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INTRODUCTION

Let the relationship between an observable random variable y and k explanatory
variables X,,....X, in a T-county system be specified in linear regression form

y=XB +u, M

where X is a T xk matrix of known constants with full column rank & < 7, and
B is a kx1 vector of unknown parameters. The vector u is a disturbance term

with E(u) = 0 and Cov(u) = oi V,, where oi is a positive unknown scalar and
V. a TxT positive definite, matrix with identical diagonal elements. The

assumption that the diagonal elements of V. are all identical indicates that we
consider only homoscedastic disturbances u’;s which are correlated.

*The ordinary least squares (0OLS) and the generalized least squares (GLS) estimators
of B in model (1) are given by B=(XX)7'X" and P=XV.'007XV'y,
respectively, with covariance matrices Cov(f) = o>(X’X)' X'V, X(X'X)"" and
Cov(P) = a2(X'V.'X).
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When the covariance of the disturbance vector u is not a scalar multiple of the

identity matrix, that is Cov(u) # oil as in model (1), it is well known that the
GLS estimator provides the best linear unbiased estimator (BLUE) of § in contrast
to OLS (see Fomby et al., 1984, p. 17).

But in applications, Cov(u) usually involves unknown parameters like a spatial
correlation coefficient, so one has to look for another estimator, OLS, say. In
cases where Cov(x) does not involve unknown parameters, one problem facing
a researcher dealing with model (1) is how to measure the efficiency of oLs

estimator P relative to GLs estimator . For spatial case, this question can be
expressed as: what can we gain by estimating 8 in the regression model based
on spatial assumptions instead of using simple standard regression specifica-
tions?

A number of authors have investigated the efficiency of OLS relative to GLS
estimator when the errors are serially or spatially correlated by using various
efficiency criteria (see Bloomfield and Watson, 1975; Krimer, 1980; Krimer
and Donninger, 1987; Haining, 1990; Griffith, 1988; Cordy and Griffith, 1993;
Krimer and Baltagi, 1996). The - most remarkable feature of the results obtained
is that the relative efficiency depends mainly on the error process considered,
the regressor matrix X and the degree of correlation. The relevant literature can
be grouped into two, namely papers which assume X as given and seek bounds
for .the efficiency as the covariance matrix varies, and papers which take the
covariance matrix as given and consider bounds for the efficiency as X varies.
Another aspect of the resulting analysis shows the behaviour of the relative
efficiency of OLS when the correlation parameter tends toward the boundary of
the parameter space.

In this paper, bounds for the efficiency of OLS relative to GLS estimator of 8 in
model (1) under first-order spatial error process, that is under the assumption
that the covariance matrix is given, are constructed by using the measures of
efficiency based on
- the euclidean norm of the difference PyV. - V.Py,

Py = X(X'X)'X'
- the ratio of the traces of the covariance matrices of X and Xf

- the ratio of the determinants of the covariances of § and f .
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The bounds obtained can then be used to decide whether to apply OLS method
or GLS method based on the assumptions of first-order spatial process.

LINEAR REGRESSION WITH FIRST-ORDER
SPATIAL ERROR PROCESSES

In order to analyze the efficiency of OLS relative to GLS estimator given specific
error process, one needs the structure of the covariance matrix of the disturb-
ance vector u. So, we start by specitying first-order spatial error processes.

Let the components of u follow a first-order spatial moving average (MA(1))
process

T
U= pY W€
=1
or, in matrix form
u=pWe + ¢ 2)
where p denotes a spatial correlation coefficient for a given county system and
¢ is an error term with E(e) = 0 and Cov(e) = oi[ { is the T-dimensional

identity matrix). Wis a TxT matrix whose elements are kngwn non-negative
weights defined by (Cliff and Ord 1981, pp. 17-19):

>0, ifiandjare neighbours (i +j)
i =0, otherwise.

The element w;; of the weights matrix W measures the strength of the effect of
county j on county i.

Under first-order spatial autoregressive (AR(I)\) process, the components of u
follow the pattern '

T
u; = 92“’,';“; * €
i
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or, 1n matrix form

u=pWu + ¢€. (3)
Equations (2) and (3) can be written as

u=(«U+pWe and u = (I-pW)'e, 4)

respectively, where in the AR(1) case the matrix [ - oW must be non-singular.

From (1) and (4), we obtain four possible structures of Cov(u) = oz v, for the
first-order spatial error process:

+pW)T+pW) : MA(1)

(I+pW) : MA(Q1)-conditional
“la-ewyid-p W) ARG

d-pW)! : ARQ) - conditional.

&)

The conditional cases are special cases of the unconditional process (Bartlett,
1971; Besag, 1974). To ensure that V. is positive definite, the possible values
of p must be identified (see Horn and Johnson, 1985, p. 301). Once the
structure of the covariance matrix is specified the next step will be to analyze
the efficiency of OLS estimator by using different efficiency measures. Before
we analyze efficiency, let us introduce a general expression of the covariance
matrix of the disturbance vector and give some general assumptions used
throughout the paper.

According to the assumptions given in model (1) the matrix V. has identical
diagonal elements, and denoting this element by v, we get

Cov(u) = on* = (v oi)V = oiV, (6)

where V = (1/v)V, and oi = uoi is the variance of the disturbances u;, i =

1, ..., T. Using the above assumptions under spatial process we can now write
model (1) as the familiar general linear regression model
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y = XB +u, Ew =0, Cov(w) = o.-V. ©)

We assume that X'X = I. For the matrix X with full column rank, there is no
loss of generality in assuming that X'X=/ because under the transformation

y=)?5+u (8)

with X=X(X'X) 2 and & =(X’X)"?B the condition X' X =1 is valid for all X,
and the OLs and GLs estimators of 8 are given by P =(X'X)"2 8§ and

B=(X'X)""2§ respectively. § and & are the estimators of § in (8). Further-
more, we impose the following assumptions on the weight matrix W throughout
or when needed (see Appendix regarding examples):

- Wis symmetric.

- Wis symmetric and orthogonal.

- W is symmetric with row sums equal to one.

EFFICIENCY BASED ON THE EUCLIDEAN NORM

Consider the measure of efficiency based on the euclidean norm of the
difference PV - VPy defined by (see Bloomfield and Watson, 1975)
eo) 1= Y| PxV - VP
= Ytr(PxV - VPy)'(PxV - VPy))
= tr(PyV?) - tr(Px V) . &)

When e,(p) = 0, the OLS estimator B can be applied without loss of efficiency
whereas a loss of efficiency is expected if e, (o) # 0. In what follows u(A4)

denotes the i-th eigenvalue of a T'x T matrix A.
Theorem 1 (Bloomfield and Watson, 1975)

Assume that p, (V) < ... < p(V). Under the assumptions that X'X = I, V
positive definite and 7 > 2k, we have
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k
e,(p) < i—zlj (8, () g (V) (10)

Remarks.

When there are big differences within the k pairs (u,(V), pr..:(V)) of the
eigenvalues of V, then the bound in (10) will be large. The restriction T = 2k
by Bloomfield and Watson allows to take pairs at a time.

Based on the theorem by Bloomfield and Watson the following result can be
stated.

Theorem 2 '
Let u(V) < ... < p(V). Under the assumptions that X’X = I, V positive
definite and T = 2k, we obtain

' k
er(p) < f—;z (YUARITN ()i (11)
V=1

Proof:
By inserting V = (1/v)V, in (9), we have

e(p) = Slr(P VD -r(PV V) . (12)
v
The result follows then by applying Theorem 1. ‘ O

In the following the upper bounds of e,(p) will be given by applying the
relationship given in (11) under some assumptions on the weights matrix.

Corollary 1
Let X’X = [ and T = 2k. When the components of the disturbance vector u in
model (7) follow a conditional spatial MA(1) process, theg

e(p) < ==Y (W) - pp (WD) (13)

k
p?
4
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Proof:

For a conditional spatial moving average process of order one the matrix Vi is
given by V. = (I + pW), with W being symmetric. The diagonal elements of
V. are all equal to one because the respective elements of the weights matrix are
all equal to zero. This implies that v = 1. Furthermore,

p(V,) = 1+pp W),

(14)
where the eigenvalues p (Vi) and (W), i=1, ... , T are in ascending order.
Inserting (14) in (11) completes the proof. O

The bound in (13) will be large when there are large differences within the &
pairs of eigenvalues (u(W),pr, (W) of the matrix W. That is, the efficiency
of OLS relative to GLS estimator will be lower when the differences within the
pairs of eigenvalues of W are large.

If the row sums of W are equal to one, then e,(p) < kp’ because the absolute
value of the eigenvalue w,(W) is less than or equal to one for all i (see Graybill,
1983, p. 98).

Remark:

The result of Corollary 1 also holds for a conditional spatial AR(I) process if
W is orthogonal.

Corollary 2

Assume that W is orthogonal and symmetric. Let X'X = [ and T = 2k. When
the components of the disturbance vector u in model (7) follow a spatial MA(1)
or AR(1) process, then

4k p?

AP
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Proof:

MA() process:

Under a spatial MA(1) process we have
Vo= + pWI + oW').

From the assumption that the weights matrix W is orthogonal and symmetric it
follows that

Vo =1 + DI + 20W,

implying v = 1 + o and (Vo) = (1 + p® + 2op(W). Inserting these
eigenvalues in (11) we get

2 k
o)
e (p) < mg(Pi(W) - llT_i+1(W))2

Since W is orthogonal and symmetric we have u,(W) e{-1,1}, which gives ¢,(p)
< (4ko")((1 + p*)

AR(1) process:
Under a spatial AR(1) process the matrix V. is given by

Vi=(-poW*I - pW)

When the weights matrix W is assumed to be symmetric and orthogonal, we
obtain (I - pW)* = (1/(1 - pP>))(I + pW) (see Searle, 1982, p. 137), and V. has
the form

V,= — L _(@+pD+2pW)
(1-p%)?

This implies that v = (1 + p®)/(1 - p? and

1
1-p

p’,’(V*) = ( a-+ P2) + 2P P',(W)) P (15)

2y
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where the eigenvalues are in ascending order. Inserting (15) in (11) and using
the fact that u(W) € {-1,1} completes the proof. <&

The following result shows that the OLS estimator can be applied without loss
of efficiency as p goes to one.

Theorem 3 ‘
Let R(X) be the k-dimensional space spanned by the columns of X, and let
:=(1,...,1Y € RX). If lim,, V = c€€’, cER, then lim ., e,(p) = 0.

Proof:
The efficiency e,(p) can be written as:

ep) = tr(PV2) - tr(Py VY = tr(PV(V - PyV))
="tr(Py VM, V).

When the condition lim,,, V = cf{’ holds, we have

lime,(p) = cZmr(P, 1¢M,11)
p-1

Since £ € R(X) we get Myl = (I - Py)Xy = 0, y being a k x 1 vector, and this
implies lim_,, e,(p) = 0. " o

EFFICIENCY BASED ON THE RATIO OF TRACES

If the ratio of the mean squared errors is used to define the measure of
efficiency of OLs relative to GLS estimator, then we have (see Krimer, 1980)

e p) = TCoVXE)
r(Cov(X B))

with Cov(XP) = oiX(X’V"X)"X"and Cov(XP) = o> P,VP, . Using this
measure of efficiency a number of papers investigate the efficiency of oLs

relative to GLS estimator under stationary AR(1) process in time series and
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spatial models (see Krimer, 1980, 1984; Kramer and Donninger, 1987; Krimer
and Baltagi, 1996).

The following theorem gives a lower bound for e,(p) which holds for all
covariance structures under general linear regression model (7).

Theorem 4
Let X'X = I. Then

i e
E::l IJT—kﬂ'(V)

< e(p)<l. (16)

Proof:

. 2 . 2 . . .
Since o}, in ey(p), cancels out, we set o, =1 in calculating covariances. Under
the assumption X'X = I, we have

tr(Cov(XB)) = tr(P,VP) = t(X'VX)

(a7
and
tr(Cov (XPB)) = tr(X(X’V“X)"X’) = tr(X'vix!
= E pX VI
k
18
- Y v ,V T (18)

Applying Poincaré separation theorem we obtain the following inequalities (see
Horn and Johnson, 1985, p. 190):

k k

Y p () < @CovXBY) < Y fpy (V)

i=1 i=1

VD < wXVIX) < up (V. (19)

The second inequality in (19) implies
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1 1
> : R
pEVIX)  pp VY

Using (17) to (19) we have

k
= 1
tr(Cov(XB)) >
z": p'T~k+i(V—l)
k
= E P‘i(V)
) i
tr(Cov(XB)) = 2 P'T_kﬂ-(V) . (20)

From (20) it is clear that

k
DINE(D)
i=1
k

E b rgi(V)
i=1

< ep) -

The inequality e,(p) < 1 follows from the optimality of GLS estimator (see
Krimer, 1980). O

If there is a large difference between the sum of the £ smallest and k£ largest
eigenvalues of V, then the efficiency of OLSE will significantly be smaller, but
never less than the ratio of the smallest and the largest eigenvalues

Bonil V) e V).

Remark:
If the diagonal elements of V. are not identical, meaning that the u’s have
different variances, then we get

k
3 V)

i=1
k

ey(p) 2 .
E pT—ki-i(V*)
i1
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For spatial models with first-order spatial error process the following result is
obtained.

Corollary 3
Assume that the matrix X fulfils X'X = [I. Let the weights matrix W be

symmetric with row sums equal to one. If the components of the disturbance
vector u follow a spatial MA(1) or AR(1) process, then

A-pp p>0 . 1)

e2(p) 2 (1+p)2 y

Proof:

MA(1) process

Under a spatial MA(1) process with symmetric weights matrix the eigenvalues
of V. are given by

l"I'i(I,:k) = (1+pll,(W))2 > i= 1,...,T s

where the eigenvalues of W and V. are in ascending order. When the row sums
of W are all equal to one, then the absolute value of p,(W) is less than or equal
to one for all i (see Graybill, 1983, p. 98). This implies

Ya-p2 < wv) < Lasp2, >0,
L L (22)

so that applying Theorem 4 gives (21).

AR(1) process
Using the same reasoning as in the MA(1) case we obtain the following bounds
for the eigenvalues of V:

1 < V)< 1

—_— s, p>0
(1 +p)?

v(1-p)? 23)

and (21) follows by applying Theorem 4.
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In what follows we use a measure of efficiency which is based on the
determinants of the covariances of the least squares estimators, and give a lower
bound for the efficiency of OLS relative to GLS estimator.

EFFICIENCY BASED ON THE RATIO OF DETERMINANTS

Consider the measure of efficiency given by (see Watson, 1955)

_ |Cov(B)| _ X'x|?
e3(p): - ; paeram
|Cov(B)|  |X'VX||X'VTX]|

where |.| stands for determinant. The matrices X' VX and X'V'X are positive
definite because V is positive definite and X of full column rank. This implies
that e,(0) > 0.

Let A and B be T x k matrices and assume that B'B is non-singular. The well
known Cauchy-Inequality concerning the determinants of two matrices A and
B states that |A'B|*> < |A'A| |B'B| (see Basilevsky, 1983, p. 167). Using
A=V'?X and B=V?X, we get |X'X|> < |X'VX||X'V'X|. This implies,
under the assumption X'X = I, e(p) < 1.

The following theorem gives a lower bound for e,(p).

Theorem 5
Let X’X = I. Then

rA(V)

. elp) = _—
" i1 W7 V)

24)

Proof:
By applying Poincaré separation theorem we get
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k

Hu(V) < Hu(X’VX) < HuT wi(V)

k

Op,v™ < Hu X'V'X) < Hp.T VY
i=1 i=

where the eigenvalues are in ascending order. This implies
k k
|1 XVX| = Mp,XVX) = Hp(v),
i=1 i=1
so that

k
1 <cm—L .
1XVx| =p V)

Furthermore,

k
1XVX| s Hu, (V)
i=1
k
1XVX| < Hpp, VhH .
i=1
This implies

k
11
IXVX|  tBpg(V)

k
) 1
| XVIX| < II ——. 25
i-1 B (V) )

According to the definition, we have

1/|X'vX
eyp) = ALXTVX]
|X'V1X|

and using (25) yields the asserted result. &
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Remark:
Bloomfield and Watson (1975) give a narrower lower bound for e (p) under the
additional assumptions that T = 2k and k> 1.

Under first-order spatial error process we get the following result.

Corollary 4
Assume that X'X=]. Let the weights matrix W be symmetric with row sums

equal to one. If the components of the disturbance vector u follow a spatial
MA(1) or AR(1) process, then

1- 2k
es(p) = (—-‘3); , p>0.
(1+p)
Proof:
The proof follows by applying Theorem 5 using the bounds of the eigenvalues
of the matrix V given in (22) and (23). <o
Remark:

When the diagonal elements of V. are not identical, meaning that the u;’s have
different variances, we get

k(v
(p) > I—F— .
P i=t B, (V)
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Appendix
Examples for orthogonal and symmetric weight matrices.

001
0010
6ioc O
1600
h 0001
0010
O 6100
1000

8100

1000

esot O

0016 _

) 6100
1660

O 06001
0010

Examples for symmetric weight matrices with row sums equal to one.
01001
1010¢

si1eio O
00161

10010 \

610601

10100

@) 6010610

GO 10

toe1a,

w, -

13
N
N

01111
10113
1terr O
11101
ilri1i0
KO 61111 °
1611
O PI6LR
11161
11110




