
SINET: Ethiop. J. Sci., 27(1):33–44, 2004 
©  Faculty of Science, Addis Ababa University, 2004                                                                             ISSN: 0379–2897 

DIEL VERTICAL MIGRATION OF ZOOPLANKTON IN  
A HYPERTROPHIC SHALLOW TEMPERATE LAKE, GERMANY 

 
Brook Lemma 

 
Department of Biology, Alemaya University, P O Box 138 

Dire-Dawa, Ethiopia. E-mail: brklmm@yahoo.com 
 

 
ABSTRACT: Zooplankton as important links in the food web of aquatic ecosystems have been 
studied extensively. In current literature their diel vertical migration (DVM) is a highly discussed issue. 
In this investigation DVM by zooplankton is studied in a hypertrophic shallow lake in Germany. The 
objectives of the study were to see if DVM by zooplankton occurs in shallow lakes such as Lake 
Dagowsee, the possible overlap in DVM of Leptodora kindtii, an invertebrate predator, and zoopankton, 
and the effect of wind action on DVM. It was found out that DVM of zooplankton occurs in Lake 
Dagowsee despite the limited range of depth for migration, wind action can influence DVM and L. 
kindtii poses a complex situation in relation to DVM behaviour of zooplankton in Lake Dagowsee. 
Finally, further studies are suggested with regard to DVM variation between different species, size and 
hybrid groups of Daphnids, and identification of the light sensitive range that can cue DVM of 
zooplankton and L. kindtii in temperate and tropical waters. 
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INTRODUCTION 
 
The study on zooplankton has always attracted the 
attention of limnologists due to their key role in the 
food web as links between the primary producers 
and the vast spectrum of invertebrate and 
vertebrate predators that prey upon them. This 
ecological niche of zooplankton has also made 
them key actors in their top-down grazing effect 
(trophic cascade) that plays pivotal roles in 
biomanipulation for lake restoration purposes 
(Carpenter and Kitchell, 1993). Consequently 
limnologists have not spared efforts to know more 
and manage zooplankton better in their natural 
settings for sustainable use of aquatic systems. 
 In this regard one major step was made when 
zooplankton seemingly drifting with water current 
have been known to systematically navigate in 
aquatic systems guided by various internal 
conditions and environmental cues with which 
they have intimately evolved through time. This 
has been mostly observed in the diel migration 
patterns of zooplankton for over a century now 
(Weismann, 1887). In general diel vertical 
migration (DVM) is a phenomenon that involves 
most zooplankton species and occurs in both 
marine and freshwaters (Sekino and Yamamura, 
1999). As per the generally accepted predator 
avoidance hypothesis, zooplankton stay in the cold 
dark deeper water column during the day to avoid 
visual predation mostly by fishes and migrate 

towards the warm food-rich surface water at night 
using nightfall as their refuge (Zaret and Suffern, 
1976; Stich and Lampert, 1981). In so doing 
zooplankton perform some trade-off by avoiding 
visual predation during the day and stay in the 
colder, oxygen and food limited deeper strata 
reducing their metabolic activities. In other words, 
upward migration into surface waters at nightfall 
is nutritionally and thermally favourable but a 
dangerous environment for zooplankton, while 
downward migration at daybreak is demographi-
cally disadvantageous that must be accepted by 
the same in order to be safe from visual predation 
(Lampert, 1993). Hence, the reports made by 
Weismann (1887) stimulated a milestone change in 
the understanding of zooplankton since it is a 
question dealing with tons and tons of migratory 
microscopic animals that serve as essential links in 
the food web of aquatic systems. Thus other 
studies made through the years included Russell 
(1927), McLaren (1963), Hutchinson (1967), Enright 
(1977), Enright and Honegger (1977) followed by 
many others after the 1980s. 
 The major influencing factors for zooplankton 
diel migration were predator avoidance (Zaret and 
Suffern, 1976; Stich and Lampert, 1981; Gliwicz, 
1986; Lampert, 1993; Masson et al., 2001; Rhode et 
al., 2001), chemical cues (Enright and Honegger, 
1977; Lampert, 1993; Pijanowska, 1993; Lass et al., 
2000; Masson et al., 2001), solar or ultraviolet 
radiation (Vuorinen et al., 1999; Leech and 
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Williamson, 2001; Rhode et al., 2001), light 
(Ringelberg, 1993; 1999; Jensen et al., 1999; Han and 
Straškraba, 2001), availability of and competition 
for food (Duval and Geen, 1976; Masson and Pinel-
Alloul, 1998; Pearre, 2000), dissolved oxygen 
(LaRow, 1970; Duval and Geen, 1976; Masson and 
Pinel-Alloul, 1998; Besiktepe, 2001), temperature 
(Enright and Honegger, 1977; Ramos-Jiliberto and 
Zúñiga, 2001), stratification (Masson and Pinel-
Alloul, 1998) prey size (Luo et al., 1996; Lass et al., 
2000; Robertis et al., 2000; Kornilovs et al., 2001; 
Cuker and Watson, 2002), pigmentation of 
zooplankton (Enright, 1977; Rhode et al., 2001), 
internal conditions or endogenous rhythms 
(McLaren, 1974; Enright and Honegger, 1977; 
Sekino and Yamamura, 1999), wind action or 
turbulence (Stavn, 1971; Patalas and Salki, 1992; 
Vuorinen et al., 1999; Masson and Pinel-Alloul, 
1998; Luo et al., 2000; Masson et al., 2001), diel 
timing and seasonal effects (Zaret and Suffern, 
1976; Enright and Honegger, 1977; Vuorinen et al., 
1999; Thompson and Allen, 2000; Masson et al., 
2001), turbidity (Masson and Pinel-Alloul, 1998; 
Roman et al., 2001), salinity (Roman et al., 2001) and 
generally the effect of combinations of multiple 
physico-chemical and biological forces (Masson 
and Pinel-Alloul, 1998; Masson et al., 2001). 
 In light of the aforementioned general purpose 
of investigating DVM of zooplankton, the objectives 
of this study were to gather (i) baseline data on the 
DVM of zooplankton in the shallow hypertrophic 
Lake Dagowsee, Germany, (ii) to see the relations 
between DVM patterns of zooplankton and the 
cladoceran predator Leptodora kindtii and (iii) to see 
the effect of wind turbulence on DVM of 
zooplankton in the same lake. In due course, this 
line of investigation is anticipated to lead to a 
better understanding of zooplankton that are 
important links in the aquatic food web and to 
contribute some knowledge in the effort of 
extending the survival of macrozooplankton for 
biomanipulation purposes in both temperate and 
tropical lakes. 
 
 

DESCRIPTION OF THE STUDY SITE 
 
Lake Dagowsee, a hypertrophic lake (Koschel et al., 
1990), is located at 130 04’ E and 530 08’ N at an 
altitude of 60.2 m above sea-level very close to 
Lake Stechlin of the Baltic Lake District in one of 
Germany’s well-known natural conservation areas 
(See figure drawn to scale in Brook Lemma et al., 
2001). This lake has a surface area of 0.3 km2, a 
maximum depth of 9.5 m, mean depth of 5 m and 
volume of 8.2 x 106 m3, with conductivity of 340 µS 
cm-1, pH range of 7.2 – 9.2 and PO4-P concentration 

of 114 mgL-1 (Brook Lemma et al., 2001). The 
eutrophication of Lake Dagowsee dates back to the 
1960s when breeding of carp and ducks was 
carried out in it (Koschel et al., 1990). This was 
interrupted as one of the first and major restoration 
measures taken in 1972. Soon after, other ecological 
studies have been conducted on this lake (See 
Dittrich et al., 1993 and Brook Lemma, 1997; Brook 
Lemma et al., 2001) to restore the lake for the safe 
use of its fishery resources and summer recreation. 
 
 

MATERIALS AND METHODS 
 
Routine depth measurements of temperature and 
dissolved oxygen have been made at 0.5 m 
intervals from the surface down to the sediment. 
Water transparency was measured during daylight 
hours using a standard white painted Secchi disc 
of 20 cm diameter. Meteorological data for the 
days of sampling were collected from the 
Deutsche-Wetter Dienst (DWD), Neuglobsow, 
Germany. 
 Zooplankton samples were collected at three 
occasions, specifically on 12–13. 06.; 26–27. 06. and 
10–11. 07. 2002 each time at a six-hour interval to 
complete a diel cycle. The samples were taken 
using a Schindler-Patalas Trap of 15 liters capacity 
equipped with 55 µm mesh to capture small 
zooplankton. This was operated from a centrally 
located station (9 m deep) at five different depths 
of 0 m, 2 m, 4 m, 6 m and 8.5 m. The samples were 
stored in 250 ml plastic bottles fixed with 4% 
sugar-formalin solution. Zooplankton identifica-
tion, counting and length measurements were 
made from at least three homogenized 10 ml 
samples in a sedimentation chamber under an 
inverted Olympus microscope at a magnification 
of 8x1.5x4 (Kasprzak et al., 1993). Mean body 
lengths of 30 to 40 individuals of Daphnia spp., 
Diaphanosoma brachyurum and Eudiaptomus gracilis 
from each sample were used to calculate cell 
volume from simple geometric models as a 
measure of biomass (Børsheim and Andersen, 
1987). 
 
 

RESULTS 
 
Temperature and dissolved oxygen depth 
measurements recorded at the three sampling 
dates at six-hour intervals were averaged with 
standard deviations as shown in Figs 1 and 2. With 
the exception of midnight, transparency of 
lakewater measured at 6, 12 and 18 hours of each 
sampling day were averaged and the results are 
illustrated in Fig. 3. 
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Fig. 1. Mean temperature depth profiles with standard deviation measured on 12–13. 06., 26–27. 06. and 10–11. 06. 2002, Lake 

Dagowsee. 
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Fig. 2. Mean dissolved oxygen depth profiles with standard deviation measured on 12–13. 06., 26–27. 06. and 10–11. 06. 2002, 

Lake Dagowsee. 
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  Fig. 3. Secchi depth measurements in year 2002, Lake Dagowsee. 
 
 
 With regard to zooplankton that inhabit Lake 
Dagowsee, Daphnia cucullata, D. hyalina, Diaphano-
soma brachyurum, Ceriodaphnia sp., Eudiaptomus 
gracilis, and a number of copepods were recorded 
in the samples collected. These were found to be 
similar to previous work by Brook Lemma (1997) 
and Brook Lemma et al. (2001). Identification and 
head counts of Leptodora kindtii caught in the trap 
were also made at the same time. 

 The biomass of Daphnia spp. as a group has been 
calculated (Fig. 4), while that of other zooplankton, 
such as, Diaphanosoma brachyurum (Fig. 5), Eudiap-
tomus gracilis (Fig. 6) and Leptodora kindtii (Fig. 7) 
was calculated separately by species. Using the 
weather data collected from DWD, Fig. 8 has been 
constructed to see the influence of wind action 
(turbulence) on zooplankton migration. 
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Fig. 4a. Diel vertical distribution of Daphnia spp., Lake Dagowsee (June 12,13 and 26, 2002). 
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Fig. 4b. Diel vertical distribution of Daphnia spp., Lake Dagowsee (June 27, July 10 and 11, 2002). 
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Fig. 5a. Diel vertical distribution of Diaphanosoma brachyurum, Lake Dagowsee (June 12, 13 and 26, 2002). 
 

 Biomass, mgCm-3. 

D
ep

th
, m

. 

0

2

4

6

8

0 0.5 1 1.5

6 hours
27.6.02

0

2

4

6

8

0 0.5 1 1.5

6 hours
10.7.02

0

2

4

6

8

0 0.5 1 1.5

12 hours
10.7.02

0

2

4

6

8

0 0.5 1 1.5

18 hours
10.7.02

0

2

4

6

8

0 0.5 1 1.5

24 hours
10.7.02

0

2

4

6

8

0 0.5 1 1.5

6 hours
11.7.02

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5b. Diel vertical distribution of Diaphanosoma brachyurum, Lake Dagowsee (June 27,  July 10 and 11, 2002). 
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Fig. 6a. Diel vertical distribution of Eudiaptomus gracilis, Lake Dagowsee ((June 12, 13 and 26, 2002).  
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Fig. 6b. Diel vertical distribution of Eudiaptomus gracilis, Lake Dagowsee (June 27, July 10 and 11, 2002). 
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Fig. 7. Diel vertical distribution of Leptodora kindtii,

brachyurum in year 2002, Lake Dagowsee. 
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evenly distributed in the water column as they 
migrate on their way up or down. D. brachyurum 
seemed to show similar patterns as the daphnids at 
midnight and daylight hours. The biomass 
recorded at midnight for the respective sampling 
days were 0.2, 1.0 and 0.9 mgCm-3. Unlike the 
daphnids, the migration range of D. brachyurum 
seemed to be limited to the upper 4 m of the water 
column. The calanoid E. gracilis had maximum 
concentrations of 13.4, 12.8 and 0.8 mgCm-3 during 
midnight, although the low concentration on the 
last sampling date is accounted for in the 
discussion along with the weather data collected 
from DWD, Neuglobsow. L. kindtii, commonly 
found in such hypertrophic shallow lakes (Palmer 
et al., 2001), also showed diel migration pattern by 
appearing in the upper water column during the 
night. Its maximum concentrations at 0 m, 2 m and 
4 m depths were recorded as 200, 300 and 400 
individuals m-3 of lakewater in the respective 
depths and sampling days. L. kindtii seemed to 
disappear from the water column between 6 and 
18 hours, as there were apparently no individuals 
caught in the trap during this period. 
 
 

DISCUSSION 
 
The temperature pattern in Lake Dagowsee was 
similar to previous records (Brook Lemma, 1997; 
Brook Lemma et al., 2001) with distinct stratifica-
tion where the epilimnion extended up to 3 m 
depth and the hypolimnion was below 6 m (Fig. 1). 
Temperature declined in the metalimnion (3 to 6 
m) from an average epilimnetic temperature of 
21.25 0C to about 10°C at the upper limit of the 
hypolimnion. Temperature in the hypolimnion 
decreased very slowly from 10°C to around 6 0C. 
There was a clear temperature difference of at least 
14 0C between the surface and the bottom 9 m. 
Likewise, dissolved oxygen in Lake Dagowsee 
showed stratification that more or less 
corresponded to the temperature pattern in terms 
of depth profile (Fig. 2). The epilimnion 
maintained dissolved oxygen concentration of 
around 10 mgO2L-1, the metalimnion decreased 
from 10 mgO2L-1 to below 1 mgO2L-1 and the 
hypolimnion was anoxic with oxygen closing up to 
nil below 6 m. Transparency as measured by 
Secchi disc ranged from 1.8 m to about 2.4 m in 
Lake Dagowsee (Fig. 3). When this was compared 
to previous Secchi depth measurements of 2.85 m - 
4.75 m for Lake Dagowsee (Brook Lemma, 1997; 
Brook Lemma et al., 2001), the present situation is 

much shallower for the season indicating that 
clarity as a measure of water quality has 
deteriorated in this lake. 
 These three factors are known to have important 
impacts on zooplankton migration. The warm, 
oxygen and food rich surface waters are 
advantageous when visited by zooplankton and 
the cold, oxygen and food poor waters below 6 m 
are metabolically unfavorable at periods when 
zooplankton shelter themselves from predation at 
this depth (Zaret and Suffern, 1976; Gliwicz, 1986; 
Lampert, 1993; Masson et al., 2001; Rhode et al., 
2001). Conversely, with less clarity in water, 
zooplankton get better refuge from vertebrate 
visual predation in the upper strata of the water 
column as recorded in Lake Kuriftu (Brook Lemma 
et al., 2001). Consequently, it can be said that with 
increasing turbidity and shallower Secchi depth, 
light will not provide the proper intensities to cue 
vertical migration behavior that can be induced by 
photoperiod (Roman et al., 2001). 
 In Lake Dagowsee the migration of daphnids to 
the surface during the night and their sinking to 
deeper waters during daylight can actually be 
attributed to the effect of light. By such behavior 
zooplankton are known to use resources very 
efficiently while at the same time playing it safe 
from predation by vertebrates (McLaren, 1963; 
1974; Enright, 1977; Gliwicz, 1986), and 
guaranteeing the continuity of their species. 
Zooplankton by staying in the dark for 24 hours (in 
deeper waters by daylight), they avoid visual 
predation by vertebrates. For this activity, they pay 
the price of staying in the cold, food and oxygen 
poor depths of Lake Dagowsee enduring hunger 
and metabolic sacrifices as a trade-off for staying 
alive and maintain their generations, as described 
in the hypothesis of avoidance of visually oriented 
predation (Zeret and Suffern, 1976; Stich and 
Lampert, 1981; Neill, 1990; De Meester et al., 1995). 
However, this behavior is paradoxical if one looks 
at the DVM of L. kindtii in Lake Dagowsee, which 
assumes similar DVM behavior as daphnids (Fig. 4) 
and prey upon daphnids and other zooplankters 
(Palmer et al., 2001). This invertebrate predator 
presumably follows such migration pattern to 
avoid vertebrate visual predation by daylight (Liu 
et al., 2002). For daphnids the trend of natural 
selection in Lake Dagowsee is apparently to select 
the better of two evils, whereby they avoid the 
stronger vertebrate visual predation and endure 
the consequences of the weaker invertebrate 
predation in the dark, which the invertebrate 
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predator launches apparently by way of chemical 
cues. Incidentally, vertebrate predation is known 
to be stronger from the experience of many tropical 
waters where year-round vertebrate predation has 
completely wiped out daphnids (Fernando 1994, 
Brook Lemma et al., 2001). In temperate waters 
daphnids use DVM to avoid vertebrate visual 
predation, somehow survive invertebrate 
predation and reappear each year in early spring, 
although the trend of natural selection with 
daphnids is to avoid all forms of predation 
pressures as much as possible. This was observed 
by Masson and Pinel-Alloul (1998) who stated that 
zooplankton in Lake Geai, Quebec uniquely 
evolved inverse DVM to avoid invertebrate 
predation by Chaoborus sp. in the absence of 
vertebrate visual predation. In Lake Dagowsee, the 
price daphnids pay for migrating along with the 
invertebrate predator is observed when 
populations of L. kindtii increases and that of 
daphnids declines as summer progresses (Fig. 4, 
see also Palmer et al., 2001). Another aspect of L. 
kindtii DVM is that it tends to migrate up the water 
column earlier at dusk and down later at dawn 
than daphnids, as observed in the last two 
sampling periods (Figs 1 and 4; see also Palmer et 
al., 2001; Liu et al., 2002). This indicates that L. 
kindtii protected by its transparent body from 
vertebrate visual predation (DeBernardi and 
Giussani, 1975) occupies strategic time and space, 
to await for zooplankton on their way up and 
down, making it an efficient predator with positive 
returns for the catch effort it expends. 
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 Having said this, it must be obvious that all 
daphnids do not perform DVM by virtue of being 
daphnids. In Lake Dagowsee, closer observation of 
DVM by daphnids has revealed that those that 
migrate most are the large-sized individuals and 
gravid females (Fig. 9; see also Lampert, 1993 and 
Besiktepe, 2001), while the juvenile and small 
daphnids stay in the upper water column by 
daylight, what Cuker and Watson (2002) referred 
to as inverse DVM. These small-sized or stunted 
daphnids find refuge from vertebrate predation in 
their smallness (Slusarczyk, 1997; Brook Lemma et 
al., 2001) and benefit by staying in the warm, food 
and oxygen rich surface waters, as described by the 
size efficiency hypothesis (Brooks and Dodson, 
1965; Kerfoot and Sih, 1987; Gliwicz, 1994). DVM 
therefore seems to be an evolutionary trend that 
gradually unfolds as the age and sizes of daphnids 
increases. Therefore DVM of zooplankton is not 

considered as a fixed behavior but flexible 
(Lampert, 1993), as observed (i) in their direct DVM 
in the presence of vertebrate predation, (ii) inverse 
DVM in the absence of vertebrate predation but 
presence of invertebrate predation and (iii) 
variation of DVM in different size groups and 
species types (Stich and Lampert, 1981). 
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Fig. 9. Mean body length of Daphnia spp. on (a) 12–13. 06. 
(b) 26–27. 06. and (c) 10–11. 07. 2002, Lake Dagowsee. 

 
 
DVM of D. brachyurum became more pronounced as 
summer progressed and their population started to 
increase (Fig. 5; See also Brook Lemma, 1997). On 
12 .06., 26. 06. and 10.07.02 at 24 hours D. 
brachyurum increasingly migrated to the surface. 
During daylight it seemed to retreat to deeper 
waters mostly down to about 4 or 5 m, while the 
daphnids migrated to 6 m and below. Given the 
small size of D. brachyurum it is apparently logical 
to assume that it can escape the visual predation 
effect of vertebrates by retreating to reasonable 
subdued light situation of 4 or 5 m depth of turbid 
Lake Dagowsee and still benefit from warmer 
waters with richer food and oxygen supply rather 
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than going into deeper, colder and anoxic waters 
with limited amount of food. This seems to be in 
agreement with the logical conclusion that the 
largest daphnids migrate most, while the juvenile, 
small and stunted ones stay in upper waters. 
 Similarly, DVM behavior of E. gracilis has been 
recorded in Lake Dagowsee, except on 10.07.02 at 
24 hours. At this time E. gracilis migrated into 
deeper waters. The explanation for this behavior 
was the sudden change in the climate of Lake 
Dagowsee area at that sampling period when the 
wind speed changed from 0 m second-1 at 19 hours 
to 7.5 m second-1 at 20 hours and then to 5 m 
second-1 at 24 hours (Fig. 8). As shown in the same 
figure all the sampling hours were under relative 
quietness except at this night when a sudden 
strong windstorm struck the lake. Given the fast 
reaction and speed of E. gracilis (Masson et al., 
2001), it migrated into deeper waters of 4 m depth 
under this circumstance. E. gracilis has also been 
observed to react quickly by migrating to the 
surface when during daylight heavy cloud cover 
followed with rain shower came and the water 
column was subject to subdued light, such as at 12 
and 18 hours of 12.06.02 (Fig. 6), while still 
daphnids and D. brachyurum remained below, as 
they have slow reaction time (Lieschke and Closs, 
1999). 
 In Lake Dagowsee zooplankton showed DVM 
induced mainly by light but with the apparent 
purpose of avoiding vertebrate visual predation. 
The predation by invertebrates posed a complex 
situation in the evolution of DVM behavior in 
zooplankton and warrants further research. 
Investigations should also be directed into the 
variation in DVM between different size-groups of 
daphnids and daphnid species. Zooplankton DVM 
induced by light can be further investigated in 
tropical waters where solar radiation and length of 
daylight are more or less constant through most of 
the year. Instead of expressing the timing of 
downward migration as dawn and upward 
migration as dusk, investigations should be 
conducted to find out the most probable minimum 
light intensity required to cue DVM reactions in 
zooplankton for the conditions of a specific lake. 
Further, using this minimum light intensity 
required to cue DVM, it may be possible to develop 
light intensity index in relation to Secchi disc 
measurements for various lake conditions. If such 
knowledge is acquired it may be possible to initiate 
zooplankton migration for any specific purpose, be 

it to ensure their continued existence through the 
seasons or use them in accordance with the trophic 
cascade hypothesis for lake restoration manage-
ment practices. 
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