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VITAMIN D - NEW ACTION

MECHANISMS AND EFFECTS

Marianne Haag

The classic arena of vitamin D (cholecalciferol) action is the

maintenance of calcium homeostasis. Intestinal, bone and

kidney tissue interact in a tightly regulated manner to

achieve this end. Since the identification of 1,25(OHhD3 (1,25­
dihydroxyvitamin D3) as the active metabolite of vitamin D,

its endocrine properties have been well documented.

Calcitriol, as this metabolite is also called, acts on gene
expression via a receptor in the cell nucleus. During the last

decade, however, additional actions of 1,25(OH)2D3 on the

cell membrane that trigger rapid signal transduction

mechanisms have been reported. Recently many other tissues
have also joined the classic target organs of calcitriol, for

example the pancreas, the immune system, the skin and the
parathyroid gland, as well as an array of tumour"tissues. In

these instances calcitriol has intriguing non-calcaemic actions
on cell differentiation and function, which opens exciting

new therapeutic possibilities for the use of syntheti~
analogues of vitamin D.

This review gives a brief presentation of the classic
hypercalcaemic and more recent non-calcaemic effects of

calcitriol. It also surrunarises its classic slow genomic and

new rapid non-genomic action mechanisms and gives a brief

overview of possible clinical applications.
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It has been known for nearly a century that the cure of rickets,
a disease of bone mineralisation, depends on a dietary factor

that can be partly replaced by exposure to ultraviolet rays. This

was reported for the first time by Mellanby in 192I.I This factor

was isolated from fish liver oil in 1936' and called vitamin D. It

could be formed in vivo by cutaneous irradiation of the steroid

7-dehydrocholesterol which is synthesised in the liver. The

vitamin as such was not active in in vitro biological systems.

Four decades went by before it could be shown that it had to

be hydroxylated by the liver and kidney on positions 25 and 1,

respectively, to form the active compound.'·" The latter step was
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Fig. 1. Vitamin 0 biosynthesis and its feedback control mechanisms.
PTH = parathyroid hormone.

stimulated by parathyroid hormone (PTH). Fig. 1 shows these

interrelationships as well as the feedback systems regulating

calcitriol biosynthesis'

The next step in the elucidation of the action mechanism of
calcitriol was the identification of a vitamin D receptor (VDR)

in the cell nucleus' that could mediate messenger RNA and

protein synthesis. Receptors previously found in the cytosol

were shown to be artefacts in the preparation procedure. The
era of the vitamin D endocrine system was born.

However, many questions have e~erged.How is bone

mineralisation as well as resorption influenced by calcitriol?'

Does 24,25 dihydroxycholecalciferol (24,25(OHhD3)' also an
important metabolite of vitamin D, have similar effects? Does

calcitriol have effects on other tissues? Does it have other

therapeutic uses? Do calcitriol receptors exist in the nucleus

only? Can calcitriol have any more rapid, e.g. non-genomic,

effects?

Many new facets of vitamin D function and clinical

application have emerged during the last few years. This
review gives a brief presentation of these reports.

ACTION MECHANISM

Classic genomic action

Calcitriol is released from its serum binding protein, diffuses

through the cell membrane, and binds to a classic zinc finger­

containing receptor (VDR) in the cell nucleus.'" Interestingly,

there is an interactive transcriptional control mecharIism

between the nuclear co-receptors of vitamins A and D' as well

as the thyroxin rec-eptor:9 these receptors form heterodimers in
different combinations ·which can bind to the genome." Vitamin

A and D receptor interplay is of special importance in the

traIlscription of the osteocalcin gene, as illustrated in Fig. 2' An
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Fig. 2. Transcriptional control of the rat osteocalcin gene by vitamins
A and D.lO VDR = vitamin D receptor, RXR = rehnolc aCId receptor,
VDRE = vitamin D responsive element, A, B, D, E, F, and TATA =
transcription regions.
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unoccupied retinoic acid receptor (RXR) is required to bind to

its occupied VDR counterpart - this complex can then bind to
the calcitriol-responsive element (VDRE) in nuclear DNA with

the help of an adaptor protein.

The occupied VDR is subsequently phosphorylated on serine
residues. ll The resulting patches of negative charge interact

with positive domains in transcription factors. Accordingly
RNA polymerase is activated and enhanced gene expression

follows: osteocalcin, osteopontin, collagen, carbonic anhydrase

and alkaline phosphatase are some of the bone proteins of
which the synthesis is promoted. ll

.
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Rapid, non-genomic action

During the early 1990s it became clear that a number of well­

known signal transduction mechanisms are activated within
seconds of the addition of 1,25(OHhD3 to the cell membrane:

unidirectional calcium fluxes, H15 increased phospholipase A2

activity!' coupled with arachidonic acid turnover,'7,!. increased

phosphoinositide hydrolysis15·!9.20 coupled with protein kinase C

activation and translocation,,,,22 as well as the cyclic adenosine

monophosphate (cAMP) pathway.23~'In 1997 the rnitogen­

activated protein (MAP) kinase cascade was added to this
list.25,26

In September 1998 the first international conference

dedicated to rapid responses of steroid hormones was held in

Mannheim, Germany. It reported on additional mechanisms,

namely the involvement of the tyrosine kinase cascade in

activation of the Gaq protein as well as some protein kinase C

isoforms.27
'
29 All the above mechanisms are swnmarised in

Fig. 3.

A specific, rapid role for 24,25(OHz)D:y opposed to that of the

. 1,25 metabolite, has also been shown by Boyan and co-
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Fig. 3. Rapid signalling mechanisms ofvitamin D. VDR = vitamin
D receptor, IP3 and IP4 = mosltoltrls- and tetraklsphosphates, PIP, =

phosphatidylinositol bisphosphate, PLC = p,hospholzpase C, G = G
protein, TK = tyrosine kinase, MAPK = mltog.en-achvated protem
kinase, MAPKK= mitogen-achvated protem kinase kmase, PKA =
protein kinase A, PKC = protein kinase C, AC = adenylate cyclase,
DAC = diacyl glycerol, PGEz = prostaglan~m E?, FA = fatty aczd,
PLAz = pho$pholipase A z, ER = endoplasmIC rehculum.

workers.H30.3! The 1,25 metabolite affected primarily growth

zone and the 24,25 moiety mainly resting zone cells in

costochondral chondrocyte cultures. Phospholipase Az and

protein kinase C activities, arachidonic acid as well as

prostaglandin Ez (PGEz) levels are decreased by the 24,25 and

increased by the 1,25 compound.

All the above mechanisms result in modulation of protein

phosphorylation. Some docuinented examples include the

following: the protein kinase C (PKC) pathway phosphorylates

membrane proteins of 42 and 48 kDa in rat colonocytes,"

whereas protein kinase A33 phosphorylates heart membrane

proteins of 45 md 70 kDa. The nuclear VDR in rat osteoblasts

is also phosphorylated after treatment with calcitriol." Whether

a calcitriol receptor situated in .the cell membrane really exists

has been a subject of contention for a long time." A first

definite report on identification of a membrane receptor that

mediates rapid activation of PKC was published by emere et

al.36 in 1998,

The configuration of the calcitriol molecuJe is of paramount

importance in its action on the genomic as well as the non­
genomic receptor;37 the natural secosteroid rotates easily

around its 6,7 carbon bond. Calcitriol analogues locked in the

6-s-cis formation are potent agonists for rapid membrane

responses, whereas the 6-trans analogues tested performed

poorly in both membrane and nuclear assays."
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To see the rapid, non-genomic effects of calcitriol in

perspective it must be mentioned that they are not specific to

calcitriol - estradiol3941 and aldosterone-U can generate similar
rapid effects.

EFFECTS

Both the genomic and non-genomic calcitriol action

mechanisms described above are involved in a myriad of both
calcaemic and non-calcaemic effects.

Hypercalcaemic effects

These effects are achieved by 1,25(OHhD3 action on the
intestine, bone and kidney.

Intestinal calcium uptake

Vitamin D administration increases the three basic steps of this

process:" Calcium (Ca) inflow through Ca channels in the

apical membrane, Ca transport through the enterocyte (bound
to calbindin), and extrusion against a considerable

concentration gradient through the basolateral membrane by a

Ca-adenosine triphosphatase (ATPase) pump as well as a

sodium (Na)/Ca exchanger." Genomic mechanisms promote

the synthesis of both calbindin and the Ca-ATPase within 4 - 8
hours.

Additionally, a very rapid (within minutes) stimulation of

intestinal Ca transport was reported by the groups of
Lieberherr et al.,l9 de Boland and Nemere"5 and Zhou et al.," and

called transcaltachia. The non-genomic mechanisms discussed

above are involved in this mechanism: calcitriol stimulates

phosphorylation events via both the protein kinase A (PKA)

and PKC pathways. This could control the opening of
basolateral Ca channels as well as the activity of the Ca pump

mechanism. However, the physiological importance of these
rapid mechanisms remains to be seen.

Calcium reabsorption by the kidney

Similar to the process in the gut, calcium and phosphate

reabsorption are also promoted by calcitriol-induced calbindin
synthesis. Both the 28 and 10 kDa forms are active in the distal
kidney tubule...·.,

Calcium liberation from bone

Blood Ca levels can be increased when bone salts are dissolved

by hydrogen ions secreted by osteodasts into the lacunae

formed by their ruffled borders. Hydrogen ions are produced

by carbonic acid anhydrase, an enzyme that is induced by
calcitriol, directly or indirectly, in osteoclast precursors.!2

However, the VDR has only been found in osteoblasts, which

have an indirect influence on osteoclast differentiation: certain

cytokines, especially interleukin-1, are secreted by calcitriol­

stimulated osteoblasts. These cytokines, in turn, promote

differentiation of monocyte precursors into osteoclasts"""

capable of carbonic anhydrase secretion. It has also been
shown!2 that calcitriol can induce carbonic anhydrase in bone

marrow macrophages directly.

Non-calcaemic effects

Bone

Given the complexity of bone cells (osteoblasts, osteoclasts,

osteocytes), of bone metabolism, and of bone remodelling
(mineral accretion versus bone resorption), it has been a major

challenge to identify the cellular sites and molecular

contributions of each of the different calcitriol metabolites in

the overall process of bone biology.5O

It is clear that osteoblasts have a VDR and that their
dilierentiation is promoted by calcitrio1.5! Osteoblasts

synthesise a variety of bone proteins: the production of

collagen and alkaline phosphatase is, however, dependent on

the stage of osteoblast differentiation."'''' In undifferentiated
cells calcitriol can promote their synthesis, driving the cells to

higher bone-forming capabilities, whereas it depresses these

functions in the mature cell; at these concentrations calcitriol

can stimulate bone resorption by osteoclasts." The latter,
however, is not a direct effect on osteoclasts since they do not

possess a VDR. Mature osteoblasts secrete cytokines55 that

promote the differentiation of monocytic osteoclast precursors,

which in their mature state are capable of bone resorption.

The role of 24,25(OHhD3 in bone biology has been studied
intensively, but still remains elusive.5O It has been known for 20

years that administration of 1,25(OHhD3 does not have the
same beneficial effect as its parent compound, vitamin D, on

calcification processes,56 indicating that another metabolite, for

example 24,25(OHhDy is also involved. Some important

findings include the following: rats with high levels of

24,25(OHhD3 have a reduced rate of bone turnover;"

24,25(OHhD3 inhibits the bone resorptive function of calcitriol

or PTH-stimulated osteoclasts;'" it promotes the healing of

chick tibia fractures;'" and its receptor is found in epiphyseal

cartilage'" where PH]24,25(OHhD3 is also found to
accumulate.'!

Some rapid, non-genomic effects of 24,25(OHhD3 in
chondrocytes that are mediated" by PKC have been mentioned

above.14.30.31 It is known that effects mediated by protein PKC are

often linked to cell differentiation. This metabolite has

additional effects: it has rapid biphasic effects on L-type

calcium channels in UMR 106 cells" (mediated by PKC and

PKA), and acts synergistically with transforming growth factor III
(TGF)-beta in resting zone chondrocytes" to activate PKC.

Finally, chondrocyte metalloproteins can degrade extracellular

matrix proteins, a process necessary in the remodelling of the

matrix during endochondral development. 24,25(OHhD3

results in PKC-mediated phosphorylation and thus inhibition

of stromelysin-1, an important metalloproteinase.'"



Other tissues

During the last decade the pluripotent actions of calcitriol on a

wide variety of unexpected tissues that all contain VDRs has

been reported.'"' A brief summary follows:

Pancreas. Vitamin D deficiency is associated with the

diabetic state. Optimal vitamin D levels are therefore needed

for an adequate insulin secretion response to glucose or

arginine."""

Skin. Vitamin D is a powerful modulator of keratinocyte

proliferation and differentiation67 It also blocks cytokine

production by infiltrating lymphocytes," which is an important

factor in the inflammatory aspect of psoriasis.

Immune system. The production of a variety of cytokines,

for example interleukins 1 and 2 and gamma interferon by

lymphocytes and monocytes," is modulated by calcitrio!.

Parathyroid gland. Calcitriol decreases PTH secretion by

inhibiting its synthesis at the level of gene transcription.70 A

VDRE has been identified in the PTH gene.71

Cancer. Vitamin D inhibits proliferation and promotes

differentiation of various cancer cell lines and can diminish
tumour size in certain cases,'~72-74

POTENTIAL CLINICAL APPLICATIONS

Many analogues of vitamin D have been synthesised'" in the

hope of producing non-calcaemic, non-toxic and specific

therapeutic agents. Their use has been complicated by the

finding of polymorphism in the vitamin D receptor gene in

different population groupS.To.76 This gives rise to different

forms of the VDR that have differing affinities and activities

and therefore variations in their biological outcome. This

phenomenon influences most clinical applications of calcitriol

(CT) and its analogues, and is discussed in the following

section.

In the field of bone pathology certain new analogues of CT,

notably 20-epimers,'" can be used to promote calcaemic

responses, for example, increased duodenal calcium absorption

and osteoclast activity. Other analogues promote osteoblast

differentiation and can therefore be used in an anti­

.osteoporosis strategy.'" Calcitriol treatment is also of use in

renal osteodystrophy'" and X-linked hypophosphataemic

rickets.77 As mentioned above, VDR gene polymorphism

predisposes to low duodenal Ca absorption in postmenopausal

women'8 and low bone density in children.'" However,

conflicting results were reported by the study of Hansen et al.'"
on: Danish perimenopausal women. Furthermore, suppression

of PTH secretion by CT is an option in clinical management of

different types of hyperparathyroidism.'" The influence of

polymorphic VDR gene alleles in treatment of both primary8l

and secondary" hyperparathyroidism has also been reported.

The pro-differentiation effects of the CT analogue calcipotriol
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can be put to excellent use in the treatment of psoriasis83 and

possibly radiation-induced alopecia.'" As in the above

instances, allelic variations in the VDR gene can predispose to

psoriasis.83 Treatment of cancers with CT analogues is still in an

experimental stage.'" VDR polymorphism can play a role in

predisposition to cancer of the breast," but its effect in prostate

cancer is questioned.87

The use of 22-oxa-calcitriol, a non-calcaemic analogue of ~T,

has been described in treatment of immune disorders.BB A

plethora of infective diseases can be treated with CT." In

addition, a hyperfunctioning immune system (as in the chr~)Ipc

inflammatory state of psoriasis, as well as in arthritis89) as wetl

as some auto-immune diseases90 have responded well to CT

treatment. Recent studies have reported a role for VDR gene

allelism in the occurrence of chronic hepatitis B and

tuberculosis9
! as well as rheumatoid arthritis" in certain

population groups.

Lastly; vitamin D has a potential role to play in the treatment

of diabetes mellitus and hypertension." All the clinical

possibilities described above lead us into a new era of

understanding and appreciation of its potential use.

The author wishes to thank Professor M C Kruger, Dr M-L
Lottering and Professor 5 Hough for constructive discussions
during the preparation of this manuscript.
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