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ABSTRACT: Theoretical results about comparison of multivariate estimators
and a general linear transform of the same vis-d-vis the mean square error
criterion are given. Two theorems on admissibility of linear transforms of
estimators are introduced. Applications of the theoretical results are demonstrated
by considering two linear transforms of the unbiased estimator of the coefficients
of the multiple linear regression model.
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INTRODUCTION

Improvement of estimation and prediction by introducing biased estimation
procedures had been, and still is a research area of importance. The comparison
of risks of the resulting estimators can be shown by using mean square error
(MsE). Periman (1972) gave a necessary and sufficient condition guaranteeing
the existence of a scalar o € (0,1) such that a shrinkage of an unbiased vector-
valued estimator would result in an improvement in Msg. Bibby (1972) and
Bibby and Toutenburg (1977; 1978) investigated biased estimators and
predictors that can be obtained by improving unbiased procedures. A general
result due to Perlman was applied by Kleffe (1985) to show that uniformly
better estimators can be given through multiplication of an unbiased estimator
by some positive constant less than but close to one. The optimal choice of such
a multiplier was studied, and specific results for quadratic estimation derived.
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This paper studies linear transforms of an unbiased multivariate estimator.
Theoretical conditions regarding MSE improvement and admissibility of a linear
transform are given. Finally, the general results are applied to two biased
estimators of regression coefficients.

COMPARISON OF AN ESTIMATOR WITH
ITS LINEAR TRANSFORM

Let§ € © C R® be an unknown vector of parameters. Suppose that 8~ D(u,Z)
is an estimator of 6. Consider the linear transformation A8 where A € R is

a constant matrix. The transformation of 8 given by 6,=A48 will be referred to
as a linear transform.

Before going into the discussion on comparison of a given estimator of a
parameter and its linear transform we will formally introduce our measure of
comparison, namely the MSE as well as some terminologies associated with it
(Trenkler, 1981). We represent the mean square error matrix of a biased

estimator by M(8) while the unweighted scalar-valued risk is given as G ().
The weighted scalar-valued risk is Gy (B), where H € RP® is a weight matrix.

Criterion I (strong criterion)

Let 6, and 8, be two estimators of §. 8, is said to be better than 8, with
respect to criterion I, if M(8,) -M(8,) is non-negative definite (n.n.d.) for § €
© C R 0, is said to be strictly better than 8, with respect to criterion I if
M(8,) -M(8,) is positive definite (p.d.) for § € © C R~

Criterion II (weak criterion)

Let éa and 8, be two estimators of §. Let H be a non-stochastic n.n.d. matrix.ﬁl
is said to be H-better than 8, with respect to criterion 11, if G4(8,) -Gy (8,) =0
for 9 € © C R~ 8, is said to be strictly H-better than 8, with respect to
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criterion II, if Gy(8,) -Gy(6,) >0 for 6 € © C R~ If the matrix H = I, we

simply say 61 is better (strictly better) than 62 with respect to criterion II.

Apparently criterion I compares 8 and éA by studying the MSE matrix
difference (L6wner order of matrices), and criterion II enables us to do the
same by taking into account the sign of the scalar MSE difference. Since we
know that an estimator cannot uniformly dominate all others from the same
class, conclusions about improvement pertain to subsets of the space of
parameters.

The sub-regions or conditions for & improvement over 6 according to criterion
I and criterion II, respectively, are

Ry = (Ap-6) (Ap-6)'+AZA’-(u-0)(u-6)'-£<0
where " <" is the Lowner ordering of matrices, and

R = tr(AZA'-X) + (Ap-0)'(Ap-6)-(u-6)'(n-6) <O0.
Matrix differentiation of R; with respect to A gives

Ag = 0T (@, +pp'T?

as the matrix which minimises the squared error risk. Hence, the best estimator
of 6 in the class of biased estimators

C =10,16,=46, E®) =6}

is A op,é. Because the matrix A, is a function of the unknown parameters u,6
and I the best estimator is not operational.

In the following we assume that 8 is an unbiased estimator for p and p=6.
Then the matrix-valued and scalar MSE of 6, respectively, are
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M@®,) -M®) = (Au-0)(Au-6)'+ AZA'-X
and
G®, -G(8) = r(AZA'-L)+(Ap-6)'(Ap-6).

The region of improvement of 8, over 8 is
(A-L) uu’(A;IP)' +AZA'-E<0

where " <" is the Lowner ordering of matrices, and
A, =pp' T L+ pp'T)!.

The following statement gives a condition under which the unbiased estimator &

of 6 will be dominated by its linear transform A#.

Theorem 1

Suppose & A =AB is an estimator of the vector of parameters 6, and that L'~AZA'
is p.d. Then the following two properties are equivalent:

() 8,is strictly better than & with respect to criterion I.

(i) 0’(A—Ip)'[E—AEA’]"(A—IP)G< 1.

The proof of the above theorem is based on a result by Farebrother (1976)
which is restated as follows: Let A be an m x m-matrix, @ an m-non-zero vector

and let d be a positive scalar. Then dA - aa’ is p.d. if and only if a'A"a<d.

Setting d=1, a=(A-1,)6 and A=X~ALA’ proves the assertion of the theorem.
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ADMISSIBILITY OF A LINEAR TRANSFORM

Adopting the procedure and terminology in Trenkler, we give the following
definition of admissibility in terms of the weak criterion.

Definition
Let H be an n.n.d. matrix of dimension pxp. Consider the class of estimators
of 6 € O. An estimator 5, is said to be (H, ©)-admissible if there exists no

other estimator & belonging to the same class such that for all § € ©
Gu(®) < Gx(6)

with strict inequality for at least one value of § € ©. 8, is called ©-admissible
if it is (I,,0)-admissible.

Rao (1976) showed that (I,,0)-admissibility implies (H,0)-admissibility. The
following restatement of a result due to Rao is used to establish the admissibility

of a linear transform of the unbiased estimator 6.

Lemma

Let z be a k-vector random variable such that E(z) = 6 with dispersion matrix
D(z) = W. Assuming that W is non-singular the necessary and sufficient
conditions for the admissibility of a transform Ly, for a r x k matrix L, are

(i) LWS' is symmetric, and
(ii) LWS’ - LWL' is n.n.d..

The matrix S of dimension r x k is given in the theorem preceding the above
. result in Rao, and it was used to indicate that Lz satisfies (S,0)-admissibility.

In the notations of this paper A = L, & = z and L = W. Since we assumed
that A is a square matrix, we take the identity matrix of dimension p in place
of S. The application of the Lemma leads to the following result.
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Theorem 2

Let 8,=48 be a linear transform of 8. Then the following conditions are

necessary and sufficient for the admissibility of 8,:

(i) A is symmetric and it commutes with X, and
(ii) AX - AXA'is n.n.d.

Proof: The proof in (ii) uses the Lemma. The requirement (i) is satisfied if the
transformation matrix A and the covariance matrix £ commute, that is AL =
LA. Then AY = I'A’ proving that AL is symmetric.

APPLICATION TO THE LINEAR REGRESSION MODEL

Let us consider the multiple linear regression model M(y,Xg,0°1,), where 8 is
a fixed but unknown p-vector of coefficients and o® is the common variance of
the error terms. We assume that the nxp non-stochastic regression matrix X has
full column rank. In the subsequent discussion we will use expressions related
to the spectral decomposition of the regression matrix X. The matrices X can

be decomposed as X=QAY2P’, where P and Q are matrices of dimensions pxp
and nxp, respectively. These two matrices satisfy P'P=Q’'Q=I,, and the
columns of P are the orthonormal eigenvectors corresponding to the eigenvalues
N, i =12, ..., pof X’X. We represent the diagonal matrix of eigenvalues by
A

We limit our interest to linear transforms Ab of the ordinary least squares
estimator (OLSE), b=(X'X)"'X'y. The linear transform Ab is superior to b
according to criterion I in the region

(AB-B)(AB-B)' + o’ AX'X)'A-¢*(X'X)"! < 0
and the best estimator of 8 is. B, = A,,b where

A,.=B6'X'X[e’I,+6B'X"X]".
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Since A, involves 8 and ¢® the best estimator is unknown, and hence not
operational.

Example 1 - Comparison of the ridge estimator and OLSE
The generalised ridge estimator (Hoerl and Kennard, 1970a,b) is given as

bK)=(X'X+K)'X'y, K=diag(k)#0, k; = 0.

Note that b(K) = Ab, where A = P(A +K)*AP’, and thus a linear transform
of the ordinary least squares estimator of the vector of coefficients.

The improvement region for the generalised ridge estimator over OLSE,
according to criterion I, is

AX'X)? A'-(X'X)']+(A-L)BB'(A-L)' <0
which is the same as
oP[(A +K)Y?A-A'P' + P{A+K)'A - Liyy'[(A+ K)"A-IP]P’ <0,

where y=PB. In both expressions above “<” is the Lowner ordering of
matrices.

Criterion II gives the condition of superiority of b(K) as
PHrAKX)'A-(X'X) ]+ 6/ (A-L) (AL)8 < 0

~ o’trP[(A+K)’A-A")P']+B'P[(A+K)'A-LP P8 < 0

- - 253kj(kj+2)\i)/)\j()\5+kj)2+‘y'diag()\j/()\j+kj)-1)2'y < 0.
Jj=1
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The ridge estimator is admissible because AY,=0?[P(A+K)3A%)p’=Y'A’ and in
addition AY-AYA’=0*P[(A+K)A%-(A+K)“A*|P'=0?PAP’ is n.n.d. because
A=diag(k A} /N+K)Y), j=1,2, ..., p is p.d.

The above conditions can be rewritten for the ordinary ridge estimator
bky=(X'X+KL)" X'y, k>0, if k;s are replaced with , that is K = &I,

Example 2 - Comparison of the shrunken estimator and OLSE
The shrunken estimator (Mayer and Willke, 1973) is given by

. =¢b ¢ € (0,1l
Note that b, = Ab with A = I,

The shrunken estimator is an improvement over the least squares estimator
according to criterion I if

(c+1)*X'X)" +(c-1)88' 20,

and according to criterion II when
&L A
(+0/(1-0) X A = pgle
i

With regard to the two criteria for admissibility, we-have AL=c’0"PA’?
P'=X’'A’. Furthermore, AL - AZA’ = *¢’PAP’ is n.n.d. for all ¢ € (0,1],

where A = diag((1-c)A; l), j=1, 2, ..., p. Thus, we have shown that the
shrunken estimator is also an admissible linear transform of b.
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SUMMARY

Comparisons of the MsE risks of a vector-valued 8 of a parameter 0 and a
linear transform A8 were considered. The sub-region of the parameter space

where the linear transform shows superiority over the unbiased estimator 8 was
derived, and also the optimal transformation matrix A given. The condition for
the dominance of the linear transform was stated, and its admissibility
established. Finally, two linear transforms of the OLSE, namely the shrunken
estimator and the ridge estimator were taken to illustrate how the theoretical
considerations in the second section of the paper can be utilised.
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