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Healthcare-associated infections (HAIs) are the most common 
complication of hospitalisation, resulting in adverse patient outcomes 
and increased healthcare costs.[1] The burden of HAIs in most 
high-income settings is well established by national internet-based 
reporting systems or repeated national/facility-level HAI point 
prevalence surveys (PPSs).[2-5]

In sub-Saharan Africa, most healthcare facilities are unable 
to perform HAI surveillance because they lack trained infection 
prevention (IP) staff, data analysts and information technology (IT) 
infrastructure.[6] The situation in South Africa (SA), a country with 
greater resources than many of its neighbours, is similar, with no 
national HAI surveillance programme and extremely limited data 
on the paediatric and adult HAI burden.[7,8] A single study in 2005 
estimated a prevalence of 9.7% for four major HAI types, with higher 
prevalence among children (16.5%) and patients in intensive care 
units (ICUs) (28.5%).[9,10]

In 2012, SA introduced National Core Standards for Healthcare 
Establishments,[11] with a patient safety domain mandating HAI 
surveillance, but lacking recommendations for HAI surveillance 
methods. Prospective clinical (patient-based) surveillance 
is considered the reference method or ‘gold standard’ for HAI 
surveillance, but requires substantial resources.[12,13] HAI surveillance 
is conventionally conducted by IP staff applying technically complex 

definitions to their inpatient population (most often using the 
Centers for Disease Control’s National Healthcare Safety Network 
(CDC/NHSN) definitions[14]). Even in well-resourced settings, 
so-called ‘whole-house’ clinical surveillance for all HAI event types is 
seldom done. Instead, targeted HAI surveillance is more commonly 
performed, focusing on specific clinical units (e.g. ICUs), types of 
HAI (e.g. device-associated infection) or procedures (e.g. surgical 
site infection (SSI) after caesarean section). Less resource-intensive 
HAI surveillance methods that still allow for monitoring of HAI 
trends and benchmarking are required, especially in resource-limited 
settings.[3,5]

Electronic detection of HAIs has many advantages over con
ventional clinical surveillance: patient data abstraction is 
automated, and several data sources can be combined. This method 
increases objectivity, reliability and efficiency of HAI identifi
cation. [15] However, automated surveillance may be a poor proxy 
for conventional HAI surveillance (particularly when utilising the 
10th revision of the International Statistical Classification of Diseases 
and Related Health Problems (ICD-10) coding), with both false 
positives and missed HAI events reported.[16-18] Computerised HAI 
identification algorithms that use multiple sources of information 
(e.g. laboratory data, ICD-10 coding and inpatient prescriptions) can 
achieve better sensitivity and positive predictive values (PPVs). [19] 
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However, lack of IT infrastructure and electronic health records 
precludes the use of automated HAI surveillance in most low- and 
middle-income countries (LMICs), including SA.

Data on device-associated infection rates in the private SA health
care sector were recently published,[20] highlighting the challenges 
associated with active HAI surveillance even in a comparatively 
well-funded setting. Alternative, passive HAI surveillance methods 
that could be utilised in low-resource settings include laboratory 
surveillance (for selected hospital-acquired pathogens) and review 
of pharmacy prescriptions (identifying antimicrobials used to treat 
HAIs). In addition, repeated PPSs may be feasible in LMIC healthcare 
facilities, particularly if a targeted population/clinical unit is selected, 
e.g. ICUs or neonatal wards.[21,22] The feasibility and sensitivity of HAI 
detection using different surveillance strategies has not been evaluated 
in SA. We compared the performance of three HAI surveillance 
methods in an SA children’s hospital using the CDC framework[23] 
for evaluating public health surveillance programmes (reporting 
sensitivity, PPV, simplicity, flexibility, timeliness, acceptability and 
representativeness).

Methods
Setting
Tygerberg Children’s Hospital (TCH) in Cape Town, SA, has 
300 paediatric beds within a 1 384-bed academic hospital complex. 
Sick neonates, infants and children (0 - 14 years) are admitted to 
13  neonatal and paediatric wards (including surgical wards, medical 
generalist wards, medical specialty wards, e.g. infectious diseases, 
haematology and oncology, and intensive care facilities); critically ill 
children requiring ventilation or inotropic support are managed in 
the 10-bed medical/surgical paediatric intensive care unit (PICU). 
There are approximately 17 000 neonatal and paediatric admissions to 
TCH annually, with bed occupancy rates of 93%, 92% and 87% in the 
PICU and general and subspecialist wards, respectively, in 2015. The 
burden of infectious diseases is high, with HIV, tuberculosis, lower 
respiratory tract infections (RTIs) and gastroenteritis predominating. 
In 2013, the antenatal HIV prevalence in the Western Cape Province 
of SA was 19% (v. 30% nationally), and in 2012 the HIV prevalence 
in children (2 - 14 years) was 0.7% (v. 2.4% nationally).

Investigation and management of HAIs at TCH
Blood cultures are obtained from all children with suspected sepsis 
or severe infection in a focal site (e.g. pneumonia, cellulitis). Other 
laboratory samples are submitted at the discretion of attending 
clinicians, e.g. urine, pus or endotracheal aspirates. Empirical 
antibiotic therapy for HAIs usually includes meropenem, or 
ertapenem if Pseudomonas aeruginosa is considered unlikely and 
meningitis is excluded. Vancomycin is added if methicillin-resistant 
Staphylococcus aureus (MRSA) is a likely pathogen, e.g. suspected 
central-line sepsis or soft-tissue infection. Colistin, ciprofloxacin, 
fluconazole and amphotericin B are occasionally used empirically, 
although the hospital antimicrobial stewardship (AS) programme 
encourages use of narrower-spectrum, targeted therapy if culture 
results are available.

Routine HAI surveillance at Tygerberg Hospital 
(including TCH)
The Unit for Infection Prevention and Control (IPC) utilises laboratory 
surveillance of selected bacterial ‘alert’ pathogens from blood culture, 
urine, pus, endotracheal aspirates and sputum samples to calculate 
hospital-acquired bloodstream infection and other selected HAI 
rates. This targeted surveillance differs from the expanded laboratory 
surveillance method utilised in the present study, which included all 

pathogenic bacteria, fungi and selected viral pathogens. The only 
prospective clinical HAI surveillance at TCH has been conducted 
by neonatal ICU staff since 2013, reporting central line-associated 
bloodstream infection (CLABSI) rates (a type of device-associated 
HAI accounting for just 1.5% of paediatric HAI at our institution).[24] 
Utilising laboratory surveillance data and individual patient referrals 
from clinicians, the IP practitioners conduct daily ward rounds to 
advise on transmission-based precautions, patient isolation, and 
other IPC-related management and staff education.

Study design
Prospective clinical surveillance (the reference method) was conducted 
in three paediatric wards (general paediatrics, paediatric surgery, 
infectious diseases/gastroenterology) and the PICU on weekdays 
from 1 May 2015 to 31 October 2015, documenting HAI events, 
microbiology/virology laboratory data and antimicrobial prescriptions 
among inpatients admitted for ≥48 hours or transferred from another 
facility. Data on incident HAI events, laboratory data and antimicrobial 
prescriptions occurring over weekends were collected on the Monday 
ward rounds. CDC/NHSN definitions for HAI[14] were used for both the 
reference method and the monthly HAI PPS. The CDC/NHSN defines 
an HAI in acute-care settings as ‘a localized or systemic condition 
resulting from an adverse reaction to the presence of an infectious 
agent(s) or its toxin(s) that was not present or incubating’ at the time 
of hospitalisation (bacterial colonisation and inflammation from non-
infectious causes are excluded). HAI is confirmed when all elements 
of the CDC/NHSN criteria ‘were first present together on or after the 
3rd hospital day’, and each HAI type has so-called ‘site-specific criteria’, 
e.g. SSI, skin and soft-tissue infection. ‘Presumed’ HAI infection events 
(not part of the CDC/NHSN classification) were defined as episodes 
of clinically diagnosed HAI without an identified source or positive 
laboratory tests, where broad-spectrum antimicrobials were initiated 
and continued for at least 5 calendar days. Each surveillance type was 
considered to have correctly identified an HAI event (identified by the 
reference method) if the HAI event was ‘active’ on the day of the PPS, 
any microbiology/virology investigation for suspected HAI yielded 
a pathogen, or any new prescription was boarded for meropenem, 
ertapenem, ciprofloxacin, vancomycin or colistin. The updated CDC 
guideline for public health surveillance programme evaluation[23] 
was used to compare each surveillance method’s performance for 
sensitivity, PPV, simplicity, flexibility, timeliness, acceptability and 
representativeness.

Statistical analysis
HAI events identified by the reference method were used to calculate 
HAI incidence (HAI events/1 000 patient days) and HAI prevalence 
(one or more HAI event/100 admissions). HAI incidence (in wards 
and the PICU) and overall HAI prevalence estimates obtained by 
the three comparator surveillance methods were calculated with 
95% confidence intervals (CIs). The sensitivity of each comparator 
surveillance method was calculated as number of HAI events 
detected/total events detected by the reference method. PPV was 
calculated as the proportion of ‘HAI cases’ detected by the comparator 
method that were confirmed by the reference method. Potential 
factors influencing HAI detection rates for each surveillance method 
were entered into a logistic regression model. A p-value of <0.05 was 
considered statistically significant. Stata statistical software version 
13.0 (StataCorp, USA) was used.

Ethical approval
Research approval and waiver of individual informed consent were 
obtained from the Human Health Research Ethics Committee of 
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Stellenbosch University (ref. no. S13/09/171), and institutional 
approval was obtained from Tygerberg Hospital (no reference 
number).

Results
During the 6-month surveillance period, 1 347 children were 
transferred in and/or admitted for ≥48 hours to the three wards and 
the PICU, generating 13 401 patient days. The reference method 
detected 417 HAI events during 324 patient admission episodes 
for 296 discrete patients (1.4 HAI events per affected patient). The 
overall HAI incidence rate was high at 31/1 000 patient days (95% 
CI 28.2 - 34.2), with a period prevalence of 22/100 admissions (95% 
CI 28.2 - 34.2) (Table 1). HAI rates were highest among children 
admitted to the PICU (94.4/1 000 patient days (95% CI 80.6 - 109.8)).

Sensitivity of alternative HAI surveillance methods was highest for 
antimicrobial prescriptions at 66.4% (95% CI 61.8 - 70.8), followed 
by laboratory surveillance at 48.4% (95% CI 43.7 - 53.2) (Table 1). 
Repeated PPSs were significantly less sensitive than antimicrobial 
and laboratory surveillance (24.9 (95% CI 21.0 - 29.3); p<0.001). 
Combining antimicrobial and laboratory surveillance improved 
sensitivity to 84.7% (95% CI 80.9 - 87.8).

PPVs were 100% for PPS, 55.2% (95% CI 50.1  -  60.2) for 
laboratory surveillance and 88.5% (95% CI 84.5  -  91.6) for 
antimicrobial prescriptions. Reasons for ‘misidentification’ of the 
164 false positives identified by laboratory surveillance included 
pathogens representing colonisation only (n=21), community-
acquired pathogens (n=129), duplicate laboratory specimens 
(n=5), and pathogens identified from more than one sample 
site, e.g. bloodstream and urine (n=9). Few false positives were 
identified by antimicrobial prescription surveillance (n=36), with 
resistant community-acquired infections and complicated intra-
abdominal infections as the main indications for carbapenem or 
ciprofloxacin use in these cases. Combining antimicrobial and 
laboratory surveillance substantially reduced false-positive HAI 

identification (n=11) and resulted in an improvement of the PPV 
to 97% (95% CI 94.6 - 98.4).

The alternative surveillance methods performed variably for 
detecting the four main HAI types: hospital-acquired pneumonia 
(HAP) (n=185), urinary tract infection (UTI) (n=45), laboratory-
confirmed bloodstream infection (LC-BSI) (n=41), and SSI (n=20) 
(Fig. 1). Compared with the reference method, repeated PPS detected 
<30% of the four main HAI types other than SSI, whereas laboratory 
surveillance achieved the highest proportional detection rates for 
UTI, SSI and LC-BSI. Antimicrobial prescriptions achieved the 
highest detection rates for HAP. Combining antimicrobial and 
laboratory surveillance substantially improved detection of SSI and 
HAP events, and to a lesser extent UTI and LC-BSI detection.

Table 2 summarises the pathogens associated with four main 
HAI types. Klebsiella pneumoniae (33/68, 48.6%) and S. aureus 
(13/25, 52.0%) were the leading Gram-negative and Gram-positive 

Table 1. Comparative performance of HAI surveillance methods

Measure
Reference 
method PPSs

Laboratory 
surveillance

Antimicrobial 
prescriptions

Combined 
laboratory- 
antimicrobial 
surveillance

HAI ‘cases’ detected by method, n 417 104 202 277 353

HAI incidence, /1 000 patient days* (95% CI)

Overall (wards + PICU) 31.1
(28.2 - 34.2)

7.8
(6.3 - 9.4)

15.1
(13.1 -17.3)

20.7
(18.3 - 23.2)

26.3
(23.7 - 29.2)

PICU 94.4
(80.6 - 109.8)

20.5
(14.1 - 28.7)

56.5
(45.7 - 68.9)

72
(59.9 - 85.8)

88.8
(75.4 - 103.8)

Paediatric wards 22.5
(19.9 - 25.3)

6
(4.7 - 7.6)

9.4
(7.8 - 11.3)

13.7
(11.6 - 15.9)

17.8
(15.5 - 20.4)

HAI prevalence,† /100 admissions (95% CI) 22
(19.9 - 24.3)

7.4
(6.1 - 9)

12
(10.3 - 13.8)

16.1
(14.2 - 18.2)

20.5
(18.5 - 22.8)

Sensitivity,‡ % (95% CI) Reference 
standard

24.9
(21.0 - 29.3)

48.4
(43.7 - 53.2)

66.4
(61.8 - 70.8)

84.7
(80.9 - 87.8)

PPV,§ % (95% CI) Reference 
standard

100 55.2 
(50.1 - 60.2) 

88.5 
(84.5 - 91.6)

97 
(94.6 - 98.4)

*Patient days: sum of patients on each ward at 08h00 every day during the 6-month study period (13 401 patient days = 1 610 paediatric ICU + 11 791 three paediatric wards).
†HAI prevalence: discrete patients with one or more HAI event/100 patient admissions to the four selected wards (reference method = 296/1 347; PPS = 100/1 347; laboratory surveillance = 
161/1 347; antimicrobial prescriptions = 217/1 347; combined laboratory + antimicrobial data = 277/1 346).
‡Sensitivity of the surveillance method: number of HAI events detected by the alternative method/total events detected by the reference method, e.g. HAI events detected by PPS/reference 
method = 104/417 (24.9%).
§PPV: the proportion of detected ‘cases’ who actually had an HAI event confirmed by the reference method, e.g. for antimicrobial prescriptions = true positives (277)/[true positives (277) + false 
positives (36)] (88.5%).
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Fig. 1. Comparative HAI detection by surveillance method and HAI event 
type. The proportion of HAI events detected by alternative surveillance 
methods (when compared with the reference method’s assumed HAI 
detection rate of 100%) is shown for four frequent HAI event types: HAP 
(n=185), UTI (n=45), LC-BSI (n=41) and SSI (n=21).
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bacterial isolates, respectively, for LC-BSI, UTI and SSI events. Of 
the 61 Enterobacteriaceae isolated, 35 (57.4%) were ESBL producers, 
and 3/13 (23.1%) S. aureus isolates were MRSA. Viral pathogens 
(particularly respiratory syncytial virus (RSV) and adenovirus) 
predominated in HAP events, with 82/151 patients (54.3%) 
investigated yielding one or more RTI pathogens.

Factors associated with failure to detect an HAI (Table 2) were 
as follows: for PPSs, patient transfer (OR 2.0; 95% CI 1.01 - 3.1) 
and a single HAI event (OR 2.8; 95% CI 1.5  - 5.1); for laboratory 
surveillance, admission to a general ward (OR 2.3; 95% CI 1.5  - 
3.5) and age group 1  - 5 years (OR 2.1; 95% CI 1.1  - 3.9), and for 

antimicrobial prescriptions, admission to a general ward (OR 1.8; 
95% CI 1.1 - 2.9). Death was associated with significantly less chance 
of a ‘missed’ HAI event for the antimicrobial prescription surveillance 
method (OR 0.3; 95% CI 0.1 - 0.9) (Table 3). Table 4 compares data 
on the qualitative elements of the CDC surveillance programme 
evaluation, and summarises the advantages, disadvantages and 
recommended settings for use of each surveillance method.

Discussion
The reference method measured HAI prevalence at 22%, far 
exceeding rates of 4 - 5% reported in hospitalised children in high-

Table 2. Pathogens associated with selected HAI types (N=299)

Pathogen 
LC-BSI
(N=41)

CLABSI*
(N=7)

UTI
(N=45)

SSI
(N=21) 

HAP†

(N=185)
Gram-negatives (N=72) 

Klebsiella pneumoniae 5 2 24 2 2

Enterobacter cloacae 4 0 0 1 0

Escherichia coli 5 0 7 4 0

Acinetobacter spp. 3 0 0 0 0

Pseudomonas aeruginosa 2 0 1 3 0

Serratia marcescens 1 0 0 0 1

Salmonella non-typhi 1 0 0 0 0

Morganella morganii 0 0 0 2 0

Bordetella pertussis 0 0 0 0 1

Stenotrophomonas maltophilia 0 0 0 0 1

Gram-positives (N=25) 

Staphylococcus aureus 6 1 2 4 0

Enterococcus faecium 3 0 1 0 0

Enterococcus faecalis 1 0 1 0 0

�Coagulase-negative 
staphylococci

4 0 0 0 0

Leuconostoc spp. 0 1 0 0 0

Streptococcus agalactiae 1 0 0 0 0

Fungi (N=18) 

Candida albicans 3 1 6 0 0

C. glabrata 0 2 1 0 0

C. parapsilosis 2 1 0 0 0

C. lusitaniae 0 0 2 0 0

Viruses (N=93)

Respiratory syncytial virus - - - - 38

Adenovirus - - - - 25

Parainfluenza virus - - - - 14

Influenza virus - - - - 5

Coronavirus OC43 - - - - 4

Human metapneumovirus - - - - 4

Rhinovirus - - - - 2

Bocavirus - - - - 1

No pathogen isolated - - - 3 (14.2%) 69 (37.3%)

No specimen sent - - - 2 (9.6%) 34 (18.4%)
*One patient had polymicrobial infection, hence 8 pathogen isolates for 7 CLABSI episodes.
†HAP specimens included nasopharyngeal, tracheal and bronchoalveolar lavage specimens submitted for microscopy, culture and sensitivity testing and respiratory viral pathogen polymerase 
chain reaction testing (19 HAP events had more than one pathogen isolated).
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income settings.[24,25] Our study prevalence (including all HAI types) 
is similar (16.5%) to that established for four HAI types (SSI, UTI, 
LC-BSI and RTIs) in a paediatric ward in Gauteng, SA, in 2005.[9] 
Given the extreme paucity of data[1,26] on paediatric HAI in Africa, 
we could not benchmark our HAI prevalence against other inpatient 
settings. The high HAI rate in our ICU (v. paediatric wards) is in 
keeping with published data for both LMICs and high-income 
countries (albeit three- to four-fold higher than their published 
HAI rates).[1] Prevalence and incidence estimates produced by 
the combined laboratory-antimicrobial surveillance method were 
not significantly different (overlapping CIs) from those measured 
by the reference method, suggesting that combined laboratory-
antimicrobial surveillance provides the most accurate approximation 
of the true HAI burden in our setting.

Repeated PPSs showed poorer sensitivity than laboratory and 
antimicrobial prescription surveillance. Monthly PPSs would have 
missed many infection events, including HAI-attributable mortality. 
This limitation of the PPS methodology can be partially mitigated by 
using period prevalence (infections occurring during a predefined 
period before the survey day) rather than point prevalence (which 
only includes HAIs present on the survey day). Zingg et al.[27] 
established a 32% greater HAI yield when using period prevalence 
(HAI within 7 days of the survey date), with the additional cases 
attributed largely to identification of short-duration HAIs, e.g. lower 
RTIs and UTIs. This phenomenon may partly explain why our 

monthly PPSs performed better at detecting SSI events than other 
HAIs, as SSIs prolonged hospitalisation disproportionately to other 
HAI types, increasing the likelihood of being surveyed. We also 
identified that transfer out was associated with failure to detect HAI 
on PPS, reflecting the lower likelihood of a patient with HAI being 
present on a PPS day if they had been transferred out to complete 
antibiotic therapy at another facility.

Another limitation of PPSs is the inability to quantify the influence 
of seasonal fluctuations in community-acquired viral infections 
with potential for nosocomial spread. We documented very few 
healthcare-associated gastroenteritis events, possibly owing to the 
surveillance period (May - October are low-prevalence months for 
rotaviral disease in SA). Conversely, HAP events may have been over-
represented in our cohort, as the surveillance months included the 
peak winter hospitalisations for community-acquired RTIs.[28]

The perfect performance of PPSs at identifying true HAI is 
probably due to use of the same HAI case definitions and data 
collection tool as the reference method. The PPV achieved by 
antimicrobial prescription surveillance was similarly high, indi
cating that ultra-broad-spectrum antibiotics, e.g. carbapenems, 
were reserved mostly for HAIs. This finding can be ascribed 
in part to institutional AS interventions targeting clinicians, e.g. 
antimicrobial restriction policies and weekly AS ward rounds. The 
PPV of laboratory surveillance was poor, mainly because of difficulty 
in excluding community-acquired and colonising pathogens in 

Table 3. Factors associated with failure to detect HAI*
Surveillance method

Repeated PPSs Laboratory surveillance Antibiotic prescriptions

Uni
variate 
analysis
(p-value)

Multi
variate 
analysis
(p-value)

Odds 
ratio 95% CI

Uni
variate 
analysis
(p-value)

Multi
variate 
analysis
(p-value)

Odds 
ratio 95% CI

Uni
variate 
analysis
(p-value)

Multi
variate 
analysis
(p-value)

Odds 
ratio 95% CI

Ward 
type

0.248 - - - <0.001 <0.001 2.28 1.48 - 
3.51

0.001 0.017 1.81 1.11 - 
2.97

Length of 
stay

0.023 0.24 0.99 0.97 - 
0.99

0.90 - - - 0.016 0.27 0.99 0.98 - 
1.00

Outcome: 
Death

<0.001 0.06 1.87 0.95 - 
8.8

0.147 - - - 0.002 0.03 0.36 0.14 - 
0.93

Outcome: 
Transfer

<0.001 0.04 2.0 1.01 - 
3.07

0.147 - - - 0.002 0.30 0.77 0.47 - 
1.26

Single 
HAI 
event 

0.001 0.001 2.8 1.53 - 
5.09

0.074 - - - 0.192 - - -

Patient 
risk 
factor/s 
for HAI

0.987 - - - 0.321 - - - 0.803 - - -

HIV 
status

0.419 - - - 0.72 - - - 0.241 - - -

Age 
category:
1 - 5 
years

0.654 - - - 0.002 0.03 2.07 1.08 - 
3.98

0.619 - - -

- = variables that were not entered into the multivariate analysis because the univariate p-value was >0.1.
*To determine factors associated with not identifying (‘missing’) an HAI event, binary logistic regression analyses were performed for each surveillance method. A p-value of <0.05 was 
considered statistically significant. HAI type was omitted from the multivariate analysis because there were too many infection groups to analyse. 
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the absence of clinical information. Combining antimicrobial and 
laboratory surveillance achieved a very high PPV, suggesting that it is 
an efficient way to monitor HAI events (with few false positives that 
would need folder review to exclude from HAI estimates).

Laboratory surveillance performed well for three of the four 
main HAI types (LC-BSI, SSI and UTI), but failed to detect over 
half of HAP events. However, combined laboratory-antimicrobial 

surveillance resulted in improved detection of all main HAI types 
(particularly SSI and HAP events, which were poorly detected by 
individual surveillance methods). The poor sensitivity of laboratory 
surveillance for HAP may be due to low rates of laboratory testing 
for viral pathogens with polymerase chain reaction (PCR) outside 
the PICU and failure to detect bacterial respiratory pathogens with 
standard laboratory investigations.

Table 4. Comparison of HAI surveillance methods

Reference method* PPSs Laboratory surveillance
Antimicrobial 
prescriptions

Simplicity† Most complex Moderately complex Less complex Least complex

Activities Daily ward rounds, data 
capture + validation

Monthly ward rounds, data 
capture + validation

Laboratory data and 
hospital admissions, data 
extraction + validation

Pharmacy data and 
hospital admissions, 
data extraction + 
validation

Resources IP data collector, data 
capturer, hospital IT

IP data collector, data 
capturer, hospital IT

Laboratory database/s, 
hospital IT

Pharmacy database, 
hospital IT

Time (hours/month)‡ 120 30 10 5

Flexibility§ Moderately flexible Moderately flexible Moderately flexible Very flexible

Timeliness¶ High Moderate Low (unless using real-
time surveillance)

Low

Acceptability|| Low Moderate Moderate to high Moderate to high

Representativeness** High Moderate Moderate to low 
(influenced by frequency 
and quality of laboratory 
sampling)

Moderate to low 
(influenced by 
availability of and 
ability to extract 
additional clinical data)

Advantages Detects more HAI events 
than other methods; 
collects clinical data 
simultaneously; establishes 
whether infection is HA 
v. HCA 

Less labour intensive; if 
repeated regularly may 
be helpful in establishing 
trends; collects clinical data 
simultaneously 

Less labour intensive; 
additional data on 
pathogen profile and 
antibiotic susceptibility 
patterns of the institution

Least labour intensive; 
additional data on 
antibiotic consumption 
patterns for HAI at the 
institution; can identify 
HAI events even if rates 
of laboratory sampling 
or pathogen yields are 
low

Disadvantages Labour intensive Misses many HAI events; 
detection rate could be 
improved if include all HAI 
events occurring within 7 
days preceding the PPS[26]

Sensitivity depends on 
frequency and quality 
of laboratory samples 
collected; difficult to 
distinguish colonisation 
from infection; cannot 
distinguish HA from HCA 
infection events

Additional data on HAI 
type and indication for 
antibiotic and patient 
demographics may not 
be available

Suitable contexts Hospital settings 
with experienced IP 
practitioners, IT analyst + 
epidemiology support

Hospital settings 
with experienced IP 
practitioner/s + some IT 
analyst support

Hospitals with high use 
of laboratory tests for 
investigation of HAI and 
available IT/data analyst 
assistance

Hospitals with 
insufficient resources 
to perform other 
surveillance, moderate 
IT support/searchable 
pharmacy database 

ID = infectious disease; HA = hospital acquired; HCA = healthcare associated.
*Clinical surveillance conducted on weekdays only.
‡Time calculations were based on surveillance conducted in 1 PICU (10 beds) and 3 paediatric wards (bed complement = 83).
†Simplicity includes the surveillance method structure, method of data collection and analysis, resources needed and ease of operation.
§Flexibility includes the system’s ability to adapt to changing information or operating conditions with minimal changes to time, personnel or operational costs, e.g. changes to HAI case 
definitions and use of standard data formats allowing easy integration with other systems.
¶Timeliness is the time interval between the onset of the HAI event and its reporting to those in charge of prevention and control efforts.
||Acceptability is a subjective measure of the willingness and ability of individuals on whom the surveillance method depends to provide the required data accurately, consistently and on time.
**Representativeness is the degree to which the system accurately reflects occurrence, distribution and demographic characteristics of persons experiencing HAI events.[23]
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The influence of viral pathogens on paediatric HAI rates is probably 
grossly underestimated. In a 3-month study of hospitalised children 
in Soweto, 15/130 (11.6%) clinically diagnosed with ‘nosocomial 
sepsis’ had confirmed nosocomial RSV infection.[29] At Red Cross 
War Memorial Children’s Hospital in Cape Town, 22/226 RSV 
infections (9.5%) were nosocomially acquired in 2012.[30]

It is notable that laboratory surveillance (our institution’s 
current surveillance method) was less sensitive than antibiotic 
prescription and combined laboratory-antimicrobial surveillance. 
This finding has implications for institutions with low rates of 
laboratory investigation of suspected HAI events; in such settings, 
laboratory surveillance may miss an even greater proportion of 
HAIs, which would still be detected by surveillance of antimicrobial 
prescriptions. In addition, laboratory surveillance was two times 
less likely to identify HAI in children aged 1 - 5 years, possibly 
because they undergo fewer laboratory investigations than infants 
who have nonspecific clinical presentation of sepsis necessitating 
more extensive diagnostic testing.

In keeping with previous SA studies, K. pneumoniae and S. 
aureus were the most frequently isolated HAI pathogens with 
a high prevalence of antimicrobial-resistant phenotypes.[28] Viral 
pathogens were identified in over half of all patients with HAP 
who underwent laboratory testing, highlighting the importance of 
laboratory identification of pathogens in children with RTI (who 
serve as reservoirs of nosocomial virus transmission). In 18.4% 
of HAP events, no respiratory pathogen testing was performed, 
representing missed opportunities for identification and isolation of 
patients with transmissible pathogens.

The decision on which antimicrobials to include in prescriptions 
surveillance should be determined by the institution’s empirical 
antimicrobial recommendations for HAI. The degree to which 
these antimicrobials are reserved for HAI treatment and the 
extent of resistant community-acquired infections will influence 
the HAI detection rate, potentially generating false-positive HAI 
events. Conversely, a prescription of antimicrobial/s other than the 
institution’s empirical HAI therapy agents may result in ‘missed’ HAI 
events or false negatives.

We identified that hospitalisation in a ward (as opposed to the 
PICU) doubled the odds of failure to detect HAI (for both laboratory 
and antimicrobial surveillance methods). This finding is explained by 
the less frequent use of and lower yield of laboratory investigations 
in the wards as well as lower carbapenem utilisation rates. Death was 
associated with significantly less chance of ‘missing’ an HAI event 
by antimicrobial prescription surveillance, possibly because most 
critically ill children hospitalised for >48 hours would be prescribed 
a carbapenem antibiotic empirically.

Given the failure of alternative methods to achieve high HAI 
detection rates, combining surveillance methods may achieve superior 
sensitivity (as demonstrated by combination of our antimicrobial and 
laboratory data to produce test sensitivity of 85%). Another possible 
strategy would be use of antimicrobial prescriptions to monitor 
certain HAI types with low laboratory testing rates and pathogen 
yield (e.g. HAP) and to use laboratory surveillance for HAI events 
with higher pathogen isolation rates (e.g. UTI, LC-BSI and SSI). This 
would, however, require the pharmacy to record clinical indications 
for HAI therapy (which was recently implemented at some institutions 
through a dedicated antimicrobial prescription chart designed by the 
South African Antimicrobial Stewardship Programme).[31]

Furthermore, increased use of appropriate laboratory tests for viral 
pathogens in cases of presumed HAI should be encouraged to assist 
with AS efforts. This strategy would avoid empirical antibiotic 

treatment of presumed HAI based only on clinical suspicion, and 
limit antibiotic duration in cases where viral pathogens are identified 
or presumed HAI events where no pathogens are identified, after 
appropriate laboratory investigations.

Repeated PPSs should not be discounted in low-resource settings, 
although in our cohort this method had the lowest sensitivity 
and required the greatest resources (time and labour). A distinct 
advantage of the PPS methodology is that a standardised, validated 
data collection tool can be used regionally or nationally, reducing 
inter- and intra-observer variability and facilitating benchmarking 
of individual facilities. Greater inter-institution variability in HAI 
rates would be expected using laboratory and/or antimicrobial 
prescription surveillance owing to variable specimen collection 
practices, laboratory methods and prescribing practices. Another 
advantage of PPSs is the possibility of collecting patient demographic 
data to identify patients at highest risk of HAI, allowing for targeting 
of HAI prevention interventions.

Using the CDC guidelines for evaluating surveillance systems, 
we identified wide variability in performance attributes of each 
surveillance method. Although the resources required to implement 
the reference surveillance method at our institution are not currently 
available, prospective, continuous HAI surveillance would provide 
timely (in real time) and representative (‘whole-house’) data. 
Laboratory and antimicrobial prescription surveillance methods 
appear the most attractive, most flexible and least resource-intensive 
options, but would provide less frequent HAI reports (weekly or 
monthly) and less complete data (not every case of HAI will be 
detected) in our context. Real-time laboratory data surveillance (if 
combined with additional clinical data collection) could, however, 
provide more accurate, timely and representative data.

Limitations of our study include the single study site, selection of 
four ‘representative’ wards, with exclusion of neonatal wards and the 
neonatal ICU, the study period sampled (May - October), which may 
have underestimated seasonal fluctuations in HAI (from nosocomial 
propagation of community-acquired viral infections), the use of 
antibiotic prescription data from patient records rather than from 
pharmacy databases, and microbiology/virology laboratory testing 
at clinicians’ discretion with possible underdiagnosis of HAI events 
by laboratory surveillance (although this could also be construed 
as a strength, in that it represents the performance of laboratory 
surveillance in a ‘real-world’, current-practice setting).

In LMICs where the burden of HAIs is greatest, many healthcare 
facilities are poorly equipped to conduct prospective clinical HAI 
surveillance. Consequently, published data on the epidemiology 
of HAIs in developing countries are scant, but could be increased 
through use of simpler, less resource-intensive surveillance methods 
than the reference standard of prospective, clinical HAI surveil-
lance. No single method will approximate the reference method or 
perform uniformly in all settings. Individualisation of HAI surveil-
lance recommendations is therefore needed, considering available 
resources and the practice context. Nevertheless, our study suggests 
that laboratory surveillance, antimicrobial prescriptions, PPSs or 
combinations thereof are feasible alternatives to conventional clinical 
HAI surveillance.

Conclusions
SA paediatric wards should select an HAI surveillance method based 
on available resources, expertise and technology infrastructure. 
Where clinical HAI surveillance is not possible, monitoring of 
antimicrobial prescriptions in combination with laboratory data 
analysis appears a reasonable alternative.
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