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ABSTRACT: A new approach of estimating the common mean of several
different normal populations is introduced. It is shown that this approach yields the
most commonly used estimators as special cases. An empirical comparative study
of these estimators and three new ones is made through computer simulation. The
results of the study show that for small samples and also when the population
variances are very different the performance of the new estimators is better than
that of the commonly used estimators.
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INTRODUCTION

The problem of making inference about the common mean of several normal
populations, when the variances are unknown, was first treated by Bartlett
(1936). Since then the problem has attracted the attention of many researchers.
Most of the papers on this topic deal with estimation of the common mean: In
this paper we shall first present some of the suggested estimators and then
discuss an estimation procedure that includes these estimators as special cases.
Finally a comparison of some of these estimators and other.new ones is made
by using the Monte-Carlo approach.

THE PROBLEM AND SOME COMPETING ESTIMATORS

Suppose there are k normal populations with the same mean g and unknown and
possibly different variances 02, i=1,2,3, . . . k. The objective here is to
estimate the common mean p. For this purpose we take independent random
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samples of sizes n;, i=1,2,3, . . k. We shall denote the sample means and
variances by X and S ; i.e.,

=i X 22_1_2 _X)2
n, -1

Some of the competing estimators of u are listed below.

i) The Unweighted Estimator (UWE): The simplest estimator one can think of
is the unweighted estimator which is given by:

<En> IZZ =Xyt Yonx,

i=1 j=1 i=1 i=1

if) The Weighted Estimator (WTE): If the population variances, 0? i=1,2,...k,
are known the best estimator for u is given by

(zn/o) lz_X
i= lo

If we replace 0,- by its unbiased estimator S,.2 we obtain the weighted
estimator.

WIE = (zn/s ) ‘}:——X
i= lS

iii) The Maximum Likelihood Estimator (MLE): The maximum likelihood
estimator is derived by maximizing the likelihood function given below.

L= H(zno) exp[—-—2< -0y .
20

The MLE is the solution of the estimating equation
2,5 A
. n; (X;‘H)
, 2 v A
=L (18] + n(X-{y

=0.
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iv) The Neyman-Scott Estimator (NSE): Neyman and Scott (1948) studied a
more general version of the above estimating equation and reached the
conclusion that the estimator which emerges as the solution of

£ (n-2n(XR)
=1 (187 + n(X-p)y

=0

is generally more precise than the MLE. We shall call this estimator the
Neyman-Scott estimator. From the estimating equation of the NSE one can
see that samples of size 2 make no contribution to the estimation and this
may be an undesirable property of the estimator.

v) The Kalbfleish-Sprott Estimator (kSE): Kalbfleish and Sprott (1970)
obtained an estimator for the common p by using the conditional likelihood
approach. The KSE is the solution of the estimating equation

£ (n- DX )
S (DS mX-R)y

=0 .

This estimator is an improvement over the NSE in that samples of size 2 make
a contribution to the estimation. There is a similarity among the estimating
equations for the MLE, NSE and KSE, and from this we may expect these
estimators to have similar properties.

Comparative studies of some or all of these estimators have been made by,
among others, Levy (1970), Levy and Mantel (1974), Rao (1980), and recently
by Gebre-Egziabher Kiros (1990). Levy compared the MLE and WTE and found
the MLE to be generally more precise than the WTE. Levy and Mantel studied
the relative efficiencies of the UWE, WTE and MLE relative to the best unbiased
estimator when the variances are known. Their study suggests that

1) the UWE has a better relative efficiency than the other two when the
population variances are nearly equal;

2) the WTE performs better than the MLE when the sample sizes are equal; and

3) the performance of the MLE is superior in all other cases.
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Rao investigated empirically the relative efficiencies of the MLE and KSE and
other estimators, and concluded that the MLE is less efficient than the KSE.
Gebre-Egziabher compared all these estimators when 3<k<10and n,'s are not
large using the Monte-Carlo approach. He recommends the use of the WTE
because of its computational simplicity and high efficiency unless k is large
and/or the n;'s differ considerably.

MIXED (OR WEIGHTED) LIKELIHOOD FUNCTION APPROACH

Since we know that the independent random samples come from k normal
populations with the same mean but possibly different variances, we may
construct the likelihood function as a mixed (or weighted) likelihood function
of k likelihood functions; i.e.,

n

k - n
L = ¥ p2no) Zexpl-(20) E(X,-ny]
i=1 751

where p,'s are the mixing probabilities (or weights) and are independent of u
and 0? 's, but could depend on functions of X 's. The maximum likelihood

estimator of u is then the solution of the estimating equation
L1 p n;(/\,,'—ﬁ) _
i (2me a?)W”“

where 6 = —Z( -f)?
hy=1

For different choices of p, we get different estimators. The previous five
estimators can be obtained through this estimation procedure by appropriately
selecting p, as can be seen from Table 1. Even though the number of
estimators one can obtain through this process is limitless, only three new
estimators are studied here. These estimators which are labelled NEl, NE2 and
NE3 are selected because of their respective similarities to the MLE and the
WTE. A comparative study of these estimators will be discussed in the following
sections. The MLE and the NSE were found to have more or less similar
behaviour, and because of this the NSE was dropped from further consideration.
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Table 1. Some special cases of the estimation procedure.
P, Estimator or estimating equation Notation
:'.I-ol n 1 K by UWE
p, = (medy? 7R e
M . 1 &n = WTE
o (O N f=—=) —X
p; = (SH(2med?) ™ /s,’§ e
1 koo, - - MLE
p, = (2med})? Zl:ni()(i_u)/};()(tj—") =0
- -
- n k. (n.-2)n (X~ NSE
p« L PDoeenr LT
n; i=l 6:‘
- o k. (n.-Dn(X,-f) KSE
pi o (n' 1)(211'.'66'2 2 AU ANLEL N4 '2 d s =0
n; =l 5
@ k n(X.-p) NE1
o 2 2 L = 0
p; = (2med;) 'z_l: 3,
M 1 &z NE2
-1 2.2 fll = —) —X.
P; = ()7 (2med;) H E”i/Siiz'l: s, i
1 LA NE3

Za .
o« (2medX(SHN)? Ho= X —X;
p; = 2medi(S))™) D,i/(siz)n/z 155 (Siz)nﬂl i

METHOD OF COMPARISON

The comparison of the seven estimators analytically is very difficult and
because of this the comparison was made by using the Monte-Carlo approach.
The common mean pu was set at zero in order to simplify the computations
involved and this has no effect on the conclusions reached. To compute values
of the estimators a computer program having several sub-programs was written
in Pascal. The sub-programs and their functions are given in Table 2.
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Table 2. Sub-programs and their functions.

Name of sub-program Function

Uniform Generates uniform random variables by using the Wichm-
ann-Hill algorithm. (See Gebre-Egziabher Kiros, 1992).

Generate Converts the uniform random variables to normal random
variables by using the Polar-Marsagalia method.

Statistics Computes sample sums, means, sum of squares and vari-
ances.

Funcl, Func2, Func3 These are used to estimate the MLE, KSE and NEI.
and Regula Falsi

Main Program Reads the number of populations, population variances and
sample sizes, estimates UWE, WTE, MLE, KSE, NE1, NE2 and
NE3, and writes them in that order. It also writes the num-
ber of times each iteration failed to converge.

The performance of an estimator depends on the number of populations undet

consideration (k), the population variances (0? ), the sample sizes (»,) and the

pattern in which the #,'s and 0,? 's are combined. Because real life comparisons
may not involve more than 12 populations, three values of k (i.e., 3, 7, 12)
were selected. The ratios 0,.2/0]? i #j rather than the actual magnitudes of the

variances affect the relative performance of the estimators, and because of this

k

the o? 's were selected in such a way that Eo? =1and d=max 8 /min 5’
i=1

equals 4/3, 2, 5, 10, 50, 100 and 1000. The quantity 8 was used as a measure

of heterogeneity in the of 's. Fhe sample sizes selected were of three types;

viz. small (3sn<10), medium (10<n,<30) and large (#,>30). The actual

sample sizes for the different values of k are given in Table 3. Two different
combination of sample sizes and population variances were used:
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2 .
1) n,'s and 0;'s having the same rank order;

2 .
2) n,'s and 0;'s having the reverse rank order.

. 2 .
For each combination of k, », and 0; the program was run 1000 times and

1000 estimates were cormputed for each estimator.

Table 3. Selected sample sizes.
Type K
3 7 12
Small 4,79 3,4,5,6,7,8,9 3,4,4,5,5,6,6,7,7,8,8,9

Medium 15,1926  13,15,17,19,24,26,28  11,13,15,16,17,19,21,23,24,25,27,29
Large 31,38,47 33,3537,39,44,46,48  31,33,35,37,39,41,43,45,47,49,51,53

To obtain the estimates for the MLE, KSE and NE1 the Newton-Raphson method
was firstly tried. However, on several occasions it was observed that the
iterative method failed to converge for the MLE and KSE, especially when the
sample sizes were small. To see if this problem could be overcome and aiso
because of its better effectivity index (see Froberg, 1970) the method was
changed to Regula Falsi. Even with this iterative procedure the problem could
not be overcome, and in the program a value of 95.99 was given to the
estimator on such an occasion. This has the effect of exaggerating the estimates
for the mean and the mean-squared error.

A second program, also in Pascal, was written to make the comparative study.
The mean- squared error of the estimates about the true common mean zero
was used as a measure of precision. The comparison was made by computing
these mean-squared errors.
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RESULTS AND DISCUSSION

For the unweighted estimator it can be shown that

Var(UWE) = ;

g’

(Zn)in

and expressions for the asymptotic variances of WTE, MLE, NSE and KSE are
available. The above variance for the UWE is an exact result and may be used
to check the validity of the simulation program. Before running the entire
program ratios of the empirical and theoretical variances were computed for

different combinations of k, n,'s and 0>'s and were found to be close to 1.

This was taken as a validation of the simulation process.

Table 4 gives the precision of the different estimators relative to the estimator
with the smallest MSE For each value of k the first seven rows refer to

. . . . 2
combinations in which »7,'s and 0 's have the same rank order, and the next

e . 2
seven rows to combinations in which 7,'s and o; ‘s have the reverse rank

order.

One can observe from the table that the precision of these estimators depends,
to a large extent, on the #,'s and 8. For 8 =4/3 and small and medium sample

sizes the best estimator was found to be the UWE for all values of k. This is not
surprising when one notes that for 8 =1 (i.e., the variances are all equal) the
unweighted estimator is the best estimator. The result is also in conformity with
suggestion (1) of Levy and Mantel. However, for large sample sizes and
8 =4/3 NEl and NE2 were found to be relatively more efficient than the UWE.
For 0 =2 and small samples the UWE and NE1 were found to be superior to the
other estimators, but for medium and large samples the performance of NE1 and
NE2 were found to be relatively better.
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When the sample sizes are small and 2<&<10 NE1 seemed to perform the best.
The iterative procedure for obtaining the MLE and KSE failed to converge for
small sample sizes on several occasions. A count was made of such events and
it was observed that it could go to as high as 419 in 1000 runs. For medium and
large samples the study indicated that the performance of the KSE was better
than that of the rest.

For 50<6<1000 and small sample sizes the WTE and NE3 performed better
than the other estimators. For medium and large samples the KSE, WTE and MLE
had relatively higher precision than the others.

Even though there were indications that increasing the values of k favoured the
KSE and MLE, the effect of k on precision was not marked. This could be
because of the selected values of k which were all small and, therefore, could
not clearly show the effect of k on precision.

CONCLUSION
The results of the study suggest that:

1)  The relative precision of the estimators depends, to a large extent, on the
. .. 2
sizes of the samples and 8, the measure of heterogeneity in G; 's.

2) For 6 near 1 and small and medium samples the UWE is relatively most
efficient.

3) For 8=2 and medium and large samples and for 2<8<10 and small
samples the performance of NE1 seems to be the best.

4) For 2<6<10 and medium and large samples the KSE is relatively better
than the rest.

5) For 50<0<1000 and small samples NE3 seems to perform well, but for
medium and large samples the WTE is the best because of its relative
precision and computational simplicity.
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The indiscriminate use of the MLE is to some extent supported by theory. For
large samples and under certain regulatory conditions the MLE has optimum
properties of being approximately unbiased, consistent and efficient. But as the
results of this study and alse of other authors (for example Neyman and Scott
and Rao) show there are circumstances when the MLE is less efficient than
competing estimators. Therefore, when confronted with a new problem, one
should carefully examine if the conditions are satisfied before applying the
MLE.
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