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ABSTRACT: Let f be analytic on the compact set EI C, of positive transfinite diameter and let C;
denote the largest equipotential curve of E such that fis analytic within C.. Generally, the growth of an
entire function is measured in terms of its order and type. Here we have established the relations
between maximum modulus, maximum term and interpolation error of best uniform approximation to
a function f 1 C(E) ={ f holomorphic on int (E) and continuous on E } by algebraic polynomials

and Lagrange polynomials, in the form of direct estimates.

Key words/phrases. Equipotential curve, extremal polynomials, interpolation errors, Lagrange
interpolation polynomial, transfinite diameter

INTRODUCTION

Let E Dbe a compact set in complex plane and
x ™ :{Xno,an,...,Xnn} be a system of {+1)
points of the set E such that

m)= & K, -

V(X Oo£j£k£n nj X
j (n)) - A" IX )

D (X Ok:Oklj nj Xnk

and

,j=01,...,n.

Again, let h M = {h no,hnl,...,hnn} be the
system of (n+1) points in E such that

v, ° V(h (“)):supx(n)i EV(X(n))and
Dh®)eDh®)for j=12...,n.

Such a system always exists and is called the nth
extremal system of E. The polynomials

. ~n &z-h, 0
'—(J)(Z’h(n)):Ok:oK,iéﬁz’ j=0L1...,n,
nj nk @

are called Lagrange extremal polynomials and the
limit d © d(E)=lim 4, V2" is called the

transfinite diameter of E.

Let us define the best uniform approximation to
f 1 C(E)= { f holomorphic on int (E) and
continuous on E } as follows :
”1,1(“’5) ° mu,l(f) =inf dr " f- g" =|| f- P""’
where” >+| is the sup norm and P, (Z) denotes the

set of all polynomials of degree at most .
We also define

M. (f,E)° m,(f)=|L,- L, n®2
m.(f.E)° m,(f)=|L,- f],

where
nl N and

L(2=a _ LY(zh")fh,)

is the Lagrange interpolation polynomial of degree

n.
Let

Q ¥ n . .
f(2=Qa oo AnZ be an entire function. We
set M(r, f)=max|2|:r| f(2)|;
m(r, f) = max ., {[a|r}. Then
M(r, f),m(r, f) are called respectively the
maximum modulus and maximum term, of f (z)

on the circle | Z| =T. The order and type of an

entire function are defined as
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fimsup, o, loglogM(r, f) _ . (e r,0er £+¥, M(r,f) and m;(f). If f increases like

| logr | 0 Equation (1) with 1<b <2, for example

and, for functions having order I (0 <T <¥), Proposition 2 and Corollary 1 apply, and for still

lim sup . . logM(r. f) _+ (f)°e T,0£T £ ¥; morerapidly increasing entire functions of classical
r order r

if r (f)=0or¥,then T (f)is underlined.

One way of characterizing the growth of an
entire function in terms of interpolation error is

to relate I’T]H-(f), j =1,2,3, with order r and

type T. Various authors (Readdy, 1970; Winiarski
1970; Rice, 1971; Juneja, 1974; Massa, 1981; Kasana
and Kumar, 1994) established a relation between
the growth parameters and interpolation error of
an entire function, but as compared to the direct

estimates of M), ;(f) or M(r, f) these are still

rather crude.

Further, let
g(2)=loglg z+g, + 971 +‘|g| =1/d,
denote the Green's function for E with pole at ¥
andy (2)=gz+g, + 9 +.... Let C, bethe
Zz

curve defined by
c ={z c: ly (2)]d = r},where w=y (2)
is holomorphic and maps the unbounded

components of the complement of E on | W| >1

suchthaty (¥)=¥ andy (¥)>0 and C\ E
is simply connected. Also,
M(r, f)=sup; | f(2|for r>1 itisclear
thatfor r =d,C, = E.

The aim of this paper is to set up more precise
interrelation between M(r, f),
m(r, f) and m, ;( f) for entire functions of

relatively slow growth, in terms of direct estimates
for these quantities.
We say an entire function slowly increasing if

I\W(r , ') increases essentially, not faster than

/b-1

b
élog(r/de®)u
exp( o(b - 1) g2 L)
e u

for b =2 and arbitrary ¢ > 0 (critical value b =2 has
been found to be significant). For rapidly
increasing functions there are direct estimates of

> 0, Proposition 1 and Theorem 2 apply.
Though in latter case a necessary and sufficient
characterization of the growth of f in terms

of M, ; ( f) is possible, the results are still sharper

than the limit relations.

RESULTS

Preliminary results

Now we mention some preliminary results which
have been utilized in the sequel;

Lemma 1. (Winiarski, 1970). If f (z) is an entire
function of order r and type T, then

loglogM (r, f) _

limsup,
® ¥
logr

and for0<r <¥,

lim sup . M =Td".

Lemma 2. If a function f is defined and bounded
on a compact set E, then

M. (F) E[| f - L] £(n+2m, ()
and

IL, - Loi| £ 2(n+2)m, ,,(f), for n=23,...,

where L is the

n Lagrange interpolation

polynomial with nodes at extremal points h nj -

Proof. The proof of this lemma is available as
Lemma 2 in Winiarski (1970).

Lemma 3. (Kasana and Kumar, 1994). For every
f1 C(E) and m,;(f), ] =12,3, there exists

n+l

) ) _ 9o ¥
an entire function h i (Z) =a n=o mn j (f ) Z
such that

M(r, f) £ a, +2h,(r/d)
or

M(r,f)£a, +KM(r h)).
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Lemma 4. Let f1 C(E) be entire. Then for

sufficiently large values of n, and for r > 2de°®,

we have
n+1

9
ﬂ
where K is a constant.

Proof. Winiarski (1970:266) has proved that for any
e>0,

nL3(f)£kM (r, f)gdig
1%}

where k is a constant and d > 0 is the transfinite
diameter of E. Using (3) with Lemma 2, the proof
follows.

Lemma 5. Let f T C(E). Then f can be extended
to an entire function if and only if

mM(f)® 0asn® ¥, [ =123,

This lemma is a direct consequence of Lemma 1,
Winiarski (1970, eq. 4.5) and inequality due to
Walsh (1969:77).

Main results
Maximum modulus and interpolation error

In this section we first prove two propositions
for a class of entire functions of order r > 0. Then,
we restrict ourselves to entire function of slow
growth in order to obtain a characterization
theorem of desired precision.

We denote by CZ[X,¥) the class of twice

continuously differentiable functions on [X,¥)

andforanyaT C’[x,¥) witha €>0,set,

Ar) :exp{logr @® *(logr)- a ((a @'1)(Iog r)}.

Proposition 1. Let f 1 C(E), has an analytic

continuation as an entire function and
al C?[X,¥) besuch that

a(x)® ¥ and a¢(x) >0
for each X3 X;. If

M(r, f) =O(A(r /de®)),r ® ¥,

then we have

1

a1
M, (1) =0

wherey (X) = expa(X),x3 X,.

Qo
>
@
#
&

Proof. By Lemma 4, we have for I > 2de° ,

n+l
m,, (1) £ KM, f)ediﬂ

r/de
sponds to Equation (5).

For =zexpa € above inequality corre-

We define G to be the class of functions

al C?[x¥)forsome x, 3 0 for which there

exists a function w such that
X-W(X)3 x;,X3 X,.

limg, a®x) =¥ lim, , W (xa®x) =¥ lim,, a®x) =0,
and

a®x)+w(x) »a®x) as x® ¥ on T such that |f|<1

f1 C(E) be an analytic
continuation as an entire function satisfying

Proposition 2. Let

Equation (5) for some 'y such that
a(x) =logy (X)T G Then,
-1/2 :
—ael O_ & 1 roool er o2
ME_2=0%@aday Fog——2y AE_Z
R Ve e
r® ¥.
....................... (6)
Proof. Using Lemma 4, we have
M(r, f)Ea,+2§ _m, (f)(r/d)"™.
In view of Equation (5), it gives
— & o ¥ 1 0O
M(r,f)£0 2 s
e A R
....................... (7)

Define h(X,t) = xt- a(t). The right side of
Equation (7) is estimated as
o ¥ 1 a;Qnﬁl_
Aoy (n+1) &d
=4 " explhlog(r /d),n+1)],r ® ¥.

Sincea | G, the asymptotic relation
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& exph(log(r /d),n+1)]
\-1/2
%I’ 0

g—r®¥
a

»m@ 29 Fo B 4

follows easily by Berg (1968, Theorem 28.3). Hence
the proof is completed.

Remark. The conclusions of Proposition 1 and 2
are best possible in the sense that 0can not be
replaced by o in Equations (5) and (6), respectively.
In case y grows at least as rapidly as
e(p(x‘),t 8 2, this will be a consequence of

Theorem 1 below. For Proposition 2 and general y
with @ | G this is also clear from Eq. (7) by

choosing fwith m, ; (f) =1/y (n+1).

Now we consider the case of slowly increasing
entire function expressed in terms of a particular
y (X) of the form Y (X) =exp(cx®),c>0, it
means that the Theorem 1 will cover the case b 3 2
whereas Proposition 1 and 2 cover the case b > 1

and 1< Db <2, respectively. Let G denote the
class of functions al C?[X¥),
X 3 Owith lim .o, a(X) =¥,a(X) exit for
x3 x, and lim ., a ¥x) (@ &x))*'* =0.

for some

Theorem 1. Let f1 C(E) has an analytic

continuation as an entire function for some a I G
and let A(r) be defined by Equation (4). The
following statements are equivalent:

() M(r, f)=O(A(r/de%)), r® ¥

(i) m,;(f) =0@/y (n+1), n® ¥,

Proof. The (i) P (ii) follows by Proposition 1. For

converse, consider first the case when
im oy aqx)=c>0with C® ¥. then the
proof  follows by  Proposition 2. If

lim 5y @ €(X) = ¥, then it gives again

— é o ¥ 1
M(r,f)=0a +2 r/d)"™——nr ® ¥
(r,f) gao a,(r/d) y (n+ G

Now we have to show that the right hand side
isO(A(r/de®))asr ® ¥. We set h(xXx)=

XX - &(X), by a result of Sirovich ( 1971:96-98)
and Evgrafov (1979:18), we have

» i

¥ ]
h é\(x,x)dx :é1(xxo(x)) !
° {h o0,

denotes the second derivative with

respect to x and X, (X)=@® *(X). The
hypothesis of Sirovich (1971:98 case 2) are satisfied
since, for each X > X, h( X,X), a function of xhas

Here hx <

a global maximum at X, =X, (X) = (@ (D'I(X), it
means that h, (X,X, (X)) = 0.

Moreoverh . (XX, (X) =-a @9 *(x))* 0

and we have (@9 '(X® ¥), asx® ¥, it
follows by the definition of Gthat

- llm X® ¥ hxx (X,XO(X)) :¥ ’

aswell as
- llm X® ¥ hxx (X'XO(X))h(X’Xo (X)) 32 = ¥

Now we set
X, = xoa?ogger—eggand K, = [Xr],where [Xr]
g ede” gy

denotes the integral part of X, . By Eq. (9), we

have
n+l N
ox O 1 o ¥ I a0 ou
— = ih &o —+,n+15
Areddg y ey AP TERS"
1 r U
» éi_oe(pih goggeR* 89,n+1;',r® ¥,R <d
i eRe g
£Q h Slog &' g,x?ﬂdx
Q ep | é gg et o %%

i e @r o
+ h clo —+,Kr+1
e<p+ gggdeeﬂ

X3

'E‘EJ'E:: 'g‘é %

+Q aplhgogg S

0
de® o
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£2ep |h§ogg é,xr;y
t %

+ Q eq Jh glogng X \de

de® @ ;i;
In the consequence of definition of h, Eq. (9) and
Eq. (4), we get

= _ & er
M(r,f)—&gaomoﬂcé@

holds if and only if

d N x r 9”
—%2 \Iﬁaﬂg(aggg—é %

1 0

——— 5, N® ¥,
%exp(c(n+1))b

”L,j(f)‘

The asymptotic relation (Eq. 7) is given by this
fory ,in the casebl N and b >2, respectively.

Maximum term and interpolation error

Since Fj(z) in an entire function and it is clear that
hj(z) and f(z) have the same maximum term and is
denoted by m(r, f). A satisfactory characterization
of m(r, f) in terms of interpolation error holds for
large dass of entire functions, including those of
order r >0 and type T30.

Theorem 2. Let f 1T C(E) has an analytic
continuation as an entire function with maximum
term m(r, f) and let a )y and A(r) be. Then
condition (Eq. 5) is equivalent to

m(r, f) =O(A(r /de®)),r ® ¥.

Proof. Let Eq. (5) be satisfied, so that for each >0,
n3n,
n+l 1

er C_')n+ 1

Cdefy y (n+1)

m, (f)%er ¢

For fixed r, the maximum over x of the function
(r/de*)™ ly (n+1)

is attained at X =(a§ 1( log(r/de®)) and has

value A(r/dee ),

provided @ 9 *(log(r /de®)) > X,. Therefore,

®Er o 1
maxn:*n rr}”( )9
@r 0‘”+1 1 @&r o
EM, max — =M +
nn"ge g Yy (n+]) OAgdeez

for r >r,.Letr, >r, large enough, so that

g i @r " o
- 3maX|mnj(f)(;—eT ,0£n<nO A
2} t 7 ede g [V)

(H&S
rnrbvl( )gdee

For each I >r, it also gives that

m(r, f) £ M_A(r /de®). Conversely, (Eq. 10)
gives that

M A(r /de®)
() E———, J 11
) E ey .
where [, and M, are constant. Taking

[r/de’]" =expa Cfor some n1 N in (Eq. 11),
we have for n large enough,
a(X)® ¥ as X® ¥, thisimplies (Eq. 5).

since

Maximum modulus and maximum term

Corollary 1. Let fi C(E) has an analytic
continuation as an entire function satisfying
m(r, f)=O(A(r/de®)), r ® ¥ with A(r)
defined by Equation (4), fora 1 G. Then

-1/2

R r odJ ®r &
M(r, f)=0¢ a A—=,1® ¥,
(D= géa " € e o P ede’ g

This is a direct consequence of Theorem 2 and
Proposition 2.

f1 C(E) be given as in

following

Corollary 2. Let

Theorem 1. The statements are

equivalent:

(a) m(r, f) =O(A(r/de®)),r ® ¥.
(b) M (r,f)=0(A(r/de?)), r® ¥.

Combining Theorems 1 and 2 we can easily
establish the above equivalent and it is concerned
with functions of slow growth only.
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