and genistein.59 The isolated chlorinated analogues did not exhibit 
any antibacterial or antifungal activities against E. coli, S. aureus,  
S. epidermidis and C. albicans, but the brominated analogues 101 and 
105 were active against Helicobacter pylori.59 Additional analysis of 
the LCMS data of the MeOH extract of strain RB99 led to the detection 
and isolation of the antibiotic and antitumour agent fridamycin A 108 
(Figure 9), which is a type II polyketide.60 Fridamycin A 108 showed 
good antidiabetic properties in 3T3-L1 adipocytes and could serve as 
a promising lead for type 2 diabetes drug discovery.60

Metabolomic and bioactivity profiling of termite-associated actinomycetes  
led to the detection and subsequent isolation of four new 20-membered 
glycosylated polyketide macrolactams, named macrotermycins A–D 
109–112 (Figure 10), from the organic extract of the rare actinomycete 
Amycolatopsis sp. M39.61 Strain M39 was also isolated from the termite 

M. natalensis and its organic crude extract exhibited a unique metabolomic 
profile and was active against the termite fungal garden competitor 
Pseudoxylaria spp.61 Only compounds 109 and 111 were active against 
Pseudoxylaria sp.61

A rare actinomycete, Kribbella speibonae strain SK5, isolated from a 
soil sample collected from Stellenbosch in the Western Cape Province 
of South Africa, displayed strong antimycobacterial activity against 
Mycobacterium aurum strain A+.62 Chemical and metabolomic 
profiling of an organic extract of a liquid culture of this strain showed 
that it is a prolific producer of hydroxamate siderophores, including 
new dehydroxylated desferrioxamine analogues and diketopiperazines 
(DKP).63 Two new dehydroxylated desferrioxamines, speibonoxamine 
113 and desoxy-desferrioxamine D1 114 (Figure 11), alongside already 
reported desferrioxamines 115–118 and a DKP 119 (Figure 11), were 
subsequently isolated from an organic extract of a liquid culture of strain 
SK5.63 The plausible structures of three new dehydroxylated analogues 
120–122 were determined by the GNPS molecular network and MS/MS 
fragmentation analyses.63

Figure 7: Krisynomycins 81–83 from South African actinomycetes Streptomyces canus strain CA-091830.

Figure 8: Rubterolones A–F (84–89) from South African actinomycetes Actinomadura sp. 5-2.
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Conclusions and future prospects
Biodiversity is “more than just legs and leaves”64 and South Africa’s 

microbial biodiversity presents a tremendous opportunity for the 

natural products chemist and those interested in drug discovery. 

In this review, we have described 122 compounds and shown that 

South African actinobacteria are prolific producers of novel, bioactive 

metabolites. Interestingly, the first compound described from a 

South African actinomycete, natamycin, is also the only one that has 

made it to the clinic. Other compounds, such as platensimycin and 

geldanamycin, have shown promise but either lack efficacy in humans 

or showed toxic side effects which prevented their development as 

drugs. South African researchers interested in natural products based 

drug discovery face the same challenges as elsewhere in the world. 

These challenges include the significant cost of drug development, 
re-isolation of previously reported compounds, and lack of interest 
in natural products for drug development. Nevertheless, the 
compounds reviewed here present only the tip of the iceberg and 
many more species remain to be discovered and studied for natural 
product production. Furthermore, with innovations and technological 
advancement in purification, structure elucidation, chemical biology, 
genome sequencing and mining, dereplication, and bioinformatic, 
cheminformatic and metabolomic tools like the GNPS molecular 
networking, microbial natural product drug discovery in South Africa 
shows great potential. It is worth mentioning that, apart from our 
research on the chemistry of the metabolites of the South African 
rare actinomycete Kribbella speibonae strain SK5, all the research 
on South African actinomycetes reported here was done by research 

Figure 9: Secondary metabolites from South African actinomycetes 90–108.
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groups based outside of South Africa. This represents a challenge 
and an opportunity for closer collaboration between South African 
researchers (microbiologists, pharmacologists and chemists) in order 
to fully explore the opportunities presented by South African microbial 
biodiversity.

Acknowledgements
We gratefully acknowledge financial support from the National Research 
Foundation of South Africa (grant no. 138000).

Competing interests
We have no competing interests to declare.

Authors’ contributions
K.S.A: Conceptualisation; data collection; writing – the initial draft. 
D.W.G: Conceptualisation; student supervision; writing – revisions. 
D.R.B: Conceptualisation; data collection; student supervision; writing –  
revisions.

Figure 10: Macrotermycins A–D 109–112 from South African actinomycetes Amycolatopsis sp. M39.
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