SINET: Ethiop. J. Sci., 21(2):171-182, 1998
© Faculty of Science, Addis Ababa University, 1998 ISSN: 0379-2897

RANKED K-LONGEST PATHS IN AN ACYCLIC NETWORK, ITS
ALGORITHM AND APPLICATION

Berhanu Guta

Department of Mathematics, Faculty of Science, Addis Ababa University
PO Box 1176, Addis Ababa, Ethiopia

ABSTRACT: The acyclic network on which our problem is defined is a
weighted directed graph G=(N, A) with no directed cycle. A method to
determine the first, second, third, .., and k-th longest paths for a given integer
k=2 is described. An algorithm of 0(k’'m) to determine the k-longest path in the
network consisting of m arcs is also given. There can be various advantages of
determining k-longest path in many industrial, engineering and management
problems that deal with planning and scheduling of activities involving n specified
Jjobs subjected to precedence constraints. Indeed, such problems can be.modelled
mathematically by acyclic networks.

Key words/phrases: Acyclic network, algorithm, CPM, k-longest paths,
longest path

INTRODUCTION

We consider a finite directed graph G=(N, A), where N is a set of finite nodes
and A is a set of directed arcs in which each arc is joining a pair of nodes. We
denote an arc emanated from a node i and incident into a node j by an ordered
pair (i, j).

A path P in the directed graph from a node i, to a node i, is a sequence of
nodes and arcs alternately occurring in the directed graph, i,, (i}, i), i,, (i,, 13),
i3, ..y (i1 i,), 1i,. We denote the path P by i, - i, -,..., -i,,~ i, (Turner, 1970).
A directed cycle is a path i, - i,-...- i ,- i, -i;. If a path P contains an arc (i,
J), we may describe it as (i, j) € P.

172 Berhanu Guta

A weighted directed graph or a network is a directed graph in which a
numerical value is associated with its arcs and/or nodes. In the sequel, the
weight is a numerical value that is associated with the arcs. The weight of an
arc (i, j) may be called the length of the arc and denoted by I;.

Given a path in a weighted directed graph, the weight of the path is the sum of
the weights of all arcs on the path (Hamacher and Queyranne, 1985; Brucker,
1995). The weight of a path P may also be called the length of the path and
denoted by I(P), i.e.,

() =Xl;, GjeP

A graph is called an acyclic network if it is a weighted directed graph with no
directed .ycle (Murty, 1992). Many industrial problems such as activity
scheduling problems which involve n jobs with precedence constraints and also
many engineering and management problems such as project planning and
scheduling can be modelled mathematically by acyclic networks. One of the
primary objectives of such planning and scheduling problems is to find a
schedule of activities so as to complete the jobs in least possible time.
Mathematically, this is the problem of determining the longest weighted path in
the acyclic network since the weight of the longest path is just the least possible
time for the completion of jobs (Brucker, 1995). It is well known that this
problem is solved by the Critical Path Method (cpM).

Even though the technique of cPM and its algorithm can be used to find the
longest path in the acyclic network, it never tells us which one is the next
longest path, next to the actual longest path. In general, however, it may be
desired for a number of reasons to be able to determine, in addition to the
longest path, the next or second, third, ..., k-th longest path for an integer
k=2. Therefore this is to extend the already existing longest path algorithm or
CPM to an algorithm that can find these desired paths in the acyclic network.

“SINET: Ethiop. J. Sci., 21(2), 1998 173

RANKED k-LONGEST PATHS

Definition

Let P be the set of all paths from the source node to a node j in the acyclic
network and let /: P - [0, o) be the weight function which assigns the length
(or distance value) to a given path. Let an integer k =2 be given. Then,

1. A set of ranked k-longest paths R = {P,, P,, P, ..., P,} to the node j is the
set of paths such that:
IP) =21P) 21P) = ... =2IP) =IP) VPER.

2. P is the next longest path to P, forr = 1,2, ..., k-1, if
i both P and P, are paths from the source node to the node j,
it. IP,) = I(P), and
iii. I(P) = I(p) = I(P) for some path p from the source node to
j implies either I(P) @ I(p) or I(p) = I(P).

Assumptions

1. The network has only one source node and only one sink (terminal) node.

2. The network is topelogically ordered, i.e., we numbered (or ordered) nodes
in the network in such a way i < j for each arc (i, j) in the network.

3.0 = lj < oo, where [; is the length of an arc (i, j).

Notation

Let P{ be actual longest path from source node to the node j. Then,

a. ,P,j+1 denotes the next longest path to P,j , for each r=1, 2, ..., k-1.
‘b. At the sink node n, P, is the r-th longest path in the network and may
be denoted simply by P..
Definition

Pf , =1, 2..., k-1, is called the r-th longest path from the source node to a
node j in the network.

174 Berhanu Guta

To determine the set of ranked k-longest paths, we select first a desired integer
k = 2. Then starting from node 1 (the source node), step by step, we find a set

of ranked k-longest paths Plj , sz > eees P,{ to each node j in the network. In
general, to each node j we will assign appropriately a k-vector of distance label

d@) = (@, dp, ... d;) where the r-th component label d;, = I(Pf) and d; = d,
= .. =d
To do this, one can proceed essentially as follows:

Initially setd,, = 0, i.e., I(Pll) = (. This means the first longest path from the
source node to itself is assigned 0.

Then set d,, = -o0, i.e., l(P,l) = -0, for r=2, 3,..., k, which means there are
no other second, third, ..., or k-paths from the source node to itself.

Thus we have, at the beginning, d(1) = (0, -0, ..., -o). Then for any other
node j = 2, 3, ..., n initially we determine, of all paths to j, a longest path
from node 1 to node j and its distance using the forward path algorithm of the

cPM (Murty, 1992, p. 413). This is the first longest path to j, I(P)). We
therefore set d;, = l(Plj). Once we get, P{ we cut (or exclude) this path

temporarily, i.e., exclude all arcs on P{ , and find the next longest path to the
node j. Cutting this path is necessary, otherwise it reappears in the next steps.

To cut this path, numerically we assign temporarily l(P{):= -o0, i.e., a
sufficiently large negative number, say -99999, which depends on the particular
problem.

After cutting P{ , we determine a longest path to j and its distance from all
remaining paths to j. This path is sz , the second longest path to node j. Thus
we assign d, = l(P,{) and cut also this path in the same way as P{ is cut. We

continue in this way until P,{ and d;, are determined. If there is no r-th path to
a node j, we put d;, = -oo,

SINET: Ethiop. J. Sci., 21(2), 1998 175

In each step, the cutting of a path should be temporary since we may need the
path later when we find labels of nodes j+1, j+2, ..., n, since the r-th longest
path to j may share some arcs with the next one. The key to the procedure is.
in fact, the ability to cut a path temporarily. We will see a way to do this in the
next algorithm.

In the next algorithm for each node j we need information about its predecessor
node corresponding to the r-th longest path to j. For this purpose we have to
construct a predecessor index pred(j(r)) which records a predecessor of the node

j that lies on P,j . In'such cases, if pred(j(r))=i(r,), for somer, € {1,2, ..., k},
then this is to mean node i is the predecessor of the node j that lies on P;i and,

going back, we determine the predecessor of the node that lies on P,j from

pred(i(r,)); and so on. At the termination of the algorithm, we get the r-th
longest path P, by the help of the predecessor indices starting from the sink
node n, following pred(n(r)) back to the node 1.

For each node j, the precedence node(s) can be viewed as a k-vector

(pred (j(1)), pred ()(2)),..., pred(j(k))) = (i,(ry), i(r), ..., (1),
whenever there are k distinct paths to j. Observe that, however, pred (j(r)) can
be i(r,) only for some r, such that 1 < r, < rand i € B(j) ={i/i, j) € A4}.

RANKED K-LONGEST PATH ALGORITHM

Consider a topologically ordered acyclic network, and a given integer k = 2.
In the algorithm, the variable Temp (i(r)) holds temporarily the length of the r-
th longest path to the node i.
Step 1: Initialisation:

Setj:=1;
dy: =0; d,:;= -, forr = 2,3, ..., k;

176 Berhanu Guta

Step 2: Main step:

Letj: = j+1;
Let BG) ={ii, j) € A}.
Let Temp (i(r)) = d, forall i€EB () and r =1, 2, ..., k;

Forr = 1 to k Do
Begin
If r = 1 then,
Begin
d;, = max. ; ¢ g{Temp(i(1))+ [;};
Let i, be any one at which the maximum occurs;
pred ((1)) = in(1);
set Temp (i,(1)) = -oo; (this cuts the path P{ temporarily)
End-if

Else
Begin
d;, = max. ; ¢ gp{Temp(i(t)+ L/t = 1,2, ..., 1};

Let i, (1), fori, € B(G) &r, € {1, 2, ..., r}, be any one at
which a positive maximum occur;
pred (@) = i, (10);
Set Temp (i, (r,) = -o;

End-Else

End-For

d@@):= (d;, dp, ..., dy);
If j < n, GOTO STEP 2;

Else
Forr=1tok
P, = 1-ij-...-i,, -i,-n, where
pred (n() = i, (.), pred @i, (.)) = i,(.), ..., pred (i,(.)) = 1(1);
STOP.

As an example, let us find the ranked 3-longest paths of the following network
using the k-longest path algorithm (Fig. 1).

SINET: Ethiop. J. Sci., 21(2), 1998 177

Fig. 1. Sample of an acyclic network, The number on each arc (arrow) represents
the weight of the corresponding arc.

Applying the Algorithm to this network with k=3, we can get the following
results (Table 1).

Table 1. Distance label and precedence node(s) for each node in the network of
Figure 1.

d(1)=(0, -, -x)

d2)=(3, -, -), pred(2(1))=1(1)

d(3)=(7, 4, -»),
d4)=(1,9, 8),
d(5)=(17, 15, 14),
d(6)=(19, 19, 17),
d(7)=(28, 28, 27),

pred(3(1)=1(1)
pred(4(1))=2(1)
pred(5(1))=4(1)
pred(6(1))=3(1)
pred(7(1))=6(1)

pred(3(2))=2(1)
pred(4(2))=1(1)
pred(5(2))=4(2)
pred(6(2))=5(1)
pred(7(2))=6(2)

pred(4(3)=3(1)

pred(5(3))=4(3)
pred(6(3))=5(2)
pred(7(3) =4(1)

Then, we can get the ranked 3-longest paths P,, P,, and P,, of the network
using the predecessor indices (Table 1), starting from the sink node 7, following
pred(7(r)), for r=1, 2, 3, back to the node 1.

That is,

P;: 7, pred(7(1))=6(1), pred(6(1))=3(1), pred(3(1))=1(1).

178 Berhanu Guta

= P, is 1-3-6-7 and [(P,)=28.

P, : 7, pred(7(2)=6(2), pred(6(2))=5(1), pred(5(1))=4(1), pred(4(1))=2(1),
pred(2(1))=1(1).
= P, is 1-2-4-5-6-7 and I(P)=28.

Py 7, pred(7(3))=4(1), pred(4 (1))=2(1), pred(2(1))=1(1).
= P, is 1-2-4-7 and /(P;)=27

COMPLEXITY OF THE K-LONGEST PATH ALGORITHM

Consider m arcs and n nodes in the network. The complexity of the k-longest
path algorithm is influenced by how it finds the maximum value and the number
of repetitions (iterations) that occur in the main step of the algorithm.

In the main step, there are n-1 iterations, where each iteration corresponds to
each node j= 2,3, ...,n respectively. Moreover, to determine the r-th longest
path incident to a node j, at most r | B(j) | comparisons are to be made in order
to find the maximum value for d,, where | BGY| is the number of arcs incident

into j. Thus, the total operation can be approximated by:

fj(fjrlB(j)l} - [kl r] [2”:|B(j)|] - -.k—(%-llm

j=2 \ r=1 j=2

Hence the complexity of the k-longest path algorithm is 0(k’m).

SOME USES OF K-LONGEST PATH

Here we consider some of the advantages of determining the k-longest paths to
a project planning and scheduling problem. For a given integer k = 2 and a
project network (network model of a project), the ranked k-longest paths
together with their respective lengths can be found using the k-longest path
algorithm. In this case, the r-th components of the k-vector of distance label

SINET: Ethiop. J. Sci., 21(2), 1998 179

dg) = (d;;, dy,..., dy) that can be obtained by the algorithm gives us the least
possible total duration for the completion of activities lying on the r-th longest
path in the project network from the source node to a node j.

Theoretically, one of the advantages of the cPM is that it helps to focus attention
on the critical path(s) where any slippage can delay completion of the project.
But, having all critical paths, the next longest path may also have a potential to
delay the completion of the project if not managed properly. Hence for more
efficiency in managing a project, it is also helpful to know the set of ranked k-
longest paths in a project network. By determining these k-longest paths that
are suspected to have a potential to delay the completion of the project, the
project manager can pay attention to them and make proper follow up of these
paths so as to accomplish every activity on scheduled time as much as possible.

Knowledge of k-longest paths and their respective length (duration) helps also
to answer questions like “how much is the duration of a path next to a critical
path near to the optimal completion time of the project? How much difference
is there between the duration of the second, third, ..., k-th longest path?” and
“how much total float time is available for each of these k-longest paths?” This
information can help for efficient utilisation of resources and also indicates to
the project manager how much attention should be given to activities on
respective paths.

Suppose it is required to complete a project in some targeted time T before the
normal minimum completion time in order to meet a desired project due date.
It is commonly recognised that the duration of the majority of activities in most
projects can be reduced (called crashing) by allocating to it extra resources
(manpower, capital, machine, etc.). To make crashing, reducing duration of
some activities on the critical path(s) with minimum crashing cost constitutes the
first action. However, the reduction of the duration of the critical path(s) only
may not be sufficient since the next longest path can require a duration beyond
T. Hence the knowledge of k-longest paths is helpful also in such cases. After
finding k-longest paths P, P,, ..., P, for which I(P.,) > T = I(P), one can
make economically the reduction of the duration of some activities that lie only
on these ranked (k-1)-longest paths so as to meet the required project due date.

As a practical example, the precedence relationship among jobs in the project
(ideal) “Building a hydroelectric power station” is given in Table 2.

180 Berhanu Guta

This is followed by its project network representation and the application of the
k-longest path algorithm to determine the 3-ranked longest paths in the project
network.

Table 2. Precedence relationships among jobs and their durations for the
hydroelectric power station building project. The number(s) under the
column Immed. pred. indicate(s) the job number of immediate predecessor
of the corresponding job.

Job Job Description Immed. Arc Duration
No. Pred. repres. (weeks)
1 Ecological survey of dam site L (1,2) 10
2 File environmental impact report . (1,3) 7
3 Economic feasibility study 2 3,4 5
4 Get approval of a relevant authority 3 4,5) 7
5 Preliminary design and cost estimation 1,4 6,7 6
6 Study alternative labour power 1,4 (5,6) 4
7 Project approval and commitment of funds 5.6 7.8) 9
8 Call quotations for electrical equipment- 7 (8,10) 5
(turbines, generators,...)

9 Select suppliers for electrical equipment 8 (10,11) 10
10 Final design of project 7 8,9 3
11 Select construction contractors 7 (8,12) 5
12 Arrange constriction material supply 10,11 (12,13) 2
13 Dam building 12 13,149y 22
14 Power station building 12 (13,15) 16
15 Power lines erection 9,10 (11,17 20
16 Electric equipment installation 5,14 (15,16) 8
17 Build up reservoir water level 13 (14,16) 4
18 Commission the generators 16,17 (16,17) 3
19 Start supply power 15, 18 (17,18) 2

SINET: Ethiop. J. Sci., 21(2), 1998 161

The precedence relationships among the jobs of the hydroelectric power static:.;
building project can be represented as a directed network as follows (Fig. 2):

Fig. 2. Network diagram for the hydroelectric power station building problem.

182 Berhanu Guta

Applying the ranked k-longest path algorithm to this project network (Fig. 2)
for k = 3, we get:

First longest path: P,: 1-3-4-5-7-8-12-13-14-16-17-18, and I(P,)=72.

=» The minimum possible (optimal) duration of the project, under normal
conditions, is 72 weeks and each activity on P, is a critical activity, i.e., if any
activity (job) on this path is delayed by e amount of time, then it results in a
delay of completion time of the project by e.

Second longest path: P,:1-3-4-5-7-8-10-11-17-18; and [/(P,)=71.
Third longest path: P,: 1-3-4-5-7-8-12-13-15-16-17-18; and {(P,)="70.

= There is a total float time of one and two weeks on the second and third
ranked longest paths, respectively; i.e., completion of activities on the second
and third ranked longest path can be delayed by up to one and two weeks
respectively without affecting the optimal completion time of the project.

ACKNOWLEDGEMENT

I am very grateful to the German Academic Exchange Service (DAAD), which has been
providing me with the relevant literature. I thank also anonymous reviewers of SINET
for pointing out some mistakes in the original manuscript and for their valuable
suggestions.

REFERENCES

1. Brucker, P. (1995). Scheduling Algorithms. Springer-Verlag, Berlin.

2. Hamacher, H.W. and Queyranne, M. (1985/6). K-best solutions to combinatorial
optimisation problems. Annals of Operations Research 4:123-143.

3. Murty, K.G. (1992). Network Programming. Prentice-Hall Inc., New Jersey.

4. Turner, J.C. (1970). Modern Applied Mathematics: Probability, Statistics,
Operational Research. Van Nostrand Reinhold Comp., New York.

