Main Article Content

Validation of an efficient visual method for estimating leaf area index in clonal <i>Eucalyptus</i> plantations


Rodrigo Hakamada
Carmeni Giunti
Cristiane CZ de Lemos
Sérgio R Silva
Marina S G Otto
Kevin B Hall
José L Stape

Abstract

Leaf area index (LAI) is a key ecophysiological parameter in forest stands because it characterises the interface between atmospheric processes and plant physiology. Several indirect methods for estimating LAI have been developed. However, these methods have limitations that can affect the estimates. This study aimed to evaluate the accuracy and applicability of a visual method for estimating LAI in clonal Eucalyptus grandis × E. urophylla plantations and to compare it with hemispherical photography, ceptometer and LAI-2000® estimates. Destructive sampling for direct determination of the actual LAI was performed in 22 plots at two geographical locations in Brazil. Actual LAI values were then used to develop a field guide with photographic images representing an LAI range of 1.0–5.0 m2 m−2 (leaf area/ground area). The visual LAI estimation guide was evaluated with 17 observers in the field. The average difference between actual LAI and visual LAI estimation was 12% and the absolute difference between the two methods was less than or equal to 0.5 m2  m−2 in 77% of plots. Pearson’s correlation coefficients were high between actual LAI and hemispherical photographs (0.8), visual estimation (0.93) and LAI-2000® (0.99) and low for the ceptometer (0.18). However, absolute values differed among methods, with the average difference between the actual and estimated LAI of [12]% for visual estimation, 28% for the LAI-2000®, 37% for the ceptometer and −43% for hemispherical photographs. The LAI-2000® and ceptometer overestimated LAI in all plots, whereas hemispherical photographs underestimated the values in all measurements, showing that these methods need calibration to be used. No differences were observed between actual LAI and visual estimates across stand ages of 2–8 years and LAI of 1.5–5.3 m2 m−2 (P > 0.05). The results show that visual estimation of LAI in Eucalyptus stands is a practical method that is unaffected by atmospheric characteristics and can be used on an operational scale.

Keywords: indirect LAI measurement, planted forests, visual estimate


Journal Identifiers


eISSN: 2070-2639
print ISSN: 2070-2620