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Bacterial infections are major contributors to morbidity, mortality 
and healthcare costs in intensive care units (ICUs).[1] Without 
appropriate treatment, sepsis and septic shock are rapidly fatal.[2] It is 
therefore crucial to dose antibiotics correctly, especially in critically ill 
patients.[3] Incorrect dosing of antibiotics in critically ill patients may 
result in increased morbidity and mortality, and the development 
of multidrug-resistant organisms.[4] Antibiotic dosing in critically 
ill patients is complicated by differences in the pharmacokinetics of 
antibiotics between critically ill patients and healthy persons.[5,6] The 
most important causes of these differences are related  to capillary 
leak syndrome, end-organ dysfunction, augmented renal clearance 
and hypoalbuminaemia.[7,8] Imipenem/cilastatin is a combination of 
a broad-spectrum beta-lactam antibiotic and a dehydropeptidate-1 
inhibitor.[9] It is necessary to combine imipenem with cilastatin 
to prevent the rapid degradation of imipenem by the enzyme 
dehydropeptidase-1 in the kidneys.[10] Imipenem/cilastatin is widely 
used to treat infections in critically ill patients in ICUs.[11] The 

antibacterial effect of imipenem is determined by the percentage of 
time within the dosing interval spent above the minimum inhibitory 
concentration (ƒT>MIC).[12] The dosing regimen, specifically in 
special population groups such as critically ill patients, is therefore 
determined by the pharmacokinetic properties of imipenem.[13] The 
pharmacokinetic-pharmacodynamic target of imipenem in critically 
ill patients recommended by recent reports is 100% ƒT>MIC.[14,15] 
Imipenem therapeutic drug monitoring is not widely available 
outside Europe and Australia.[15,16] The dosing of imipenem is usually 
determined by standard dosage guidelines that consider the severity 
of illness and creatinine clearance.[17-19] These guidelines were derived 
from pharmacokinetic studies done in healthy volunteers.[20,21] The 
dosage range for adults with normal renal function and body weight 
≥70 kg recommended in the package insert is between 250 and 
1 000 mg every 6 - 12 hours.[18] In the absence of therapeutic drug 
monitoring, the main determinant of imipenem/cilastatin dosage 
in critically ill patients is creatinine clearance (CrCl). However, 
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since most clinical laboratories report the estimated glomerular 
filtration rate (eGFR) and not CrCl, it is likely that the eGFR is 
commonly used for drug dosage adjustments.[22-24] Measuring urinary 
CrCL is cumbersome and prone to errors, and owing to the time 
required  for urine collection, results are delayed compared with 
eGFR.[24] Although CrCl is the most common method of estimating 
renal function for drug dosing, the availability and clinical use of 
the eGFR provides clinicians with an alternative.[25,26] Ideally, the 
clinician should have information on the absolute renal function, 
obtained by measuring CrCl, to correctly dose drugs. However, 
reports have shown that a relative measure of GFR may also be 
used to sensibly adjust dosing.[22,25-27] If a drug is solely renally 
eliminated, its clearance is equal to the GFR.[27] Previous studies 
have shown that reliance on conventional dosage guidelines as 
described above may not achieve therapeutic targets in critically ill 
patients.[17,28-31] A recent position paper on antimicrobial therapeutic 
drug monitoring in critically ill adult patients authored by an expert 
panel on behalf of the Infection Section of the European Society of 
Intensive Care Medicine, the Pharmacokinetic/Pharmacodynamic 
and Critically Ill Patient study groups of the European Society 
of Clinical Microbiology and Infectious Diseases, the Infectious 
Diseases Group of the International Association of Therapeutic 
Drug Monitoring and Clinical Toxicology, and the Infections in 
the ICU and Sepsis Working Group of the International Society of 
Antimicrobial Chemotherapy recommended that therapeutic drug 
monitoring be routinely performed when beta-lactam antibiotics are 
used in critically ill patients.[15] Despite this recommendation, the 
routine use of therapeutic drug monitoring of beta-lactam antibiotics 
has not been widely adopted.

The objective of this study was to determine the correlation 
between eGFR and imipenem trough levels of critically ill patients 
admitted to the surgical ICU of Steve Biko Academic Hospital, 
Pretoria, South Africa.

Methods
This prospective observational study was approved by the Faculty 
of Health Sciences Research Ethics Committee of the University of 
Pretoria (ref. no. 473/2017). Patients were recruited from the surgical 
ICU at Steve Biko Academic Hospital between March 2018 and 
October 2019. Informed written consent was obtained from each 
patient or from the patient’s next of kin if the patient was incapacitated. 
The eligibility criteria were as follows: ≥18 years of age, admission to 
the surgical ICU, and imipenem/cilastatin therapy (prescribed at the 
discretion of the treating clinician). Patients received imipenem/
cilastatin doses ranging from 500 to 1 000 mg, infused over 3 hours, 
every 6 - 12 hours. The dose was determined based on the eGFR 
as follows: patients with an eGFR >70 mL/min/1.73 m2 received 
1 000 mg 6-hourly, those with an eGFR between 41 and 70 mL/
min/1.73 m2 received 750 mg 8-hourly, those with an eGFR between 
21 and 40 mL/min/1.73 m2 received 500 mg 8-hourly, and those 
with an eGFR <21 mL/min/1.73 m2 received 500 mg 12-hourly. The 
eGFR was calculated with the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) equation.[32] Exclusion criteria included 
any patient who withheld consent or who did not fulfil all of the 
eligibility criteria. Clinical and demographic information, including 
the Acute Physiology and Chronic Evaluation II (APACHE II) 
score,[33] was collected from hospital files. Trough blood samples were 
collected in heparinised collection tubes (Beckton, Dickinson and 
Company, USA) from each patient, prior to re-dosing, after at least 
four doses of imipenem/cilastatin had been administered. This was 
done to approximate steady-state imipenem levels.[14] Immediately 
after collection, the samples were transported to the microbiology 

laboratory and centrifuged at 5 000 revolutions per minute for 
10  minutes to separate the plasma. Two millilitres of plasma were 
then removed and added to two millilitres of an ethylene glycol and 
2-N-morpholine-ethane sulfonic acid solution (1:1) (Sigma-Aldrich, 
USA) and stored at –70°C until analysis. High-performance liquid 
chromatography (HPLC) was utilised to measure the imipenem levels 
in the specimens. The details of the method used have been published 
previously.[34] HPLC was performed on a Shimadzu Ultra Fast Liquid 
Chromatography system (Shimadzu Corp., Japan). Analytical-grade 
imipenem that was used in the analysis was obtained from the 
European Directorate for the Quality of Medicines & HealthCare 
(Strasbourg, France). Stata release 15 software (StataCorp, USA) 
was used for the statistical analysis. Correlation between the eGFR 
and imipenem trough plasma levels was evaluated by the Pearson 
product-moment correlation coefficient.

Results
The study recruited patients during the period 1 March 2018 - 
31  October 2019. During this period, 69 patients were eligible for 
recruitment. Of these, 68 patients provided informed consent and 
were included in the analysis. One patient withheld consent and 
was excluded from the study. The study population consisted of 
43 males (63%), the mean age was 47 years (range 18 - 81), and the 
mean weight was 78 kg (range 40 - 140). On admission, 30 patients 
(44%) had sepsis, 16 (24%) were admitted for trauma, and 22 (32%) 
were admitted for miscellaneous surgical conditions. The APACHE 
II scores ranged from 4 to 39 (mean 18). The mean length of ICU 
stay was 16 days. The 28-day mortality rate was 29%. In terms of 
comorbid conditions, 25 patients (37%) had cardiovascular disease, 
13 (19%) had renal disease, 11 (16%) had HIV infection, 9 (13%) had 
diabetes mellitus, 8 (12%) had malignancy, 5 (7%) had respiratory 
disease and 4 (6%) had tuberculosis. Most infections (n=57; 84%) 
were hospital acquired. The most common sites of infections were 
bloodstream (n=42), intra-abdominal (n=35), lower respiratory tract 
(n=16), skin and soft tissue (n=12), genitourinary tract (n=7), line 
sepsis (n=7) and surgical site (n=4). Infections at more than one site 
occurred in 42 of the patients (62%). The mean albumin level was 
16 g/L (range 7 - 25), the mean creatinine level 142 µmol/L (range 33 
- 840) and the mean eGFR 91 mL/min/1.73 m2 (range 6 - 180). The 
eGFR was <60 mL/min/1.73 m2 in 24 patients (35%) and >130 mL/
min/1.73 m2 in 20 (29%). Imipenem trough levels ranged from 3.6 
to 92.2 mg/L (mean 11.5). The unadjusted Pearson product-moment 
correlation coefficient between the eGFR and the imipenem trough 
level was –0.04 (p=0.761). After excluding the two highest imipenem 
trough plasma levels (44.9 mg/L and 92.2 mg/L) as outliers, the 
correlation was –0.22 (p=0.077). The relationship is illustrated by 
scatter plots in Figs 1 and 2.

Discussion
Mortality rates from sepsis in ICUs range from 28% to 76%.[1] In the 
present study, the 28-day all-cause mortality rate was 29%. In the 
Defining Antibiotic Levels in Intensive Care Unit Patients (DALI) 
study, 16% of patients were found to have subtherapeutic beta-lactam 
levels.[3] These patients were 32% less likely to have a positive clinical 
outcome compared with those with therapeutic beta-lactam levels.[3] 
Several studies done in critically ill patients have found evidence of 
variable and low antibiotic concentrations when conventional dosing 
regimens are used.[35-37] Augmented renal clearance is a well-known 
reason for subtherapeutic levels of drugs with renal elimination.[8,36] 
Increased cardiac output results in increased blood flow through 
the kidneys and a subsequent increase in glomerular filtration rate 
that leads to increased elimination of drugs.[8,29] In the present study, 
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20 (29%) of the patients had eGFR levels >130 mL/min/1.73  m2. 
Pharmacokinetic studies of imipenem in critically ill patients report 
subtherapeutic imipenem levels in up to 70% (range 0 - 70%) of ICU 
patients.[17,28-31] These findings suggest that conventional imipenem 
dosage guidelines depending on CrCl may be unreliable. Since 
imipenem is primarily excreted renally and has a short half-life, a 
significant correlation between imipenem levels and renal function 
is expected.[9,38] However, previous pharmacokinetic studies on 
imipenem in critically ill patients have reported mixed results 
on this relationship, with some reporting significant correlation 
and others not.[13,17,19,38,39] In the present study, we expected to 
find a linear inverse relationship between eGFR and imipenem 
trough levels, since imipenem is principally renally excreted and the 
dosage of imipenem was determined by the eGFR. Interestingly, we 
found a poor correlation between the two variables that is clearly 
illustrated by Figs 1 and 2 and supports the findings and conclusions 
of previous reports that imipenem levels are not predictable in 
critically ill patients.[17,34,40,41] The result suggests that there are 
other factors influencing trough imipenem plasma concentrations. 
The implication of this finding is that one cannot simply adjust 
the dose of imipenem/cilastatin based on the eGFR in critically ill 
patients. To measure the adequacy of imipenem/cilastatin dosing 
in terms of antibacterial activity and to support dose optimisation, 
therapeutic drug monitoring is a powerful tool, especially in special 
population groups such as critically ill patients.[15] The extensive 
pharmacokinetic variability of imipenem in critically ill patients 

renders conventional dosing strategies obsolete. Therapeutic drug 
monitoring guided dosing offers a safe and effective way to ensure 
that optimal antimicrobial exposure is achieved in all critically ill 
patients. Unfortunately, therapeutic drug monitoring of beta-lactam 
antibiotics is not widely available in SA. The growing magnitude of 
the antimicrobial resistance burden certainly serves as an impetus for 
the implementation of therapeutic drug monitoring of beta-lactam 
antibiotics in routine clinical practice. To demonstrate the return 
on investment of such a strategy, well-designed randomised clinical 
trials are necessary.

Study limitations
This study has important limitations that should be considered. As it 
was conducted at a single centre and has a small sample size, the results 
may not be globally applicable. As it was a non-interventional study, we 
only analysed a single plasma sample from each patient. The findings 
therefore do not adequately represent the variability of imipenem 
plasma levels in critically ill patients during the treatment interval.

Conclusion
Considering the high mortality rate of sepsis in ICUs and the 
rapid global increase in antimicrobial resistance, it is crucial to 
dose antibiotics appropriately. The variability of antibiotic 
pharmacokinetics in critically ill patients renders this task almost 
impossible with sole reliance on conventional dosing guidelines. We 
found that eGFRs do not correlate with imipenem blood levels in 
critically ill patients. The implication of this finding is that the eGFR 
should not be used to determine the dose of imipenem/cilastatin 
in this population. Instead, the dose should be individualised for 
patients through routine therapeutic drug monitoring.
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Fig. 2. Scatter plot illustrating the correlation between eGFR and imipenem 
trough levels. Note that the two highest imipenem trough levels were excluded 
from this figure to better illustrate the data dispersion. (eGFR = estimated 
glomerular filtration rate.)
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