significant number of patients were not managed according to the protocol; the importance of adequate analgesia and fluid management needs to be re-emphasised.

A recent local study has highlighted the limited time many mothers have for child care and how this is often left to older siblings or grandparents. Children are thus both victims and carers. School health education represents an opportunity to emphasise both burn prevention strategies and first aid. We have started a 'Child-to-Child' programme which recognises the role that many children play in child care. In this programme the children are themselves asked to identify the important causes of burns and to design posters and health promotion messages that may reduce the incidence.

The series reported here is hospital-based and therefore underestimates the true burden of disease in the community. Forjuoh et al. have described a rapid epidemiological method for determining the prevalence and incidence of burns in the community by using burn scars as a proxy measure. Such a community survey would be useful to clarify this issue.

If health education and prevention interventions are to be a success there is a need for further research to assess present knowledge and practice and to determine the extent to which the latter needs to be modified. Interventions should target not just mothers but schoolchildren and grandparents. Our study has highlighted burns as an important cause of paediatric morbidity and a major source of hospital expenditure. This has led us to examine our management critically and to initiate interventions aimed at reducing the incidence and severity of paediatric burns.

REFERENCES

Accepted 14 Nov 1996.

Hepatitis C virus infection rate in volunteer blood donors from the Western Cape — comparison of screening tests and PCR

T J Tucker, M Voigt, A Bird, S Robson, B Gibbs, J Kannemeyer, M Galloway, R E Kirsch, H Smuts

Introduction. Hepatitis C virus (HCV) antibody sero prevalence studies overestimate the true infection rate. No data exist on the incidence of HCV or its clinical features in blood donors of sub-Saharan Africa.

Aims. To establish the true incidence of HCV infection in volunteer blood donors in the Western Cape, and compare risk factors and clinical and biochemical features of viraemic and non-viraemic subjects.

Methods. All donors attending the Western Province Blood Transfusion Service between December 1992 and August 1994 were screened prospectively for anti-HCV using the Abbott second-generation assay. Positive donors were evaluated clinically and biochemically. Their sera were examined for HCV-RNA by the polymerase chain reaction (PCR).

Results. Of 66 314 donors screened, 275 (0.41%) were anti-HCV-positive. Of these 13.6% were PCR-positive (0.056% of all donors). PCR-positive patients had more risk factors for HCV acquisition (P < 0.01), symptoms of hepatitis (P = 0.02) and clinical signs of liver disease (P = 0.05) and higher alanine (P < 0.0001) and aspartate aminotransferase levels (P < 0.0001) than PCR-negative donors. However, clinical and biochemical features did not discriminate adequately between PCR-positive and negative donors. Liver biopsies performed in 9 of 13 PCR-positive cases showed mild inflammation, but no cirrhosis.

MRC/UCT Liver Research Centre, Departments of Medicine and Virology, University of Cape Town

T J Tucker, MB ChB
M Voigt, MB ChB, FCP (SA), MMed (Med)
S Robson, MB ChB, PhD, FCP (SA)
J Kannemeyer, Dp Med Tech
R E Kirsch, MB ChB, MD, DCP
H Smuts, PhD
Western Province Blood Transfusion Service, Pinelands, W Cape
A Bird, MB ChB, FCP (SA)
B Gibbs, FMLS
M Galloway, Dp Med Tech
Subjects and methods

All donors attending WPBTS between December 1992 and August 1994 were tested for the presence of HCV antibodies using the Abbott second-generation ELISA (ELISA-2) (Abbott Laboratories, North Chicago, USA). Anti-HCV-positive donors were referred to the liver clinic, Groote Schuur Hospital for full clinical and biochemical assessment and, where clinically indicated, a liver biopsy. Clinical evaluation included a detailed history of possible risk factors for HCV transmission, such as intravenous drug abuse, past blood transfusions and tattoos, and a history of prior symptoms of hepatitis. The Ortho anti-HCV ELISA (Ortho Diagnostic Systems Inc., Raritan, NJ, USA) was used at Groote Schuur Hospital as a supplementary assay in the referred donors. Anti-HCV-positive donors who failed to present to the clinic also had supplementary serological tests and PCR performed on their stored sera (stored at −70°C), where sufficient serum was available. In addition, the Abbott ELISA was compared to the Ortho second- (until 04/94) or third-generation ELISA on all initially reactive serum samples.

HCV amplification

RNA was extracted from 200 μl serum using Total RNA Isolation Reagent (Advanced Biotechnologies Ltd, London, UK) and rRNA on ice; chloroform/iso-amyl alcohol was added in a ratio of 25:1 and the mixture vigorously blended and left on ice for 5 minutes; thereafter the homogenate was centrifuged at 12 000 rpm for 15 minutes. The supernatant containing the RNA was removed and precipitated in isopropanol overnight at −20°C, pelleted, washed twice with 75% ethanol, air-dried and resuspended in 20 μl diethyl pyrocarbonate (DepC)-treated ultra-pure water with 20 U RNasin (Promega Corp., Madison, WI, USA) per sample. A single tube RT-PCR was used to form and amplify HCV cDNA as described previously. Both outer and nested primers used were those described by Chan et al., which gave a PCR product of 251 bp; this was visualised on a 2% agarose gel with ethidium bromide staining. The product was transferred to a nylon membrane and probed with a digoxigenin-labelled HCV probe (Boehringer Mannheim, GmbH Biochemica, Mannheim, Germany).

Statistics

Results are presented as the mean and standard deviation (SD), unless otherwise specified. The groups were compared using the unpaired t-test for continuous data and the chi-square test for categorical data; a P-value < 0.05 was considered significant.

Results

Serology and PCR

Of the 66 314 donors screened with Abbott ELISA-2, 275 (0.41%) were antibody-positive. Of these, 100 (36%) presented to the liver clinic at Groote Schuur Hospital where they underwent full clinical evaluation. Stored serum from an additional 84 anti-HCV-positive subjects who did not present for examination was analysed by PCR. Insufficient serum from the remaining 91 subjects was available for testing. Twenty-five of the 184 (13.6%) serum samples subjected to PCR analysis were found to be positive. The incidence of viraemia in the group as a whole was therefore 0.056%.

All PCR-positive donors were anti-HCV positive by both the Ortho and Abbott ELISA. One hundred and fifty-nine donors were found to be Abbott ELISA-positive but PCR-negative. Of these, 50 were positive, 107 negative and 2 indeterminate when the Ortho ELISA was used. It was not possible to comment on the comparative value of the Ortho ELISA, since it was only used in Abbott ELISA-2-positive donors.
Clinical analysis

One hundred donors were assessed at Groote Schuur Hospital, of whom 16 were PCR-positive and 84 PCR-negative. The proportion of PCR-positive subjects presenting for examination was similar to the PCR-positive proportion of the group that did not present for examination (16% v. 11%; P = 0.30).

Although the number of PCR-positive subjects was small, they had significantly more identifiable risk factors for HCV acquisition and more past symptoms compatible with hepatitis, while a significantly greater number had hepatomegaly and abnormal clinical findings on examination than those who were PCR-negative. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed no significant differences between the PCR-negative and PCR-positive groups (Table I).

Table I. Donors with a positive anti-HCV ELISA with and without viraemia showed significant differences in respect of medical history, physical examination and biochemical analysis

<table>
<thead>
<tr>
<th></th>
<th>PCR-positive</th>
<th>PCR-negative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factors</td>
<td>37.5%</td>
<td>11.9%</td>
<td>0.01</td>
</tr>
<tr>
<td>Symptoms</td>
<td>12.5%</td>
<td>1.2%</td>
<td>0.02</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>25%</td>
<td>8.3%</td>
<td>0.05</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>34.9 ± 18.8</td>
<td>16.8 ± 10.3</td>
<td>P < 0.0001</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>24.3 ± 10.25</td>
<td>14.4 ± 5.1</td>
<td>P < 0.0001</td>
</tr>
</tbody>
</table>

Combinations of ELISA with clinical and biochemical findings failed to enhance the ability to predict viraemic donors. Combining ELISA and transaminase results did not improve upon ELISA results alone, as only 82.5% of the PCR-positive donors had ALT levels above the upper limit of normal. In addition, 9 donors who were anti-HCV-positive but PCR-negative had a raised ALT level (4 positive for both Abbott and Ortho ELISAs and 5 with Abbott ELISA positivity only).

Nine PCR-positive donors were considered by their physicians to require a liver biopsy. All biopsies showed mild inflammatory activity and features compatible with HCV infection, but none showed evidence of cirrhosis. Portal tracts were enlarged in 77%, and bile duct damage was noted in 55%, portal fibrosis in 45% and piecemeal necrosis in 45%. Thirty-three per cent had steatosis and 22% poorly formed lymphoid follicles.

Discussion

This study shows that only a small number of Western Cape blood donors with serology suggestive of HCV infection have detectable viraemia. The prevalence of antibodies in Cape Town donors (0.41%) is similar to that described in voluntary donors in northern Europe and the USA. In our study virus was only detected in 13.6% of seropositive donors, these did not assist the prediction of viraemia.

In conclusion, screening for HCV infection by ELISA significantly over-estimates the incidence of HCV infection. All anti-HCV-positive subjects should be referred for confirmation of viraemia prior to appropriate management and counselling.

REFERENCES