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ABSTRACT: In this paper, we introduce and investigate an iterative scheme for finding a 
common element of the set of common solutions of a finite family of generalized equilibrium 
problems and the set of fixed points of a Lipschitz and hemicontractive-type multi-valued mapping. 
We obtain strong convergence theorems of the proposed iterative process in real Hilbert space 
settings. Our results improve, generalize and extend most of the recent results that have been 
proved by many authors in this research area.   
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INTRODUCTION 
 
Let 𝐶𝐶 be a nonempty subset of a real Hilbert 
space 𝐻𝐻 with inner product 〈. , . 〉 and norm ‖. ‖.  
A single-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 is said to be 
k-strictly pseudocontractive in the sense of 
Browder and Petryshtn (1967) if there exists 
𝑘𝑘 ∈ [0,1) such that 
||𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 ||2 ≤ ‖𝑥𝑥 − 𝑦𝑦‖2 +  𝑘𝑘‖𝑥𝑥 − 𝑇𝑇𝑇𝑇 − (𝑦𝑦 − 𝑇𝑇𝑇𝑇)‖2,    
  ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 .................................................. (1.1) 
 
If 𝑘𝑘 = 1 in (1.1), then 𝑇𝑇 is called pseudocontractive 
mapping.  
 
 A mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 is called Lipschitzian if 
there exists 𝐿𝐿 ≥ 0 such that ‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖ ≤
𝐿𝐿‖𝑥𝑥 − 𝑦𝑦‖,∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶. If 𝐿𝐿 = 1, then 𝑇𝑇 is called 
nonexpansive and if 𝐿𝐿 ∈ [0,1), then 𝑇𝑇 is called 
contraction. 
 Observe that the class of pseudocontractive 
mappings contains the class of 𝑘𝑘-strictly pseudo-
contractive mappings and nonexpansive map-
pings (see Browder and Petryshyn, 1967; Chi-
dume et al., 2013).  
 A mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 is said to be firmly 
nonexpansive if ‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖2 ≤ 〈𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇, 𝑥𝑥 − 𝑦𝑦〉 for 
all 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶. It is known that every firmly 

nonexpansive mapping is nonexpansive 
mapping, but the inclusion is proper (see 
Mongkolkeha et al., 2013).  
 A mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 with 𝐹𝐹(𝑇𝑇) = {𝑥𝑥 ∈ 𝐶𝐶: 𝑥𝑥 =
𝑇𝑇𝑇𝑇} nonempty is said to be quasi-nonexpansive if 
‖𝑇𝑇𝑇𝑇 − 𝑝𝑝‖ ≤ ‖𝑥𝑥 − 𝑝𝑝‖ holds for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑥𝑥 ∈ 𝐶𝐶 
and 𝑇𝑇 is called hemicontractive if ‖𝑇𝑇𝑇𝑇 − 𝑝𝑝‖2 ≤
‖𝑥𝑥 − 𝑝𝑝‖2 + ‖𝑥𝑥 − 𝑇𝑇𝑇𝑇‖2 holds for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑥𝑥 ∈ 𝐶𝐶. 
 We remark that the class of hemicontractive 
mappings contains the class of pseudocontrac-
tive mappings with 𝐹𝐹(𝑇𝑇) ≠ ∅ and the class of 
quasi-nonexpansive mappings. The following 
examples show that the inclusion is proper.  
 
Example 1.1. Let 𝐻𝐻 = ℝ and 𝐶𝐶 = [0,1]. Let 
𝑇𝑇:𝐶𝐶 → 𝐻𝐻 be defined by 𝑇𝑇𝑇𝑇 = 𝑥𝑥2sin �1

x
� if 𝑥𝑥 ≠ 0 

and 𝑇𝑇0 = 0. Then, zero is the only fixed point of 
𝑇𝑇 and for all 𝑥𝑥 ∈ 𝐶𝐶, we have  

|𝑇𝑇𝑇𝑇 − 0|2 = �𝑥𝑥2 sin �
1
𝑥𝑥
��

2

≤ |𝑥𝑥|4 

                                  ≤ |𝑥𝑥|2 ≤ |𝑥𝑥 − 0|2 + |𝑥𝑥 − 𝑇𝑇𝑇𝑇|2. 
Hence, 𝑇𝑇 is hemicontractive mapping. However, 
if we take 𝑥𝑥 = 2

𝜋𝜋
 and 𝑦𝑦 = 1

𝜋𝜋
, then we get that 

|𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇|2 = � 4
𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠

𝜋𝜋
2
− 1

𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
2

= 16
𝜋𝜋4. 

But,   
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|𝑥𝑥 − 𝑦𝑦|2 + |𝑥𝑥 − 𝑦𝑦 − (𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇)|2  =
1
𝜋𝜋2 + �

𝜋𝜋 − 4
𝜋𝜋2 �

2
 

                                                                =
2𝜋𝜋2 − 8𝜋𝜋 + 16

𝜋𝜋4  

                                                                  <  16
𝜋𝜋4 = |𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇|2, 

which shows that 𝑇𝑇 is not pseudocontractive. 
 
Example 1.2. Let 𝐻𝐻 = ℝ and 𝐶𝐶 = [0,1]. Let 
𝑇𝑇:𝐶𝐶 → 𝐻𝐻 be defined by 

𝑇𝑇𝑇𝑇 = �

1
2

,   𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ �0,
1
2
� ,

0,    𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ �
1
2

, 1� .
� 

Then, 1
2
 is the only fixed point of 𝑇𝑇. If 𝑥𝑥 ∈ �0, 1

2
�, 

we have 

�𝑇𝑇𝑇𝑇 − 𝑇𝑇(1
2
)�

2
= 0 ≤ �𝑥𝑥 − 1

2
�

2
+ |𝑥𝑥 − 𝑇𝑇𝑇𝑇|2. 

And if 𝑥𝑥 ∈ �1
2

, 1�, we get  

�𝑇𝑇𝑇𝑇 − 𝑇𝑇 �1
2
��

2
= 1

4
< 𝑥𝑥2 ≤ �𝑥𝑥 − 1

2
�

2
+ |𝑥𝑥 − 𝑇𝑇𝑇𝑇|2. 

Thus, 𝑇𝑇 is hemicontractive mapping. However, 𝑇𝑇 
is not quasi-nonexpansive mapping. In fact, for 
𝑥𝑥 = 3

5
, we have 

 �𝑇𝑇𝑇𝑇 − 𝑇𝑇 �1
2
�� = 1

2
> 1

10
= 3

5
− 1

2
= �𝑥𝑥 − 1

2
�. 

 Let 𝐶𝐶𝐶𝐶(𝐶𝐶) denote the family of nonempty, 
closed and bounded subsets of 𝐶𝐶. The Pompeiu-
Hausdorff metric (see Berinde and P𝑎𝑎�curar, 
2013) on 𝐶𝐶𝐶𝐶(𝐶𝐶) is defined by 
𝐷𝐷(𝐴𝐴,𝐵𝐵) = max�𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥∈𝐴𝐴𝑑𝑑(𝑥𝑥,𝐵𝐵),  𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦∈𝐵𝐵𝑑𝑑(𝑦𝑦,𝐴𝐴)�,  
for all 𝐴𝐴,𝐵𝐵 ∈ 𝐶𝐶𝐶𝐶(𝐶𝐶), where 𝑑𝑑(𝑥𝑥,𝐵𝐵) = inf{‖𝑥𝑥 − 𝑏𝑏‖ ∶
𝑏𝑏 ∈ 𝐵𝐵}. 
 A multi-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) is called 
Lipschitzian if there exists 𝐿𝐿 ≥ 0 such that  
 
 𝐷𝐷(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝐿𝐿‖𝑥𝑥 − 𝑦𝑦‖,∀𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶. ................ (1.2) 
 
If 𝐿𝐿 = 1 in (1.2), then 𝑇𝑇 is called nonexpansive and 
if 𝐿𝐿 ∈ [0,1), then 𝑇𝑇 is called contraction mapping. 
 A multi-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) is said 
to be 𝑘𝑘-strictly pseudocontractive in the sense of 
Chidume et al. (2013) if there exists a constant 
𝑘𝑘 ∈ [0,1) such that 
 
𝐷𝐷2(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ ‖𝑥𝑥 − 𝑦𝑦‖2 +  𝑘𝑘‖(𝑥𝑥 − 𝑢𝑢) − (𝑦𝑦 − 𝑣𝑣)‖2,  . (1.3) 
 
 for all 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 and 𝑢𝑢 ∈ 𝑇𝑇𝑇𝑇 , 𝑣𝑣 ∈ 𝑇𝑇𝑇𝑇, where 
𝐷𝐷2(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) = (𝐷𝐷(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇))2. If 𝑘𝑘 = 1 in (1.3), then 
𝑇𝑇 is said to be pseudocontractive mapping. 
 

 Let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a multi-valued mapping, 
then an element 𝑥𝑥 ∈ 𝐶𝐶 is called fixed point of 𝑇𝑇 if 
𝑥𝑥 ∈ 𝑇𝑇𝑇𝑇. We denote the set of fixed points of a 
mapping 𝑇𝑇 by 𝐹𝐹(𝑇𝑇). We also write weak 
convergence and strong convergence of a 
sequence {𝑥𝑥𝑛𝑛 } to 𝑥𝑥 in 𝐻𝐻 as 𝑥𝑥𝑛𝑛 ⇀ 𝑥𝑥 and 𝑥𝑥𝑛𝑛 → 𝑥𝑥, 
respectively.  
 A multi-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) with 
nonempty set of fixed points is called: 
i) Quasi-nonexpansive if for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑥𝑥 ∈ 𝐶𝐶, 

we have  𝐷𝐷(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ ‖𝑥𝑥 − 𝑝𝑝‖.  
ii) Hemicontractive-type in the sense of Sebsibe 

Teferi et al. (2015) if for all  𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑥𝑥 ∈ 𝐶𝐶 
 

  𝐷𝐷2(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ ‖𝑥𝑥 − 𝑝𝑝‖2 + ‖𝑥𝑥 − 𝑢𝑢‖2  
   holds for all 𝑢𝑢 ∈ 𝑇𝑇𝑇𝑇.  .................... (1.4) 
 
 We observe that every nonexpansive mapping 
𝑇𝑇 with 𝐹𝐹(𝑇𝑇) ≠ ∅ is quasi-nonexpansive map-
ping, and every pseudocontractive mapping 𝑇𝑇 
with 𝐹𝐹(𝑇𝑇) ≠ ∅ and 𝑇𝑇(𝑝𝑝) = {𝑝𝑝},∀𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇) is hemi-
contractive-type mapping (Habtu Zegeye et al., 
2017).  
 In recent years, the existence and approxima-
tion of fixed  points  for multi-valued  (including 
hemicontractive-type) mappings in various 
spaces under different assumptions has been 
studied by several authors; (see, for example, 
Nadler, 1969; Panyanak, 2007; Shahzad and 
Habtu Zegeye, 2008; Yu et al., 2012; Chidume et 
al., 2013; Isiogugu and Osilike, 2014; and  refer-
ences  therein).  
 Sebsibe Teferi et al. (2015) proved the following 
result:  
 
Theorem WSZ. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇𝑖𝑖 :𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶), 𝑖𝑖 = 1,2, … ,𝑁𝑁, be a finite family of 
Lipschitz hemicontractive-type mappings with 
Lipschitz constants 𝐿𝐿𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑁𝑁,  respectively. 
Assume that (𝐼𝐼 − 𝑇𝑇𝑖𝑖), 𝑖𝑖 = 1, 2, … ,𝑁𝑁, are demi-
closed at zero and Ƒ = ⋂ 𝐹𝐹(𝑇𝑇𝑖𝑖)𝑁𝑁

𝑖𝑖=1  is nonempty, 
closed and convex with 𝑇𝑇𝑖𝑖(𝑝𝑝) = {𝑝𝑝},∀𝑝𝑝 ∈ Ƒ. Let 
{𝑥𝑥𝑛𝑛 } be the sequence generated from an arbitrary 
𝑥𝑥1,𝑤𝑤 ∈ 𝐶𝐶 by 
 

�
𝑦𝑦𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛𝑢𝑢𝑛𝑛 ,   𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑛𝑛𝑥𝑥𝑛𝑛 ,
𝑧𝑧𝑛𝑛 = (1 − 𝛾𝛾𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑤𝑤𝑛𝑛 ,   𝑤𝑤𝑛𝑛 ∈ 𝑇𝑇𝑛𝑛𝑦𝑦𝑛𝑛 ,

 𝑥𝑥𝑛𝑛+1 = 𝛼𝛼𝑛𝑛𝑤𝑤 + (1 − 𝛼𝛼𝑛𝑛)𝑧𝑧𝑛𝑛 ,   ∀𝑛𝑛 ≥ 1,   
� ........... (1.5) 
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where 𝑇𝑇𝑛𝑛 ≔ 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑁𝑁)+1 and {𝛼𝛼𝑛𝑛 }, {𝛽𝛽𝑛𝑛 }, {𝛾𝛾𝑛𝑛} 
⊂ (0,1) satisfy the following conditions:  

i) 0 <  𝛼𝛼𝑛𝑛 ≤ 𝑐𝑐 < 1,∀𝑛𝑛 ≥ 1  such that  
lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 → 0 and ∑ 𝛼𝛼𝑛𝑛 = ∞∞

𝑛𝑛=1 ;  
ii) 0 <  𝛼𝛼 ≤ 𝛾𝛾𝑛𝑛 ≤ 𝛽𝛽𝑛𝑛 ≤ 𝛽𝛽 < 1

�4𝐿𝐿2+1+1
,∀𝑛𝑛 ≥ 1, 

for 𝐿𝐿 ≔ max{𝐿𝐿𝑖𝑖 : 𝑖𝑖 = 1, 2, … ,𝑁𝑁}. 
Then, {𝑥𝑥𝑛𝑛 } converges strongly to some point 
𝑝𝑝 ∈ Ƒ nearest to 𝑤𝑤. 
 Recall that a mapping 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 is called 
monotone if 〈𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴, 𝑥𝑥 − 𝑦𝑦〉 ≥ 0,∀𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 
 𝐴𝐴 is called 𝛼𝛼-inverse strongly monotone if there 
exists a positive real number 𝛼𝛼 such that 
〈𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴, 𝑥𝑥 − 𝑦𝑦〉 ≥ 𝛼𝛼‖𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴‖2,∀𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶. 
 We note that the class of 𝛼𝛼-inverse strongly 
monotone mappings is properly contained in the 
class of monotone mappings (see Habtu Zegeye 
et al., 2017). 
 Let 𝐶𝐶 be a nonempty, closed and convex subset 
of a real Hilbert space 𝐻𝐻. Let 𝐹𝐹:𝐶𝐶 × 𝐶𝐶 → ℝ be a 
bifunction and 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be a nonlinear mapping. 
Takahashi and Takahashi (2008) considered the 
following generalized equilibrium problem: 
Finding a point 𝑧𝑧 ∈ 𝐶𝐶 such that  
 
  𝐹𝐹(𝑧𝑧,𝑦𝑦) + 〈𝐴𝐴𝐴𝐴,𝑦𝑦 − 𝑧𝑧〉 ≥ 0,∀𝑦𝑦 ∈ 𝐶𝐶.  .......... (1.6) 
 
 In this paper, we denote the set of solutions of 
problem (1.6) by 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴), i.e., 
𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴) = {𝑧𝑧 ∈ 𝐶𝐶 ∶  𝐹𝐹(𝑧𝑧,𝑦𝑦) + 〈𝐴𝐴𝐴𝐴,𝑦𝑦 − 𝑧𝑧〉 ≥ 0,∀𝑦𝑦 ∈ 𝐶𝐶}. 

 
 If in (1.6) we have 𝐴𝐴 ≡ 0, then problem (1.6) 
reduces to the equilibrium problem of finding an 
element 𝑧𝑧 ∈ 𝐶𝐶  such that 
 
  𝐹𝐹(𝑧𝑧,𝑦𝑦) ≥ 0,∀𝑦𝑦 ∈ 𝐶𝐶, .................................. (1.7) 
 
which was studied by Blum and Oettli (1994) 
and many others (Combettes and Hirstoaga, 
2005; Takahashi and Takahashi, 2007; Wang et 
al., 2007; Ali, 2009; Cholamjiak et al., 2015). The 
set of solutions of problem (1.7) is denoted by 
𝐸𝐸𝐸𝐸(𝐹𝐹). 
 If in (1.6) we have 𝐹𝐹 ≡ 0, then the generalized 
equilibrium problem (1.6) reduced to finding a 
point 𝑧𝑧 ∈ 𝐶𝐶  such that 
 
  〈𝐴𝐴𝐴𝐴,𝑦𝑦 − 𝑧𝑧〉 ≥ 0,∀𝑦𝑦 ∈ 𝐶𝐶, ............................ (1.8) 
 
which is called the classical variational inequal-
ity problem. The set of solutions of problem (1.8) 

is denoted by 𝑉𝑉𝑉𝑉(𝐶𝐶,𝐴𝐴). Problem (1.8) has been 
considered by many authors (see, for instance, 
Ali, 2009; Habtu Zegeye and Shahzad, 2011a; 
2012; Tesfalem Hadush et al., 2016) and refer-
ences therein. 
 We note that if a point 𝑧𝑧 ∈ 𝑉𝑉𝑉𝑉(𝐶𝐶,𝐴𝐴) ∩ 𝐸𝐸𝐸𝐸(𝐹𝐹), 
then 𝑧𝑧 ∈ 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴), however, the converse is not 
true (see Habtu Zegeye et al., 2017). 
 
Assumption 1.1. Let 𝐶𝐶 be a nonempty, closed 
and convex subset of a real Hilbert space 𝐻𝐻. In 
the sequel, let 𝐹𝐹 be a bifunction of 𝐶𝐶 × 𝐶𝐶 into ℝ 
satisfying the following assumptions: 
  
 (A1)  𝐹𝐹(𝑥𝑥, 𝑥𝑥) = 0,∀𝑥𝑥 ∈ 𝐶𝐶;  
 (A2) 𝐹𝐹 is monotone, i.e., 
  𝐹𝐹(𝑥𝑥,𝑦𝑦) + 𝐹𝐹(𝑦𝑦, 𝑥𝑥) ≤ 0,∀𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶;  
 (A3) lim𝑡𝑡↓0 𝐹𝐹(𝑡𝑡𝑡𝑡 + (1 − 𝑡𝑡)𝑥𝑥,𝑦𝑦) ≤ 𝐹𝐹(𝑥𝑥,𝑦𝑦),∀𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝐶𝐶;  
 (A4) For each 𝑥𝑥 ∈ 𝐶𝐶, 𝑦𝑦 ↦ 𝐹𝐹(𝑥𝑥,𝑦𝑦) is convex and 

lower semicontinuous.  
For instance, the bifunction 𝐹𝐹: [0,∞) × [0,∞) →  ℝ 
given by 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑦𝑦 − 𝑥𝑥 satisfies Assumption 
1.1. 
 
Remark 1.2. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 𝐹𝐹 be 
a bifunction from 𝐶𝐶 × 𝐶𝐶 into ℝ satisfying 
Assumption 1.1 and let 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be a continuous 
monotone mapping. Define 𝐺𝐺:𝐶𝐶 × 𝐶𝐶 → ℝ by 
𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐹𝐹(𝑥𝑥,𝑦𝑦) + 〈𝐴𝐴𝐴𝐴,𝑦𝑦 − 𝑥𝑥〉, then it is easy to 
see that the bifunction 𝐺𝐺 satisfies Assumption 
1.1. Thus, the generalized equilibrium problem 
(1.6) is equivalent to the equilibrium problem of 
finding a point 𝑧𝑧 ∈ 𝐶𝐶 such that 𝐺𝐺(𝑧𝑧,𝑦𝑦) ≥ 0, for all 
𝑦𝑦 ∈ 𝐶𝐶. 
 Generalized equilibrium problem is more 
general in the sense that it includes, as special 
case, equilibrium problems and hence varia-
tional inequality, optimization problems, Nash 
equilibrium problems, fixed point problems, etc. 
Consequently, many authors have shown their 
interest in constructing an iterative algorithms 
for approximating common solution of general-
ized equilibrium and fixed point problems (see, 
for example, Hao, 2011; Kamraksa and Wang-
keeree, 2011; Razani and Yazdi, 2012; Zhang and 
Hao, 2016 and references cited therein). 
 Takahashi and Takahashi (2008) introduced 
and considered the following iterative algorithm 
for finding a common point of the set of solu-
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tions of problem (1.6) and the set of fixed points 
of nonexpansive single-valued mapping 𝑇𝑇 and 
then they obtained a strong convergence theo-
rem in Hilbert space settings. 
 

⎩
⎨

⎧𝐹𝐹(𝑧𝑧𝑛𝑛 ,𝑦𝑦) + 〈𝐴𝐴𝑥𝑥𝑛𝑛 ,𝑦𝑦 − 𝑧𝑧𝑛𝑛〉 +
1
𝜆𝜆𝑛𝑛
〈𝑦𝑦 − 𝑧𝑧𝑛𝑛 , 𝑧𝑧𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑦𝑦 ∈ 𝐶𝐶,

𝑦𝑦𝑛𝑛 = 𝛼𝛼𝑛𝑛𝑢𝑢 + (1 − 𝛼𝛼𝑛𝑛)𝑧𝑧𝑛𝑛 ,                                                                   
 𝑥𝑥𝑛𝑛+1 = 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + (1 − 𝛽𝛽𝑛𝑛)𝑇𝑇𝑦𝑦𝑛𝑛 ,   ∀𝑛𝑛 ≥ 1,                                         

� 

where 𝑢𝑢, 𝑥𝑥1 ∈ 𝐶𝐶 are arbitrary,  𝐹𝐹:𝐶𝐶 × 𝐶𝐶 → ℝ is a 
bifunction satisfying Assumption 1.1 and 𝐴𝐴 is an 
𝛼𝛼-inverse strongly monotone mapping from 𝐶𝐶 
into 𝐻𝐻, and {𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛} ⊂ [0,1] and {𝜆𝜆𝑛𝑛} ⊂ [0,2𝛼𝛼] 
satisfy some appropriate control conditions. 
 Recently, Huang and Ma (2014) extended the 
results of Takahashi and Takahashi (2008) from 
nonexpansive mapping to 𝑘𝑘-strictly pseudocon-
tractive mapping. In fact, they proved the 
following weak convergence theorem. 
 
Theorem 1.3. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be an 𝛼𝛼-inverse strongly monotone 
mapping and  𝐹𝐹 be a bifunction from 𝐶𝐶 × 𝐶𝐶 into 
ℝ which satisfies Assumption 1.1. Let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 
be a 𝑘𝑘-strictly pseudocontractive mapping such 
that Ƒ ≔ 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴) ∩ 𝐹𝐹(𝑇𝑇) is nonempty and let 
{𝑒𝑒𝑛𝑛} be a bounded sequence in 𝐶𝐶. Let {𝑥𝑥𝑛𝑛 } be a 
sequence generated by 
 

�
𝐹𝐹(𝑢𝑢𝑛𝑛 ,𝑢𝑢) + 〈𝐴𝐴𝑥𝑥𝑛𝑛 ,𝑦𝑦 − 𝑢𝑢𝑛𝑛〉 + 1

𝑟𝑟𝑛𝑛
〈𝑢𝑢 − 𝑢𝑢𝑛𝑛 ,𝑢𝑢𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑢𝑢 ∈ 𝐶𝐶,

𝑥𝑥𝑛𝑛+1 = 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛 + 𝛽𝛽𝑛𝑛(𝛿𝛿𝑛𝑛𝑢𝑢𝑛𝑛 + (1 − 𝛿𝛿𝑛𝑛)𝑇𝑇𝑢𝑢𝑛𝑛)+𝛾𝛾𝑛𝑛𝑒𝑒𝑛𝑛 ,   ∀𝑛𝑛 ∈ ℕ,    
�  

    ............................ (1.9)  
 
where the sequences {𝛼𝛼𝑛𝑛}, {𝛽𝛽𝑛𝑛 }, {𝛾𝛾𝑛𝑛}, {𝛿𝛿𝑛𝑛} ⊂
(0,1) and {𝑟𝑟𝑛𝑛 } ⊂ [0,2𝛼𝛼] satisfy some mild 
restrictions. Then the sequence {𝑥𝑥𝑛𝑛 }, generated 
by (1.9), converges weakly to a point 𝑝𝑝 ∈ Ƒ, 
where 𝑝𝑝 = lim𝑛𝑛→∞ 𝑃𝑃Ƒ𝑥𝑥𝑛𝑛 .  
 In this paper, motivated and inspired by the 
results surveyed above, we introduce an 
iterative algorithm for finding a common 
element of the common solution set of a finite 
family of generalized equilibrium problems (1.6) 
and the fixed point set of a multi-valued 
Lipschitz hemicontractive-type mapping. The 
results presented in this paper generalize, 
improve and extend the corresponding results of 
Huang and Ma (2014), Tesfalem Hadush et al. 
(2016), Habtu Zegeye et al. (2017), Takahashi and 
Takahashi (2008), Ceng et al. (2010) and Zhang 

and Hao (2016) and some other recent results 
that have been obtained previously in this 
research area.  
 
 

PRELIMINARIES 
 
Throughout this section unless otherwise stated, 
𝐶𝐶 denotes a nonempty, closed and convex subset 
of a real Hilbert space 𝐻𝐻. For every point 𝑥𝑥 ∈ 𝐻𝐻, 
there exists a unique nearest point in 𝐶𝐶, denoted 
by 𝑃𝑃𝐶𝐶𝑥𝑥, such that ‖𝑥𝑥 − 𝑃𝑃𝐶𝐶𝑥𝑥‖ = inf{‖𝑥𝑥 − 𝑦𝑦‖ ∶ 𝑦𝑦 ∈
𝐶𝐶}. 𝑃𝑃𝐶𝐶  is called the metric projection of 𝐻𝐻 onto 𝐶𝐶. 
The following characterizes the metric projection 
𝑃𝑃𝐶𝐶 : for given 𝑥𝑥 ∈ 𝐻𝐻 and 𝑧𝑧 ∈ 𝐶𝐶,  
 
𝑧𝑧 = 𝑃𝑃𝐶𝐶𝑥𝑥 ⟺ 〈𝑥𝑥 − 𝑧𝑧, 𝑧𝑧 − 𝑦𝑦〉 ≥ 0, ∀𝑦𝑦 ∈ 𝐶𝐶. ............ (2.1) 
 
Definition 2.1. Let {𝑥𝑥𝑛𝑛 } be a sequence in 𝐶𝐶 such 
that 𝑥𝑥𝑛𝑛  ⇀  𝑥𝑥 and let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a multi-
valued mapping. Then, (𝐼𝐼 − 𝑇𝑇) is said to be 
demiclosed at zero if lim𝑛𝑛→∞ 𝑑𝑑(𝑥𝑥𝑛𝑛 ,𝑇𝑇𝑥𝑥𝑛𝑛) = 0 
implies 𝑥𝑥 ∈ 𝑇𝑇𝑇𝑇, where 𝐼𝐼 is the identity mapping 
on 𝐶𝐶. 
 We note that if the mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 in 
Definition 2.1 is a single-valued nonexpansive 
mapping, then (𝐼𝐼 − 𝑇𝑇) is demiclosed at zero (see 
Agrawal et al., 2009). 
 In the proof of our main result, we also need 
the following lemmas. 
 
Lemma 2.2. (Habtu Zegeye and Shahzad, 2011b). 
Let 𝐻𝐻 be a real Hilbert space and {𝑥𝑥𝑖𝑖}𝑖𝑖=1

𝑛𝑛 ⊂ 𝐻𝐻. 
Then, for 𝛼𝛼𝑖𝑖 ∈ [0,1], 𝑖𝑖 = 1,2, … ,𝑛𝑛, such that 
𝛼𝛼1 + 𝛼𝛼2 + ⋯+ 𝛼𝛼𝑛𝑛 = 1, we have the following 
identity:  
 
  ‖𝛼𝛼1𝑥𝑥1 + 𝛼𝛼2𝑥𝑥2 +  … + 𝛼𝛼𝑛𝑛𝑥𝑥𝑛𝑛‖2  
                  = ∑ 𝛼𝛼𝑖𝑖‖𝑥𝑥𝑖𝑖‖2∞

𝑖𝑖=1 −∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗 �𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑗𝑗 �
2

1≤𝑖𝑖 ,𝑗𝑗≤𝑛𝑛 . 
 
Lemma 2.3. (Agrawal et al., 2009). Let 𝐻𝐻 be a real 
Hilbert space. Then, for every 𝑥𝑥,𝑦𝑦 ∈ 𝐻𝐻, we have 
the following: 

i) ‖𝑥𝑥 − 𝑦𝑦‖2 = ‖𝑥𝑥‖2 +  ‖𝑦𝑦‖2 − 2〈𝑥𝑥,𝑦𝑦〉; 
ii) ‖𝑥𝑥 + 𝑦𝑦‖2 = ‖𝑥𝑥‖2 + 2〈𝑦𝑦, 𝑥𝑥 + 𝑦𝑦〉.         

 
Lemma 2.4. (Blum and Oettli, 1994; Combettes 
and Hirstoaga, 2005).  Let 𝐹𝐹 be a bifunction from 
𝐶𝐶 × 𝐶𝐶 into ℝ which satisfies Assumption 1.1. For 
𝑟𝑟 > 0, define 𝑇𝑇𝑟𝑟 :𝐻𝐻 → 𝐶𝐶 as follows: 
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𝑇𝑇𝑟𝑟𝑥𝑥 = �𝑧𝑧 ∈ 𝐶𝐶 ∶ 𝐹𝐹(𝑧𝑧,𝑦𝑦) + 1
𝑟𝑟
〈𝑦𝑦 − 𝑧𝑧, 𝑧𝑧 − 𝑥𝑥〉,∀𝑦𝑦 ∈ 𝐶𝐶�. 

Then, the following hold: 
(1) 𝑇𝑇𝑟𝑟  is nonempty and single-valued; 
(2) 𝑇𝑇𝑟𝑟  is firmly nonexpansive, i.e., 

‖𝑇𝑇𝑟𝑟𝑥𝑥 − 𝑇𝑇𝑟𝑟𝑦𝑦‖2 ≤ 〈𝑇𝑇𝑟𝑟𝑥𝑥 − 𝑇𝑇𝑟𝑟𝑦𝑦, 𝑥𝑥 − 𝑦𝑦〉,∀𝑥𝑥,𝑦𝑦 ∈ 𝐻𝐻;  
(3) 𝐹𝐹(𝑇𝑇𝑟𝑟) = 𝐸𝐸𝐸𝐸(𝐹𝐹);  
(4) 𝐸𝐸𝐸𝐸(𝐹𝐹) is closed and convex.  

 
Lemma 2.5. (Nadler, 1969). Let (𝑋𝑋,𝑑𝑑) be a metric 
space and let 𝐴𝐴,𝐵𝐵 ∈ 𝐶𝐶𝐶𝐶(𝑋𝑋). Then, for any 𝑢𝑢 ∈ 𝐴𝐴 
and 𝜀𝜀 > 0, there exists a point 𝑣𝑣 ∈ 𝐵𝐵 such that 
𝑑𝑑(𝑢𝑢, 𝑣𝑣) ≤ 𝐷𝐷(𝐴𝐴,𝐵𝐵) + 𝜀𝜀. This implies that for every 
element 𝑢𝑢 ∈ 𝐴𝐴, there exists an element 𝑣𝑣 ∈ 𝐵𝐵 
such that 𝑑𝑑(𝑢𝑢, 𝑣𝑣) ≤ 2𝐷𝐷(𝐴𝐴,𝐵𝐵). 
 
Lemma 2.6. (Xu, 2002). Let {𝑎𝑎𝑛𝑛 } be a sequence of 
nonnegative real numbers such that  
 𝑎𝑎𝑛𝑛+1 ≤ (1 − 𝛼𝛼𝑛𝑛)𝑎𝑎𝑛𝑛 + 𝛼𝛼𝑛𝑛𝛿𝛿𝑛𝑛  ,  for 𝑛𝑛 ≥ 𝑛𝑛0,  
where {𝛼𝛼𝑛𝑛} ⊂ (0,1) and {𝛿𝛿𝑛𝑛} ⊂ ℝ satisfying the 
following conditions:  
 lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0 , ∑ 𝛼𝛼𝑛𝑛∞

𝑛𝑛=1 = ∞, and  limsup
𝑛𝑛→∞

 𝛿𝛿𝑛𝑛 ≤ 0.  

Then, lim𝑛𝑛→∞ 𝛼𝛼𝑛𝑛 = 0. 
 
Lemma 2.7. (Mainge, 2008). Let {𝑏𝑏𝑛𝑛 } be a 
sequence of real numbers such that there exists a 
subsequence �𝑛𝑛𝑗𝑗 � of {𝑛𝑛} such that 𝑏𝑏𝑛𝑛𝑗𝑗 < 𝑏𝑏𝑛𝑛𝑗𝑗+1,  for 
all 𝑗𝑗 ∈ ℕ. Then, there exists a nondecreasing 
sequence {𝑛𝑛𝑘𝑘} ⊂ ℕ such that 𝑛𝑛𝑘𝑘  →  ∞ and the 
following properties are satisfied by all 
(sufficiently large) numbers 𝑘𝑘 ∈ ℕ:  
 

bnk≤bnk+1   and  𝑏𝑏𝑘𝑘 ≤ 𝑏𝑏𝑛𝑛𝑘𝑘+1 
 

In fact,  𝑛𝑛𝑘𝑘 = max{𝑖𝑖 ≤ 𝑘𝑘 ∶  𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖+1}. 
 
 

MAIN RESULT 
 
In this section, we define an iterative algorithm 
and prove its strong convergence to a common 
solution of a finite family of generalized equilib-
rium problems and a fixed point problem for a 
multi-valued Lipschitz hemicontractive-type 
mapping. 
 
Theorem 3.1.  Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-
type multi-valued mapping with Lipschitz con-

stant 𝐿𝐿. Let 𝐴𝐴𝑚𝑚 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone 
mapping and let 𝐹𝐹𝑚𝑚 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction 
satisfying Assumption 1.1, for each m∈{1,2,.., N}. 
Assume that Θ = ⋂ EP(Fm,Am)∩F(T)N

m=1  is 
nonempty and 𝑇𝑇𝑇𝑇 = {𝑞𝑞} for all 𝑞𝑞 ∈ 𝛩𝛩. Let 
�𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂ (0,∞) and let {𝑎𝑎𝑛𝑛 }, {𝑏𝑏𝑛𝑛}, {𝑐𝑐𝑛𝑛}, {𝑒𝑒𝑛𝑛} and 
�𝑑𝑑𝑚𝑚 ,𝑛𝑛� be sequences in (0,1) such that 

i) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1; 
ii) ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁

𝑚𝑚=1 ;  
iii) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 

 𝐹𝐹𝑚𝑚�𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧� + 〈𝐴𝐴𝑚𝑚𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛〉                                                 

+
1
𝑟𝑟𝑚𝑚 ,𝑛𝑛

〈𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 ,𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑚𝑚 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑛𝑛 = � 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚 ,𝑛𝑛

𝑁𝑁

𝑚𝑚=1

,                                                                       

𝑧𝑧𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                                              
𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 ,                                                           

� 

    ........................................................ (3.1)  
for all 𝑛𝑛 ≥ 1, where 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑤𝑤𝑛𝑛 , 𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛  such that 
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛). Then, the sequence 
{𝑥𝑥𝑛𝑛 } is bounded. 
 
Proof. Let 𝑞𝑞 ∈ 𝛩𝛩. Then, we have 𝑇𝑇𝑇𝑇 = {𝑞𝑞} and 
𝐹𝐹𝑚𝑚(𝑞𝑞, 𝑧𝑧) + 〈𝐴𝐴𝑚𝑚𝑞𝑞, 𝑧𝑧 − 𝑞𝑞〉 ≥ 0, for all 𝑚𝑚 = 1, 2, … ,𝑁𝑁 
and 𝑧𝑧 ∈ 𝐶𝐶. Define 𝐺𝐺𝑚𝑚 :𝐶𝐶 × 𝐶𝐶 →  ℝ by 𝐺𝐺𝑚𝑚 (𝑥𝑥, 𝑧𝑧) ≔
 𝐹𝐹𝑚𝑚 (𝑥𝑥, 𝑧𝑧) + 〈𝐴𝐴𝑚𝑚𝑥𝑥, 𝑧𝑧 − 𝑥𝑥〉 for all 𝑥𝑥, 𝑧𝑧 ∈ 𝐶𝐶 and 
𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. Then, in view of Remark 1.2, 𝐺𝐺𝑚𝑚  
is a bifunction satisfying Assumption 1.1, for 
each 𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁} and 𝑞𝑞 ∈ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚 ) is 
equivalent to 𝐺𝐺𝑚𝑚 (𝑞𝑞, 𝑧𝑧) ≥ 0 for all 𝑧𝑧 ∈ 𝐶𝐶. Hence, 
using Lemma 2.4, 𝑦𝑦𝑛𝑛 ,𝑚𝑚  can be rewritten as 
𝑦𝑦𝑚𝑚 ,𝑛𝑛 = 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑥𝑥𝑛𝑛  and hence we obtain 𝑞𝑞 = 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑞𝑞. In 
view of the fact that 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛  is nonexpansive, by 
Lemma 2.4, we have that 
�𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑞𝑞� = �𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑞𝑞� ≤ ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖ ....... (3.2) 
 
Then, from (3.2) and condition (ii), we have the 
following: 

‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖  = �� 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚,𝑛𝑛

𝑁𝑁

𝑚𝑚=1

− 𝑞𝑞�                  

= �� 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚,𝑛𝑛

𝑁𝑁

𝑚𝑚=1

− � 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑞𝑞
𝑁𝑁

𝑚𝑚=1

� 

      ≤  � 𝑑𝑑𝑚𝑚 ,𝑛𝑛�𝑦𝑦𝑚𝑚,𝑛𝑛 − 𝑞𝑞�                      
𝑁𝑁

𝑚𝑚=1
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   ≤  � 𝑑𝑑𝑚𝑚 ,𝑛𝑛‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖                    
𝑁𝑁

𝑚𝑚=1

 

                     = ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖.  ............................... (3.3) 
 Using Lemma 2.2, the fact that 𝑇𝑇 is hemicon-
tractive-type mapping and 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑤𝑤𝑛𝑛 , we find 
that 
‖𝑧𝑧𝑛𝑛 − 𝑞𝑞‖2 = ‖𝑎𝑎𝑛𝑛(𝑣𝑣𝑛𝑛 − 𝑞𝑞) + (1 − 𝑎𝑎𝑛𝑛)(𝑤𝑤𝑛𝑛 − 𝑞𝑞)‖2       
                   =  𝑎𝑎𝑛𝑛‖𝑣𝑣𝑛𝑛 − 𝑞𝑞‖2 + (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2      

                     −𝑎𝑎𝑛𝑛(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2                  
                  ≤  𝑎𝑎𝑛𝑛𝐷𝐷2(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑇𝑇) + (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 

    −𝑎𝑎𝑛𝑛(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
  ≤  𝑎𝑎𝑛𝑛(‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 + ‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2)  

                  +(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2  
                  −𝑎𝑎𝑛𝑛(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
                   = ‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 + 𝑎𝑎𝑛𝑛 2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2. 
 
 From (3.3), it follows that 
 
‖𝑧𝑧𝑛𝑛 − 𝑞𝑞‖2 ≤ ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 + 𝑎𝑎𝑛𝑛 2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2. ........ (3.4) 
 
 In addition, since 𝑇𝑇 is hemicontractive-type 
mapping and  𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛 , from (3.1) and (3.4), we 
get that 
 ‖𝑢𝑢𝑛𝑛 − 𝑞𝑞‖2 ≤ 𝐷𝐷2(𝑇𝑇𝑧𝑧𝑛𝑛 ,𝑇𝑇𝑇𝑇)  
    ≤ ‖𝑧𝑧𝑛𝑛 − 𝑞𝑞‖2 + ‖𝑧𝑧𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
    ≤ ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2+ 𝑎𝑎𝑛𝑛2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 + ‖𝑧𝑧𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
    ........................................................... (3.5) 
 
 It follows from (3.1) that 

‖𝑤𝑤𝑛𝑛 − 𝑧𝑧𝑛𝑛‖2 = ‖𝑤𝑤𝑛𝑛 − (𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛)‖2 
        = 𝑎𝑎𝑛𝑛2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2. ...................... (3.6) 
 
 Thus, since ‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛) and 𝑇𝑇 is 
a 𝐿𝐿 −Lipschitzian mapping, from (3.6) and 
Lemma 2.2, we get that 
‖𝑧𝑧𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 = ‖𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2     

            = 𝑎𝑎𝑛𝑛‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 + (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
                               −𝑎𝑎𝑛𝑛(1− 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
                       ≤ (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 + 4𝑎𝑎𝑛𝑛𝐷𝐷2(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛) 

                                 −𝑎𝑎𝑛𝑛(1− 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
                        ≤ (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 + 4𝑎𝑎𝑛𝑛𝐿𝐿2‖𝑤𝑤𝑛𝑛 − 𝑧𝑧𝑛𝑛‖2 
                                 −𝑎𝑎𝑛𝑛(1− 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
            = (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 + 4𝑎𝑎𝑛𝑛3𝐿𝐿2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
                −𝑎𝑎𝑛𝑛(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
            = (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
                +𝑎𝑎𝑛𝑛(4𝐿𝐿2𝑎𝑎𝑛𝑛2 + 𝑎𝑎𝑛𝑛 − 1)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2. .............. (3.7) 
 
 Hence, substituting (3.7) into (3.5), we have 
that 
‖𝑢𝑢𝑛𝑛 − 𝑞𝑞‖2 ≤ ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2+ 𝑎𝑎𝑛𝑛2‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 

                         +(1− 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
                         +𝑎𝑎𝑛𝑛(4𝐿𝐿2𝑎𝑎𝑛𝑛2 + 𝑎𝑎𝑛𝑛 − 1)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 

                    = ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 + (1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
                        +𝑎𝑎𝑛𝑛(4𝐿𝐿2𝑎𝑎𝑛𝑛2 + 2𝑎𝑎𝑛𝑛 − 1)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2....... (3.8) 
 
 Thus, from (3.3), (3.8), Lemma 2.2 and condi-
tion (i), we obtain that 
‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 
 = ‖𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 
 ≤ 𝑏𝑏𝑛𝑛‖𝑣𝑣 − 𝑞𝑞‖2 + 𝑐𝑐𝑛𝑛‖𝑢𝑢𝑛𝑛 − 𝑞𝑞‖2 
  +𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 − 𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
 ≤ 𝑏𝑏𝑛𝑛‖𝑣𝑣 − 𝑞𝑞‖2 + 𝑐𝑐𝑛𝑛(‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
  +(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
  +𝑎𝑎𝑛𝑛(4𝐿𝐿2𝑎𝑎𝑛𝑛 2 + 2𝑎𝑎𝑛𝑛 − 1)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2) 
  +𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 − 𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
 ≤ 𝑏𝑏𝑛𝑛‖𝑣𝑣 − 𝑞𝑞‖2 + (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
  +𝑐𝑐𝑛𝑛(1 − 𝑒𝑒𝑛𝑛 − 𝑎𝑎𝑛𝑛) ‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2  
  −𝑐𝑐𝑛𝑛𝑎𝑎𝑛𝑛(1 − 4𝐿𝐿2𝑎𝑎𝑛𝑛 2 − 2𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
 = 𝑏𝑏𝑛𝑛‖𝑣𝑣 − 𝑞𝑞‖2 + (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
  −𝑐𝑐𝑛𝑛𝑎𝑎𝑛𝑛(1 − 4𝐿𝐿2𝑎𝑎𝑛𝑛 2 − 2𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
  +𝑐𝑐𝑛𝑛(𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2,   ................ (3.9) 
 
and from condition (iii), we have that 
1 − 4𝐿𝐿2𝑎𝑎𝑛𝑛 2 − 2𝑎𝑎𝑛𝑛 ≥ 1 − 4𝐿𝐿2𝑑𝑑2 − 2𝑑𝑑 > 0 and  
𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 − 𝑎𝑎𝑛𝑛 ≤ 0, for all 𝑛𝑛 ≥ 1. ....................... (3.10) 
 
 Thus, from (3.9) and (3.10), we find that 
‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 ≤ 𝑏𝑏𝑛𝑛‖𝑣𝑣 − 𝑞𝑞‖2 + (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
     ≤ max{‖𝑣𝑣 − 𝑞𝑞‖2,‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2}. 
 Hence, by induction, the sequence {𝑥𝑥𝑛𝑛 } is 
bounded. This completes the proof.               □ 
 
Theorem 3.2. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-type 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐴𝐴𝑚𝑚 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone map-
ping and let 𝐹𝐹𝑚𝑚 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satis-
fying Assumption 1.1, for each 𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. 
Assume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑚𝑚=1  is non-
empty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed 
at zero and 𝑇𝑇𝑇𝑇 = {𝑞𝑞} for all 𝑞𝑞 ∈ 𝛩𝛩. Let �𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂
(0,∞) such that  lim𝑛𝑛→∞ 𝑟𝑟𝑚𝑚 ,𝑛𝑛 = 𝑟𝑟𝑚𝑚  for some 
0 < 𝑟𝑟𝑚𝑚 < ∞ and for each 𝑚𝑚 = 1, 2, … ,𝑁𝑁,  and let 
{𝑎𝑎𝑛𝑛 }, {𝑏𝑏𝑛𝑛}, {𝑐𝑐𝑛𝑛}, {𝑒𝑒𝑛𝑛} and �𝑑𝑑𝑚𝑚 ,𝑛𝑛� be sequences in 
(0,1) such that 

i) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑛𝑛 , 𝑒𝑒𝑛𝑛 ≤ 𝑏𝑏 < 1; 
ii) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞

𝑛𝑛=1 ; 
iii)   ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁

𝑚𝑚=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 ≤ 1; 
iv)   𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 
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𝐹𝐹𝑚𝑚�𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧� + 〈𝐴𝐴𝑚𝑚𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 〉                                          

+
1
𝑟𝑟𝑚𝑚 ,𝑛𝑛

〈𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑚𝑚 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑛𝑛  = � 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚 ,𝑛𝑛

𝑁𝑁

𝑚𝑚=1

,                                                               

𝑧𝑧𝑛𝑛   = 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                                      
 𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 ,                                                         

� 

    ...................................................... (3.11) 
for all 𝑛𝑛 ≥ 1, where 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛  such that 
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛). Then, the sequence 
{𝑥𝑥𝑛𝑛 }  converges strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 
Proof. Since 𝛩𝛩 is nonempty, closed and convex 
subset of 𝐻𝐻, then we see that 𝑃𝑃𝛩𝛩 is well defined. 
Obviously, from Theorem 3.1 the sequence {𝑥𝑥𝑛𝑛 } 
and hence �𝑦𝑦𝑛𝑛 ,𝑚𝑚�, {𝑤𝑤𝑛𝑛 } and {𝑧𝑧𝑛𝑛 } are bounded. 
Now, let 𝑞𝑞 ∈ 𝛩𝛩. Then, using the fact that 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑚𝑚  is 
firmly nonexpansive and 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑞𝑞 = 𝑞𝑞, for all 
𝑚𝑚 = 1, 2, … ,𝑁𝑁,  and Lemma 2.3 (i), we find that 
�𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑞𝑞�2 

 =  �𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑥𝑥𝑛𝑛 − 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛 𝑞𝑞�
2 

 ≤  〈𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑞𝑞, 𝑥𝑥𝑛𝑛 − 𝑞𝑞〉 

 =  1
2
��𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑞𝑞�2 + ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 − �𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛�

2�, 
which implies that 

      �𝑦𝑦𝑚𝑚,𝑛𝑛 − 𝑞𝑞�2 ≤  ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 − �𝑦𝑦𝑚𝑚,𝑛𝑛 − 𝑥𝑥𝑛𝑛�
2. 

This gives that 

‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 ≤ � 𝑑𝑑𝑚𝑚 ,𝑛𝑛�𝑦𝑦𝑚𝑚,𝑛𝑛 − 𝑞𝑞�2
𝑁𝑁

𝑚𝑚=1

 

                     ≤ ‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 − � 𝑑𝑑𝑚𝑚 ,𝑛𝑛�𝑦𝑦𝑚𝑚,𝑛𝑛 − 𝑥𝑥𝑛𝑛�
2

𝑁𝑁

𝑚𝑚=1

. 

    ............................................................. (3.12) 
 
 On the other hand, from (3.11), Lemma 2.2 and 
Lemma 2.3 (ii), we have 
 ‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 = ‖𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 
   ≤ ‖𝑐𝑐𝑛𝑛(𝑢𝑢𝑛𝑛 − 𝑞𝑞) + 𝑒𝑒𝑛𝑛(𝑤𝑤𝑛𝑛 − 𝑞𝑞)‖2 
       +2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉 
   ≤  𝑐𝑐𝑛𝑛‖𝑢𝑢𝑛𝑛 − 𝑞𝑞‖2 +  𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑞𝑞‖2 
       −𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
       +2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉. ............ (3.13) 
 
 Thus, substituting (3.8) and (3.12) into (3.13), 
we obtain that 
 ‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 
 ≤ 𝑐𝑐𝑛𝑛(‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 +  𝑎𝑎𝑛𝑛(4𝐿𝐿2𝑎𝑎𝑛𝑛2 + 2𝑎𝑎𝑛𝑛 − 1)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2) 
       +𝑐𝑐𝑛𝑛(1 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
   +𝑒𝑒𝑛𝑛 �‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 − ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛�𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛�

2𝑁𝑁
𝑚𝑚=1 � 

   −𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 + 2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉 

 = (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
   −𝑐𝑐𝑛𝑛𝑎𝑎𝑛𝑛(1 − 4𝐿𝐿2𝑎𝑎𝑛𝑛2 − 2𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
   +𝑐𝑐𝑛𝑛(𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 − 𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖2 
   −𝑒𝑒𝑛𝑛 ∑ 𝑑𝑑𝑚𝑚,𝑛𝑛�𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛�

2𝑁𝑁
𝑚𝑚=1  

   +2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉 ......................................... (3.14) 
 
 Now, we consider the following two cases: 
Case 1. Suppose that there exists 𝑛𝑛0 ∈ ℕ such that 
{‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖}𝑛𝑛≥𝑛𝑛0

∞  is nonincreasing sequence. Then, 
the boundedness of {‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖} implies that  
{‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖} is convergent. From (3.10) and (3.14), 
it follows that 
 𝑐𝑐𝑛𝑛𝑎𝑎𝑛𝑛(1 − 4𝐿𝐿2𝑎𝑎𝑛𝑛2 − 2𝑎𝑎𝑛𝑛)‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖2 
  ≤  (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 −  ‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 
     +2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉 
 Thus, from (3.10), the assumptions of {𝑐𝑐𝑛𝑛 } and 
{𝑎𝑎𝑛𝑛 }, and the fact that 𝑏𝑏𝑛𝑛 → 0 as 𝑛𝑛 → ∞ and {𝑥𝑥𝑛𝑛 } is 
bounded, we find that 
 
 ‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖  → 0 as 𝑛𝑛 → ∞. ............................. (3.15) 
 
 This implies that 
 lim𝑛𝑛→∞ 𝑑𝑑(𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑤𝑤𝑛𝑛) = 0. ................................. (3.16) 
 
 From (3.10) and (3.14), we see that 
𝑒𝑒𝑛𝑛𝑑𝑑𝑚𝑚 ,𝑛𝑛�𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛�

2 ≤  (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
    − ‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 
    +2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉. 
 This together with conditions (i), (ii) and (iii) 
imply that 
 lim𝑛𝑛→∞�𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛� = 0.   ............................... (3.17) 
 
 In addition, from the Lipschitz condition of 𝑇𝑇, 
(3.6) and (3.15), we get that 
‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤  ‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖ +  ‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ 
      ≤ ‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖ +  2𝐿𝐿‖𝑤𝑤𝑛𝑛 − 𝑧𝑧𝑛𝑛‖ 
      = ‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖ +  2𝐿𝐿𝑎𝑎𝑛𝑛‖𝑤𝑤𝑛𝑛 − 𝑣𝑣𝑛𝑛‖ .  
Hence 
 lim𝑛𝑛→∞‖𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ = 0. ................................... (3.18) 
 
 Again from (3.11) and triangle inequality, we 
get that 
‖𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛‖ ≤  ‖𝑥𝑥𝑛𝑛+1 − 𝑤𝑤𝑛𝑛‖ +  ‖𝑤𝑤𝑛𝑛 − 𝑥𝑥𝑛𝑛‖ 
     = ‖𝑏𝑏𝑛𝑛(𝑣𝑣 − 𝑤𝑤𝑛𝑛) + 𝑐𝑐𝑛𝑛(𝑢𝑢𝑛𝑛𝑤𝑤𝑛𝑛)‖ 
      + �∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚,𝑛𝑛

𝑁𝑁
𝑚𝑚=1 − 𝑥𝑥𝑛𝑛� 

     ≤  𝑏𝑏𝑛𝑛‖𝑣𝑣 − 𝑤𝑤𝑛𝑛‖ +  𝑐𝑐𝑛𝑛‖𝑢𝑢𝑛𝑛 − 𝑤𝑤𝑛𝑛‖ 
        +∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛

𝑁𝑁
𝑚𝑚=1 �𝑦𝑦𝑚𝑚,𝑛𝑛 − 𝑥𝑥𝑛𝑛�. 

 Therefore, from (3.17), (3.18) and the fact that    
𝑏𝑏𝑛𝑛 → 0 as 𝑛𝑛 → ∞, we obtain   
 lim𝑛𝑛→∞‖𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛‖ = 0. ................................ (3.19) 
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It follows from (3.10) and (3.14) that  
 ‖𝑥𝑥𝑛𝑛+1 − 𝑞𝑞‖2 ≤  (1 − 𝑏𝑏𝑛𝑛)‖𝑥𝑥𝑛𝑛 − 𝑞𝑞‖2 
     +2𝑏𝑏𝑛𝑛〈𝑣𝑣 − 𝑞𝑞, 𝑥𝑥𝑛𝑛+1 − 𝑞𝑞〉. .............. (3.20) 
 
 Now, let 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). Then, we show that      
limsup𝑛𝑛→∞〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛+1 − 𝑝𝑝〉 ≤ 0. Since {𝑥𝑥𝑛𝑛+1} is a 
bounded sequence in a real Hilbert space 𝐻𝐻, 
which is a reflexive Banach space, then there 
exists a subsequence �𝑥𝑥𝑛𝑛𝑖𝑖+1� of {𝑥𝑥𝑛𝑛+1} such that 
𝑥𝑥𝑛𝑛𝑖𝑖+1  ⇀ 𝑦𝑦  as   𝑖𝑖 → ∞    and 

limsup
𝑛𝑛→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑖𝑖+1 − 𝑝𝑝〉 = lim
𝑖𝑖→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑖𝑖+1 − 𝑝𝑝〉. 

 Since, 𝐶𝐶 is weakly closed, we have 𝑦𝑦 ∈ 𝐶𝐶 and 
from (3.19), it follows that 𝑥𝑥𝑛𝑛𝑖𝑖 ⇀ 𝑦𝑦 as 𝑖𝑖 → ∞. 
Using (3.17), we see that �𝑤𝑤𝑛𝑛𝑖𝑖 − 𝑥𝑥𝑛𝑛𝑖𝑖� → 0 as 
𝑖𝑖 → ∞ and so 𝑤𝑤𝑛𝑛𝑖𝑖 ⇀ 𝑦𝑦 as 𝑖𝑖 → ∞. Thus, demi-
closedness of (𝐼𝐼 − 𝑇𝑇) at zero and (3.16) imply 
that 𝑦𝑦 ∈ 𝐹𝐹(𝑇𝑇). 
 On the other hand, from the fact that (𝐼𝐼 −
𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛𝑖𝑖

) is demiclosed at zero and (3.17), we obtain 
that 𝑦𝑦 = 𝑇𝑇𝑟𝑟𝑚𝑚 ,𝑛𝑛𝑖𝑖

𝑦𝑦 and thus 𝑦𝑦 ∈ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚 ), for all 
𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. That is, 

𝑦𝑦 ∈ � 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚 )
𝑁𝑁

𝑚𝑚=1

. 

Therefore, 𝑦𝑦 ∈ 𝛩𝛩. Hence, since 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣) and 
𝑥𝑥𝑛𝑛𝑖𝑖 ⇀ 𝑦𝑦 as 𝑖𝑖 → ∞, from the property of a metric 
projection, equation (2.1), we have that 
 
limsup
𝑛𝑛→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑖𝑖+1 − 𝑝𝑝〉 = lim
𝑖𝑖→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑖𝑖+1 − 𝑝𝑝〉 

  = 0, ≤−− pypv . ........................... (3.21) 

 
 Thus, since 𝑝𝑝 ∈ 𝛩𝛩, from (3.20), (3.21), condition 
(ii) and Lemma 2.6, we conclude that ‖𝑥𝑥𝑛𝑛 − 𝑝𝑝‖  →
0  as  𝑛𝑛 →  ∞. That is, 𝑥𝑥𝑛𝑛  → 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 
Case 2. Suppose that there exists a subsequence 
�𝑛𝑛𝑗𝑗 � of {𝑛𝑛} such that �𝑥𝑥𝑛𝑛𝑗𝑗 − 𝑞𝑞� <  �𝑥𝑥𝑛𝑛𝑗𝑗 − 𝑞𝑞�, for 
all 𝑗𝑗 ∈  ℕ. Then, by Lemma 2.7, there exists a 
nondecreasing sequence {𝑛𝑛𝑘𝑘} ⊂ ℕ such that 
𝑛𝑛𝑘𝑘  →  ∞, and 
  �𝑥𝑥𝑛𝑛𝑘𝑘  − 𝑞𝑞� ≤  �𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑞𝑞�  and 
  ‖𝑥𝑥𝑘𝑘 − 𝑞𝑞‖ ≤  �𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑞𝑞�, ....................... (3.22) 
 
for all 𝑘𝑘 ∈  ℕ. Thus, replacing 𝑛𝑛 by 𝑛𝑛𝑘𝑘  and using 
(3.22), (3.14), (3.10) and the fact that 𝑏𝑏𝑛𝑛 → 0 as 
𝑛𝑛 → ∞, we find that �𝑤𝑤𝑛𝑛𝑘𝑘  –𝑣𝑣𝑛𝑛𝑘𝑘�  → 0 and 
�𝑦𝑦𝑚𝑚 ,𝑛𝑛𝑘𝑘  – 𝑥𝑥𝑛𝑛𝑘𝑘�  → 0 as 𝑘𝑘 →  ∞. 

 Hence, following an argument similar to that in 
Case 1, we obtain that 
 
  limsup𝑖𝑖→∞〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝〉 ≤ 0 ................... (3.23) 
 
 Now, since 𝑝𝑝 ∈ 𝛩𝛩, from (3.20), we get that  
 �𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝�2 ≤  �1 − 𝑏𝑏𝑛𝑛𝑘𝑘��𝑥𝑥𝑛𝑛𝑘𝑘 − 𝑝𝑝�2 
  +2𝑏𝑏𝑛𝑛𝑘𝑘 〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝〉 ........................ (3.24) 
 
and hence,  since 𝑝𝑝 ∈ 𝛩𝛩, (3.22) and (3.24) imply 
that 
𝑏𝑏𝑛𝑛𝑘𝑘�𝑥𝑥𝑛𝑛𝑘𝑘 − 𝑝𝑝�2 ≤  �𝑥𝑥𝑛𝑛𝑘𝑘 − 𝑝𝑝�2 −   �𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝�2 
     +2𝑏𝑏𝑛𝑛𝑘𝑘〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝〉 
      ≤  2𝑏𝑏𝑛𝑛𝑘𝑘 〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝〉. 
 
 Then, from the fact that 𝑏𝑏𝑛𝑛𝑘𝑘 > 0, we have that 

�𝑥𝑥𝑛𝑛𝑘𝑘 − 𝑝𝑝�2 ≤ 2〈𝑣𝑣 − 𝑝𝑝, 𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝〉. It follows from 
(3.23) that �𝑥𝑥𝑛𝑛𝑘𝑘 − 𝑝𝑝�  → 0   as   𝑘𝑘 →  ∞. 
 This together with (3.24) and the fact that 
𝑏𝑏𝑛𝑛𝑘𝑘 → 0 imply that �𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝�  → 0 as 𝑘𝑘 →  ∞. 
Since 𝑝𝑝 ∈ 𝛩𝛩, we get that  ‖𝑥𝑥𝑘𝑘 − 𝑝𝑝‖ ≤  �𝑥𝑥𝑛𝑛𝑘𝑘+1 − 𝑝𝑝� 
for all 𝑘𝑘 ∈ ℕ. Thus, we obtain that 𝑥𝑥𝑘𝑘 →  𝑝𝑝 as  
𝑘𝑘 →  ∞. Therefore, we conclude that the 
sequence {𝑥𝑥𝑛𝑛} generated by (3.11) converges 
strongly to the point 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). This completes 
the proof.                                                                    □ 
 As a direct consequence of our main result, we 
obtain the following results. 
 
Corollary 3.3. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz pseudocontractive 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐴𝐴𝑚𝑚 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone 
mapping and let 𝐹𝐹𝑚𝑚 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction 
satisfying Assumption 1.1, for each 𝑚𝑚 ∈
{1, 2, … ,𝑁𝑁}. Assume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚) ∩𝑁𝑁

𝑚𝑚=1
𝐹𝐹(𝑇𝑇)  is nonempty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is 
demiclosed at zero and 𝑇𝑇𝑇𝑇 = {𝑞𝑞} for all 𝑞𝑞 ∈ 𝐹𝐹(𝑇𝑇). 
Let �𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂ (0,∞) such that  lim𝑛𝑛→∞ 𝑟𝑟𝑚𝑚 ,𝑛𝑛 = 𝑟𝑟𝑚𝑚  for 
some 0 < 𝑟𝑟𝑚𝑚 < ∞ and for each 𝑚𝑚 = 1, 2, … ,𝑁𝑁,  and 
let {𝑎𝑎𝑛𝑛 }, {𝑏𝑏𝑛𝑛}, {𝑐𝑐𝑛𝑛}, {𝑒𝑒𝑛𝑛} and �𝑑𝑑𝑛𝑛 ,𝑚𝑚� be sequences in 
(0,1) such that 
 
i) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑛𝑛 , 𝑒𝑒𝑛𝑛 ≤ 𝑏𝑏 < 1;   
ii) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞

𝑛𝑛=1  ;  
iii) ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁

𝑚𝑚=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 ≤ 1;  
iv) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1
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 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 

𝐹𝐹𝑚𝑚�𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧� + 〈𝐴𝐴𝑚𝑚𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛〉                                            

+
1
𝑟𝑟𝑚𝑚,𝑛𝑛

〈𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 ,𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑚𝑚 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑛𝑛 = � 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚 ,𝑛𝑛

𝑁𝑁

𝑚𝑚=1

,                                                              

𝑧𝑧𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                                          
 𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 ,                                                     

� 

 
for all 𝑛𝑛 ≥ 1, where 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛  such that 
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛). Then, the sequence 
{𝑥𝑥𝑛𝑛 }  converges strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 
Proof. Since a Lipschitz pseudocontractive multi-
valued mapping 𝑇𝑇 with 𝐹𝐹(𝑇𝑇) ≠ ∅ and 𝑇𝑇𝑇𝑇 = {𝑞𝑞}, 
∀𝑞𝑞 ∈ 𝐹𝐹(𝑇𝑇) is Lipschitz hemicontractive-type 
mapping, we obtain the desired result from 
Theorem 3.2.                                                             □ 
 If, in Theorem 3.2, we assume that 𝐴𝐴𝑚𝑚 ≡ 0, for 
all 𝑚𝑚 ∈ {1,2, … ,𝑁𝑁}, then we obtain the following 
corollary on a finite family of equilibrium prob-
lems and fixed point problem of multi-valued 
Lipschitz hemicontractive-type mapping. 
 
Corollary 3.4. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-type 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐹𝐹𝑚𝑚 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satisfying 
Assumption 1.1, for each 𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. 
Assume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑚𝑚=1  is non-
empty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed 
at zero and 𝑇𝑇𝑇𝑇 = {𝑞𝑞} for all 𝑞𝑞 ∈ 𝛩𝛩. Let �𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂
(0,∞) such that  lim𝑛𝑛→∞ 𝑟𝑟𝑚𝑚 ,𝑛𝑛 = 𝑟𝑟𝑚𝑚  for some 
0 < 𝑟𝑟𝑚𝑚 < ∞ and for each 𝑚𝑚 = 1, 2, … ,𝑁𝑁, and let 
{𝑎𝑎𝑛𝑛 }, {𝑏𝑏𝑛𝑛}, {𝑐𝑐𝑛𝑛}, {𝑒𝑒𝑛𝑛} and �𝑑𝑑𝑚𝑚 ,𝑛𝑛� be sequences in 
(0,1) such that 

i) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑛𝑛 , 𝑒𝑒𝑛𝑛 ≤ 𝑏𝑏 < 1;   
ii) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞

𝑛𝑛=1  ;  
iii) ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁

𝑚𝑚=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 ≤ 1;    
iv) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1
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 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by  
 

⎩
⎪
⎨

⎪
⎧

 

 𝐹𝐹𝑚𝑚�𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧�  + 1
𝑟𝑟𝑚𝑚 ,𝑛𝑛

〈𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 ,𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,         

 ∀𝑧𝑧 ∈ 𝐶𝐶, 𝑚𝑚 = 1,2, … ,𝑁𝑁,     
𝑤𝑤𝑛𝑛 = ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚 ,𝑛𝑛

𝑁𝑁
𝑚𝑚=1 ,                                                      

 𝑧𝑧𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                               
𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 ,                                          

� 

for all 𝑛𝑛 ≥ 1, where 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛  such that 

‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛). Then, the sequence 
{𝑥𝑥𝑛𝑛 }  converges strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 
If, in Theorem 3.2, we assume that 𝐹𝐹𝑚𝑚 ≡ 0, for all 
𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}, then we have the following 
result on the problem of finding a common point 
of the common solution set of a finite family of 
variational inequality problems and fixed point 
set of Lipschitz hemicontractive-type mapping. 
 
Corollary 3.5.  Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-type 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐴𝐴𝑚𝑚 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone 
mapping , for each 𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. Assume that 
𝛩𝛩 = ⋂ 𝑉𝑉𝑉𝑉(𝐶𝐶,𝐴𝐴𝑚𝑚 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑚𝑚=1   is nonempty, closed 
and convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed at zero and 
𝑇𝑇𝑇𝑇 = {𝑞𝑞} for all 𝑞𝑞 ∈ 𝛩𝛩. Let �𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂ (0,∞) such 
that  lim𝑛𝑛→∞ 𝑟𝑟𝑚𝑚 ,𝑛𝑛 = 𝑟𝑟𝑚𝑚  for some 0 < 𝑟𝑟𝑚𝑚 < ∞ and 
for each 𝑚𝑚 = 1, 2, … ,𝑁𝑁, and let {𝑎𝑎𝑛𝑛}, {𝑏𝑏𝑛𝑛 }, {𝑐𝑐𝑛𝑛 }, {𝑒𝑒𝑛𝑛} 
and �𝑑𝑑𝑚𝑚 ,𝑛𝑛� be sequences in (0,1) such that 
𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑛𝑛 , 𝑒𝑒𝑛𝑛 ≤ 𝑏𝑏 < 1; 

i) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞
𝑛𝑛=1  ;  

ii) ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁
𝑚𝑚=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 ≤ 1;    

iii) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1
�1+4𝐿𝐿2+1

. 

 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
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⎨

⎪
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〈𝐴𝐴𝑚𝑚𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛〉  + 1
𝑟𝑟𝑛𝑛 ,𝑚𝑚

〈𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 ,𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,                 

 ∀𝑧𝑧 ∈ 𝐶𝐶, 𝑚𝑚 = 1,2, … ,𝑁𝑁,     
 𝑤𝑤𝑛𝑛 = ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚 ,𝑛𝑛

𝑁𝑁
𝑚𝑚=1 ,                                                                         

𝑧𝑧𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                                                
𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 ,                                                            

�   

for all 𝑛𝑛 ≥ 1, where 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛  such that 
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛). Then, the sequence 
{𝑥𝑥𝑛𝑛 }  converges strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 If, in Theorem 3.2, we assume that 𝑇𝑇 is a single-
valued hemicontractive mapping from 𝐶𝐶 into 
itself, then we obtain the following result. 
 
Corollary 3.6. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶 be a Lipschitz hemicontractive mapping 
with Lipschitz constant 𝐿𝐿. Let 𝐴𝐴𝑚𝑚 :𝐶𝐶 → 𝐻𝐻 be a 
continuous monotone mapping and let 𝐹𝐹𝑚𝑚 :𝐶𝐶 ×
𝐶𝐶 →  ℝ be a bifunction satisfying Assumption 1.1 
for each,𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. Assume that 𝛩𝛩 =
⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁
𝑚𝑚=1   is nonempty, closed and 

convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed at zero. Let 
�𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂ (0,∞) such that  lim𝑛𝑛→∞ 𝑟𝑟𝑚𝑚 ,𝑛𝑛 = 𝑟𝑟𝑚𝑚  for 
some 0 < 𝑟𝑟𝑚𝑚 < ∞ and for each 𝑚𝑚 = 1, 2, … ,𝑁𝑁,  and 
let {𝑎𝑎𝑛𝑛 }, {𝑏𝑏𝑛𝑛}, {𝑐𝑐𝑛𝑛}, {𝑒𝑒𝑛𝑛} and �𝑑𝑑𝑚𝑚 ,𝑛𝑛� be sequences in 
(0,1) such that 
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i) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑛𝑛 , 𝑒𝑒𝑛𝑛 ≤ 𝑏𝑏 < 1;   
ii) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞

𝑛𝑛=1  ;  
iii) ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁

𝑚𝑚=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 ≤ 1;    
iv) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪⎪
⎨

⎪⎪
⎧

 

𝐹𝐹𝑚𝑚�𝑦𝑦𝑛𝑛 ,𝑚𝑚 , 𝑧𝑧� + 〈𝐴𝐴𝑚𝑚𝑦𝑦𝑛𝑛 ,𝑚𝑚 , 𝑧𝑧 − 𝑦𝑦𝑛𝑛 ,𝑚𝑚〉                                                   

+ 1
𝑟𝑟𝑚𝑚 ,𝑛𝑛

〈𝑧𝑧 − 𝑦𝑦𝑛𝑛 ,𝑚𝑚 ,𝑦𝑦𝑛𝑛 ,𝑚𝑚 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑚𝑚 = 1,2, … ,𝑁𝑁,      

 𝑤𝑤𝑛𝑛 = ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑛𝑛 ,𝑚𝑚
𝑁𝑁
𝑚𝑚=1 ,                                                                        

 𝑧𝑧𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                                             
 𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑇𝑇𝑇𝑇𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑤𝑤𝑛𝑛 ,                                                         

� 

for all 𝑛𝑛 ≥ 1. Then, the sequence {𝑥𝑥𝑛𝑛 }  converges 
strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 If, in Theorem 3.2, we assume that 𝑁𝑁 = 1, then 
we get the following corollary. 
Corollary 3.7. (Habtu Zegeye et al., 2017). Let 𝐶𝐶 
be a nonempty, closed and convex subset of a 
real Hilbert space 𝐻𝐻. Let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a 
Lipschitz hemicontractive-type multi-valued ma-
pping with Lipschitz constant 𝐿𝐿. Let 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be 
a continuous monotone mapping and let 
𝐹𝐹:𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satisfying Assump-
tion 1.1. Assume that 𝛩𝛩 = 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴) ∩ 𝐹𝐹(𝑇𝑇)  is 
nonempty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is demi-
closed at zero and 𝑇𝑇𝑇𝑇 = {𝑞𝑞} for all 𝑞𝑞 ∈ 𝛩𝛩. Let 
{𝑟𝑟𝑛𝑛 } ⊂ (0,∞) such that  lim𝑛𝑛→∞ 𝑟𝑟𝑛𝑛 = 𝑟𝑟 for some 
0 < 𝑟𝑟 < ∞, and let {𝑎𝑎𝑛𝑛}, {𝑏𝑏𝑛𝑛 }, {𝑐𝑐𝑛𝑛 }, and  {𝑒𝑒𝑛𝑛 } be 
sequences in (0,1) such that 
 
i) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛 + 𝑒𝑒𝑛𝑛 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑛𝑛 , 𝑒𝑒𝑛𝑛 ≤ 𝑏𝑏 < 1;   
ii) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞

𝑛𝑛=1  ;  
iii) 𝑏𝑏𝑛𝑛 + 𝑐𝑐𝑛𝑛  ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 
 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪
⎨

⎪
⎧

                
𝐹𝐹(𝑦𝑦𝑛𝑛 , 𝑧𝑧) + 〈𝐴𝐴𝑦𝑦𝑛𝑛 , 𝑧𝑧 − 𝑦𝑦𝑛𝑛〉                            

+
1
𝑟𝑟𝑛𝑛
〈𝑧𝑧 − 𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,

𝑧𝑧𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑣𝑣𝑛𝑛 + (1 − 𝑎𝑎𝑛𝑛)𝑦𝑦𝑛𝑛 ,                          
𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + 𝑐𝑐𝑛𝑛𝑢𝑢𝑛𝑛 + 𝑒𝑒𝑛𝑛𝑦𝑦𝑛𝑛 ,                           

� 

for all 𝑛𝑛 ≥ 1, where 𝑣𝑣𝑛𝑛 ∈ 𝑇𝑇𝑦𝑦𝑛𝑛 ,𝑢𝑢𝑛𝑛 ∈ 𝑇𝑇𝑧𝑧𝑛𝑛  such that 
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖ ≤ 2𝐷𝐷(𝑇𝑇𝑦𝑦𝑛𝑛 ,𝑇𝑇𝑧𝑧𝑛𝑛). Then, the sequence 
{𝑥𝑥𝑛𝑛 }  converges strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 If, in Theorem 3.2, we assume that 𝑇𝑇 = 𝐼𝐼, where 
𝐼𝐼 is the identity mapping on 𝐶𝐶, then we obtain 
the following corollary on a finite family of 
generalized equilibrium problems. 
 
Corollary 3.8.  Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝐴𝐴𝑚𝑚 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone mapping 
and let 𝐹𝐹𝑚𝑚 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satisfying 

Assumption 1.1, for each 𝑚𝑚 ∈ {1, 2, … ,𝑁𝑁}. As-
sume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑚𝑚 ,𝐴𝐴𝑚𝑚 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑚𝑚=1   is non-
empty. Let �𝑟𝑟𝑚𝑚 ,𝑛𝑛� ⊂ (0,∞) such that  lim𝑛𝑛→∞ 𝑟𝑟𝑚𝑚 ,𝑛𝑛 =
𝑟𝑟𝑚𝑚  for some 0 < 𝑟𝑟𝑚𝑚 < ∞ and for each 𝑚𝑚 =
1, 2, … ,𝑁𝑁, and let {𝑏𝑏𝑛𝑛} and �𝑑𝑑𝑚𝑚 ,𝑛𝑛� be sequences in 
(0,1) such that 

i) lim𝑛𝑛→∞ 𝑏𝑏𝑛𝑛 = 0,   ∑ 𝑏𝑏𝑛𝑛 = ∞∞
𝑛𝑛=1  ;  

ii) ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 = 1𝑁𝑁
𝑚𝑚=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑚𝑚 ,𝑛𝑛 ≤ 1 

 Let {𝑥𝑥𝑛𝑛} be a sequence generated from an 
arbitrary 𝑥𝑥1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪
⎨

⎪
⎧ 𝐹𝐹𝑚𝑚�𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧� + 〈𝐴𝐴𝑚𝑚𝑦𝑦𝑚𝑚 ,𝑛𝑛 , 𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛〉                                            

     + 1
𝑟𝑟𝑚𝑚 ,𝑛𝑛

〈𝑧𝑧 − 𝑦𝑦𝑚𝑚 ,𝑛𝑛 ,𝑦𝑦𝑚𝑚 ,𝑛𝑛 − 𝑥𝑥𝑛𝑛〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑚𝑚 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑛𝑛 = ∑ 𝑑𝑑𝑚𝑚 ,𝑛𝑛𝑦𝑦𝑚𝑚 ,𝑛𝑛
𝑁𝑁
𝑚𝑚=1 ,                                                                 

𝑥𝑥𝑛𝑛+1 = 𝑏𝑏𝑛𝑛𝑣𝑣 + (1 − 𝑏𝑏𝑛𝑛)𝑤𝑤𝑛𝑛 ,                                                     
  

�  

for all 𝑛𝑛 ≥ 1. Then, the sequence {𝑥𝑥𝑛𝑛 }  converges 
strongly to 𝑝𝑝 = 𝑃𝑃𝛩𝛩(𝑣𝑣). 
 
Remark 3.9. Theorem 3.2 extends the results of 
Tesfalem Hadush et al. (2016), Habtu Zegeye et al. 
(2017), Razani and Yazdi (2012), Hao (2011), 
Wang et al. (2007), Ceng et al. (2010), Huang and 
Ma (2014) in the sense that our iterative algo-
rithm provides strong convergence to a common 
element of the set of common solutions of a finite 
family of generalized equilibrium problems and 
the set of fixed points of a Lipschitz hemicontrac-
tive-type multi-valued mapping. We have used 
the demiclosedness principle in the proof of our 
Theorem 3.2 which makes a little simpler than 
using Assumption 1.1. 
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