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Some Statistical Methods and their Application
to the Design and Analysis of Experiments
in the Biosciences
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SUMMARY

The application of statistics to the biological and medical
sciences is well known, but has perhaps not yet come
into its full right in South Africa. A few examples are
described which give an indication of how statistical
theory can help the researcher to arrive at statistically
valid decisions.
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In much of the research work undertaken in any experi-

mental science, the following sequence of procedures has
to be adopted before a final conclusion can be arrived at.

A B &
Problem —— > Design of ————— Data. )
formulation experiment acquisition
.
E D
Conclusion «— Interpretation «— Data
of results analysis

Mathematical statistics is the study of properties of
mathematical models underlying data analysis. Applied
statistics is the science of collecting, analysing and inter-
preting numerical data relating to an aggregate of indivi-
duals. Taking these rather broad definitions into account,
it is clear that the statistician has a role to play during
the four middle stages of the procedure represented
diagrammatically above.

It is essential that any organisation doing experimental
work should be able to make use at all times of the
services of a statistician. The latter should be a member of
the experimental team right from the start. He will at
first have a serious problem communicating with the
experimenter as his training has been mathematical and
he is in most cases unfamiliar with the terminology used
by the experimenter. The latter should thus be prepared
to spend time explaining all aspects of his proposed
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project to the statistician; these efforts will be found
to pay off handsomely in the long run.

Decisions taken at stage B should be made jointly.
The experimenter knows what he requires from his
experiment and which plans are feasible. The statistician
knows the theory of experimental design and can recom-
mend experimental strategies which will have optimal
properties with respect to the data analysis that lies
ahead. When stage B has been planned the statistician
may very well ask the experimenter to provide him with
a set of hypothetical data on which the data analysis
techniques to be applied could then be tested. The results
so obtained may lead to changes in the experimental
design. Computer programmes could also be tested at
this stage, and in this way eventual analysis will be
greatly facilitated and speseded up. Unfortunately the time
factor usually prevents this procedure from being adopted
but it is an ideal that should be kept in mind.

As far as stage C is concerned the statistician has at
most a supervisory role. He should devote attention to
such matters as defining a population frame and he should
prescribe methods which will ensure that the samples that
are obtained are random.

Stage D is the sole responsibility of the statistician.
He will apply methods that will provide answers to the
questions put to him. In many cases he also has to help
formulate the questions that should be asked by the
experimenter!

Stage E is again one of joint decisions. In particular,
the statistician should clarify his techniques to the experi-
menter who will then be in a position to appreciate some
of the technical details of the analyses.

This whole discussion serves only to motivate the
presence of the statistician at all stages of a project. In
what follows I wish to spend some time on some of the
details that could go into the data analysis part of the
experiment. Naturally T cannot dwell to any extent on the
mathematical background of some models usually studied.
but I shall attempt to give you an overview of some of
the more commonly used methods. Today our subject
has become so wide that it is almost impossible for any
individual to know even all the textbook material. In
most problems current theory cannot be directly applied
and in many cases the statistician has to develop his own
theory to cater for the intricacies of the specific problem
under study. However, 1 shall deal only superficially with
a few of the more popular textbook theories, the use of
which have become standard practice today.
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METHODS OF MULTIPLE COMPARISON

This technique is not accepted without controversy even
by statisticians, but it has gained favour among the
majority. We have found that most experimenters resist
these methods, but the reason is probably a lack of
appreciation of what is involved. On having the rationale
explained to them those not previously exposed to this
methodology begin to understand why it is controversial.

Supposing that four randomly selected groups of com-
parable individuals are subjected to four different treat-
ments. The first might be a control group receiving no
treatment at all. The second might be a group receiving
the standard treatment, while groups 3 and 4 are subjected
to two new treatments. We are measuring some response
variable and differences in group means will eventually
be ascribed to differences in the treatment. Let the true
responses for each group be denoted by unknown quantities
B, B=, Bs and B:. We wish to test the hypothesis that He:
Bi = B = Bs = Ps, ie. there is no difference in true
responses. Supposing that the assumptions of an analysis
of variance F-test are met, then the following series of
events and decisions are possible:

Statistical test

No \ Yes
*ASigniﬁcant?———j
Decision Reject He
' Some B; are
Do not reject Ho Accept Ho different
Differences may be All B, are Which?
obscured by too equal
few data
| i
Obtain further No difference Methods of
observations between multiple
treatments comparison

If Ho is rejected it is desirable to make further inferences
about the treatment means. The obvious approach is
then to make the 6 possible pairwise comparisons by
using methods such as the Student z-test. Each of
these tests may be done at the « level of significance and
we may attach a confidence coefficient of (1-a) to each
individual statement that we make. However, this method
leaves unanswered the question about the degree of
confidence we can have in the correctness of all the
statements made. In the above case of 6 statements, each
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is correct with probability (1-a) hence the probability of
correct statements may be obtained from the binomial
distribution and the expected number of correct state-
ments is 6(1-2). The probability of all statements being
true (1-a)’ =~ 0,74 if « = 0,05 and the probability of at least
one false statement is 1-(1—«)° =~ 0,26. If the number of
statements to be made becomes large the probability of
all statements being true approaches zero!

This dilemma is resolved by the method of multiple
comparisons which provides an over-all confidence co-
efficient for the totality of possible statements about tests,
the specific ones to be made and the potential ones we
do not make. In analysis of variance frameworks there
exists, thanks to H. Scheffé, a remarkable procedure for
solving the problem. In other models an approximation
which is derived from the so-called Bonferroni inequality
may be used. In this case, if m statements are to be
made, then the over-all probability that all Statements are
correct will be approximately equal to (1-a) on condition
that each individual statement is made with a confidence
coefficient of 1-(a¢/m). Thus if we work with « = 0,05 in
the above case of 6 statements, the individual confidence
coefficient should be chosen at about 0,992 to guarantee
an over-all confidence coefficient of 0,95.

The unacceptability of these procedures stems from the
fact that if many statements are to be made, usually only
a few individual significant differences can be detected.
This unfortunately is the price we have to pay for making
correct statements.

EXPERIMENTAL DESIGN

In dealing with this subject I shall again concentrate on
only one small aspect; in this case, the determination of
sample size.

The size of sample to be used in an experiment cannot
be prescribed unless information is available on the varia-
bility inherent in the data to be gathered. It is also
necessary to specify exactly what is to be done with the
data before the sample size can be determined. I shall
discuss this problem from the point of view of hypothesis
testing. In this connection I shall exploit the concept of
the power of the test which is involved.

The significance level of a test guards against rejecting
a true null hypothesis. Similarly the power of a test guards
against accepting a false null hypothesis. The power of a
test is a function of the sample size and of the ‘amount’ by
which the null hypothesis is false.

To fix ideas, it will be assumed we wish to lay out an
experiment consisting of a control group of patients
receiving no additional vitamin C supplement to a con-
trolled diet. This group has to be compared with two
experimental groups, one receiving vitamin C added to
the same controlled diet at level I and the other receiving
vitamin C added at level II. We wish to test for significant
differences (at the 5% level) in serum vitamin C levels of
the three groups. How many patients are to be allocated
to each group (the same number to each group) so that
we can be 90% sure of detecting differences of as little
as an amount 2, if such differences exist?
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The point is that the natural variation in the data might
obscure differences between groups if an insufficient
number of patients is taken. In order to resolve this
problem we need to know what kind of variation is to
be expected in the data. This information was supplied
by the experimenter in the form of the standard deviation
based on a previous set of similar data. This standard
deviation, together with power curves of the F-test, is
used to compute the required sample size. The following
table (which is purely hypothetical and has nothing to do
with real serum vitamin C determinations) is then con-
structed and presented to the experimenter.

A 0,10 0,15

0,20 0,25

n 182 81 46 30

This leads us to conclude that if about 80 patients are
allocated to each group, we would be 90% sure that the F-
test would eventually dec’are differences in excess of 0,15
mg/100 ml as significant at the 5% level of significance,
if such differences really exist.

MULTIVARIATE ANALYSIS

The world in which we live is essentially multivariate.
Many things happen simultaneously and these events are
not independent of each other. In the vitamin C example,
chances are good that the experimenter would not only
be interested -in serum vitamin C levels—he is likely to
determine quite a number of other biochemical variables,
including the cholesterol values. Naturally he would be
interested in the interrelationships existing between all
the variables measured and in the structure of his data set
as a whole. To this effect statisticians have developed a
vast theory of multivariate analysis. Typically I could
mention multivariate analysis of variance, principal com-
ponent analysis, canonical analyses, multiple regression
analysis and the less statistical but quite useful technique
of cluster analysis.

As an example of multivariate analysis I shall talk
about the method of discriminatory analysis, but before
proceeding, a remark may be in order about the
main assumption underlying virtually every existing multi-
variate technique. This assumption is that the underlying
distribution of the variables under study is the multivariate
normal. If this assumption is not made the mathematics
usually becomes intractable. If a distribution is
multivariate normal the marginal distributions (i.e. the
distributions of the individual variables) are also single-
variate normal. Unfortunately the converse is not always
true as was demonstrated in the literature by the exhibition
of a (pathological) counterexample. However, if the indi-
vidual variables have skew distributions, as so many in
the biological sciences have, transformations could be
applied to make at least the marginals approximately
normal. Also, there is a famous result, the so-called
central limit theorem, which states that the joint distri-
bution of mean values (when these are based on large
samples) is multivariate normal, under some mild addi-
tional restrictions. Hence application of normal-theory
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multivariate analyses may not be too far wrong in practical
applications.

Now let us look at the problem of discriminatory
analysis. A group of obese but otherwise healthy patients
is limited to a mass-reducing diet. In the beginning of
the experiment a number of variables are determined on
each patient, including a set of biochemical variables
obtained from blood analyses and also a set of variables
obtained from a battery of psychological tests. At the
conclusion of the experiment the amount of reduction in
body mass may be used to classify each patient into (say)
one of three groups. Let us call these the unsuccessful
group (I), an intermediate group (II), and a successfu!
group, (III).

On the basis of the acquired data it may be relevant
to be able to predict for a future patient what the
probabilities are that he would belong to group I, II or
IIL. If the set of biochemical and psychological variables
has any value in discriminating between groups I, II and
III, one should be able to do such a classification for
individual future patients. Discriminatory analysis was
designed for this purpose. A discriminant function, which
is a linear combination of all the variables (or of a ‘best’
subset of these variables) is computed for each of the
three groups, and from this the probability of the patient’s
belonging to each group can then be evaluated.

For the particular example mentioned, the indications -
are that such a prediction is not expected to be very
successful, but, in general, if the discriminatory functions
succeed in separating the groups and if it is anticipated
that a patient will end in group I, additional therapy
might be indicated. If it is predicted that he will fall
into group III, the diet alone is indicated and the
additional cost of therapy may thus be avoided.

CONCLUSION

I believe that statistical services are indispensable to the
experimenter. Unfortunately it costs money to hire a
statistician and it costs money to run data on a computer.
However, if data analysis is considered an integral part
of an experiment, then it seems logical to provide money
for that part just as one would have to provide money
for buying test tubes.

Then there is a matter which has often in the past been
one of embarrassment to me. This is the question of
co-authorship when the time of publication comes. The
rule should be that if there is a part of the paper which
any given individual alone has developed or which he
alone can defend scientifically, co-authorship is indicated.
The fact that you have paid for the services of a
statistician should not influence you in deciding whether
to offer him co-authorship. You can never divorce his
name from his work.

Finally it remains for me to thank the Council of your
Society for inviting me to address you. I greatly appreciate
having had this opportunity and hope the occasion will
strengthen the existing bonds between two disciplines
whose subject matters greatly diverge but which should
have quite close ties.



