South African Medical Journal

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.

Molecular mechanisms of insulin resistance

T. S. Pillay, M. W. Makgoba


This review discusses recent advances in understanding of the structure and function of the insulin receptor and insulin action, and how these relate to the clinical aspects of insulin resistance associated with non-insulin-dependent diabetes and other disorders. Improved understanding of the molecular basis of insulin resistance could ultimately lead to a better understanding of the causation of these conditions and the design of rational therapy to ameliorate them. Here, particular attention is devoted to the initial events that follow the binding of insulin to its receptor, including changes in insulin receptor phosphorylation. Receptor-mediated insulin resistance may be a consequence of various factors including increased serine/threonine phosphorylation of the receptor with decreased tyrosine phosphorylation, receptor densitisation, auto-antibodies to the receptor and inherited structural defects in the insulin receptor. Defects in insulin action could also arise at post-receptor events particularly glucose transport. Other circulating hormones, such as the newly characterised islet amyloid polypeptide (amylin), may also cause insulin resistance.

AJOL African Journals Online