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ABSTRACT: In this paper we shall study the growth and asymptotic behaviour of sub-harmonic 
functions of order greater than half near Pólya peaks. In some way our result is a generalization of 
Paley’s conjecture. The method employed is a non-asymptotic via a normal family of subharmonic 
functions. 
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INTRODUCTION 
 
Let u be a subharmonic function defined on the 
complex plane C. We set 
 

 B(r, u) = 
rz =

sup u(z)  

 
and define the Nevanlinna characteristic of u by 
 

  T(r, u) = 
π2
1
∫
π2

0

u+(reiθ)dθ 

 
where u+(z) = max(u(z), 0). 
 
The lower order λ of u is given by 
 

  λ =  lim
r
urT

log
),(

 

 
 A sequence {rn} of positive numbers is said to be 
a sequence of Pólya peaks for T(r, u) of order λ > 0 
if there is a sequence {∈n},  ∈n > 0 such that ∈n → 0 
and ∈nrn ≤ t ≤ 1−

n∈ rn   imply 

 T(t, u) ≤ ( 1 + ∈n ) 
λ










nr
t

T(rn, u). 

 
 It is well known that T(r, u) has a sequence of 
Pólya peaks of lower order λ > 0 (see Edrei, 1965). 
It is also easy to see that a subsequence of Pólya 
peaks for T(r, u) is also a sequence of Pólya peaks 
for T(r,u). 
 Let u be a subharmonic function of lower order 

2
1>λ  and {rn} be  a sequence of Pólya peaks for 

T(r, u).  We will prove that 

 
),(
),(

lim
urT
urrB

n

n  ≤  πλrλ, 0 < r < ∞............................ (1) 

 
 For r = 1, (1) is Paley’s conjecture (Paley, 1932) 
and, for its proof see Rossi and Weitsman (1983) in 
case u = log |f| where f is an entire function. 
 The subharmonic function 

 u(reiθ) = 




 ≤

otherwise

r

0
2

,cos
λ
πθλθπλ λ

......................... (2) 

satisfies T(r,u) = rλ, B(r, u) = πλrλ and is extremal 
for (1), i.e., equality  holds in (1).  We will show that 
subharmonic functions of lower order 2

1>λ , for 
which equality holds in (1) for some r > 0, behave 
asymptotically as rotations of the function given in 
(2). Indeed we have the following theorem. 
 
Theorem  1 
Let u be a subharmonic function of lower order 

2
1>λ  and {rn} a sequence of Pólya peaks for T(r, u) 

of order λ. Then the following statements hold: 
 

a)  lim
),(
),(
urT
urrB

n

n  ≤  πλrλ       (0 < r < ∞). 

b)  If equality holds in (a) for some r > 0 then 
equality holds for all r > 0. 

c)  
∞→n

lim
),(
)( ,

urT
urrT

n

n  = rλ ,  (0 < r < ∞ ). 

d) There is a subsequence { }
kn
r  of {rn} such 

that u(r e
kn
r iθ ) = (o(1) + v(reiθ )) T( ,u)  

as k → ∞ for almost all θ, | θ - α | ≤ 
kn
r

λ
π

2 , 
where v(reiθ)=πλrλ cos λ (θ -α ), α ∈ [-π, π]. 

 We remark that if equality holds in (a) for r = 1 it 
is proved that (c) holds, (see Edrei and Fuchs, 
1976). 



                                                                                                                                                                          Seid Mohammed 94

DEFINITIONS AND FACTS 
 
In this section we assemble some of the definitions 
and facts pertinent to prove Theorem 1. Let u be a 
subharmonic function in the plane.  The *- function 
of u, u* introduced by Baernstein (1974) is defined 
by 

 u*(reiθ) = 
π2
1

 sup u(re∫
E

iϕ)dϕ, (0 ≤ θ ≤  π, r > 0) 

where the supermum is taken over all sets E ⊆ [-π, 
π] with m(E) = 2θ (m = Lebesgue measure on the 
real line). Baernstein (1974) proved that u* is 
subharmonic in the upper half plane, π+ and 
continuous in the closure of π+ except possibly at 
the origin. Further, u* also satisfy (see also Hyman, 
1989, Chap  9) 
 T(r, u) = max u*(re

πθ ≤≤0
iθ),            u*(r) = 0 

 B(r, u) = π 
θ∂
∂

u*(reiθ) |θ = 0 ................................. (3) 

 
 Let {rn} be a sequence of Pólya  peaks for T(r, u) 
of lower order λ > 0.  We set 

un(reiθ)  = 
),(
)(

urT
erru

n

i
n

θ

, (n = 1, 2, …), 

a sequence of subharmonic functions. A well 
known result due to Anderson and Baernstein 
(1978) asserts that the e i  a subharmonic function 
v and a subsequence 

r s
{ }

kn
r  of {rn} such that 

 

∞→k
lim 0)()(

2

0

=−∫ θ
π

θθ drevreu ii
nk

( 0 < r < ∞ ) 

and ............................................................................... (4) 

∞→∞→
=
kn

n

k urT

urrT

k

k lim
)(

)(
lim

,

, T(r, )=T(r, v)≤r
kn

u λ  (0<r<∞). 

 In this paper any subharmonic function v which 
satisfies (4) for some subsequence of {rn} will be 
referred as a limit function of {un}. 
 
 We also need the well-known convolution 
inequality due to Petrenko (1969). Let u be a 
subharmonic function in the plane, 0 < γ < 1, we set 
 

 
2

2

1
  ) k(t,

1

1






 +

= −

γ

γ

γγ
t

t  

 We have Petrenkós inequality 
 

 B(r, u) ≤ (t e∫
R

u
0

* iπγ )  k
t
dt

t
r







 γ,  

                +C
γ
1








R
r

T(2R,u), 




 <<

2
0 Rr ........ (5) 

for an  absolute constant C. 
 
 Proofs of the above inequality are also given by 
Essén (1975) and by Edrei and Fuchs (1976) where 
it was shown that the Mellin transform of k (t, γ) is 

k̂ (s, γ)= ∫
∞

+
0

1
 ) k(t,
st
dtγ =

s
s
πγ
π

sin
,  (0<s<

γ
1

). . ...... (6) 

 
Proof of Theorem 1 
Lemma 
Let u be a subharmonic function of lower order λ > 
0 and {rn} a sequence of  Pólya  peaks for T(r, u) of 
order λ.  Then there is limit function v of {un}. Such 
that  
  lim B(r, un) =  B(r, v) 
 
Proof. 
Let w be any imi  function of {ul t n}. Then there is a 
subsequence { }

kn
u of {un} for which (4) holds. 

Let r > 0 be fixed and  = )B(r,
knu ( )k

k
ren

βu  (k = 

1,2, …) and assume βk → β as k → ∞. Let 0 < t < r 
and B (t, w) = w(teiα).  Then we have 

 B(t, w) ≤ 
π2
1
∫
π

θ
2

0

)(
r
t

i Prew (θ - α) dθ 

=
π2
1lim

∞→k ∫
π

θ
2

0

)(
r
t

i
n Preu
k

(θ-α)dθ≤ lim B(r, u ) 
kn

where 

 Ps(θ) = 
θcos21

1
2

2

ss
s

−+

−  is the Poisson kernel. 

 
Thus B(t, w) ≤ lim B(r, ) holds for t<r. Since 

B(s, v) is a continuous function of s, letting t→r we 
have 

kn
u

 B(r, w) ≤ lim  ........................................ (7) ) B(r,
knu

 
On the other hand for t > r we have 

 B(r, u ) ≤ 
kn π2

1
∫
π

θ
2

0

)(
t
r

i
n Pteu
k

(θ - βk)dθ. 

 
Consequently, 
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lim B(r, )≤
kn

u lim
π2
1
∫
π

θ
2

0

)(
t
r

i
n Pteu
k

(θ-βk) dθ 

  = lim
∞→k π2

1
∫
π

θ
2

0

)(
t
r

i
n Pteu
k

(θ - βk) dθ 

  = 
π2
1
∫
π

θ
2

0

)(
t
r

i Ptew (θ - β) dθ 

  ≤ B (t, w) 
Letting t → r, we have 
lim  B(r, u ) ≤ B(r, w). ........................................... (8) 

kr

Thus from (7) and (8) 
 B(r, w) = lim  B(r, ) ≤ 

kn
u lim B(r, un).............. (9) 

 To complete the proof of the Lemma, let { }
kn

u  
be a subsequence of {un} such that 
  B(r, u ) = 

∞→k
lim

kn
lim  B(r, un). 

 Since { }
kn
r  is a subsequence of Pólya peaks, it is 

a sequence of Pólya peaks for T(r, u). Following the 
above argument and by (9) there is limit function v 
of { }

kn
u  such that 

 B(r, v) =  B(r, u ) = 
∞→k

lim
kn

lim  B(r, un). 

 Now if u is a subharmonic function of lower 
order 2

1>λ  and v is any limit function of {un} we 
have by (3) and (4) 
 
 v* (reiθ) ≤ T(r, v) ≤ rλ, 0 ≤ θ ≤ λ

π
2 . 

 Since v*(r) = 0 and v*( λπ 2ire ) ≤ rλ, by Phragmén 
Lindelöf Principle we conclude that 
 v* (reiθ) ≤ rλ sin λθ, 0 ≤ θ ≤ λ

π
2 . 

 Consequently by (3) 

 B(r, v) = π
θ∂

∂ *v
(reiθ) |θ = 0  ≤ πλrλ. 

 Thus by the Lemma, 
 lim  B(r, un) ≤ πλrλ       (0 < r < ∞)..................... (10)  
 
This proves assertion (a) of Theorem 1. 
 
Theorem 2 
Let u be a subharmonic function of lower order 

2
1>λ  and {rn} a sequence of  Pólya peaks for 

T(r,u) of order λ. If for some r1 > 0 lim B(r1, un) = 
πλr1 , then there is a limit function v of {uλ

n} such 
that 
 

i) v*(reiθ) = rλsin λθ,  0 ≤ θ ≤ λ
π

2 , r > 0 

and consequently 
 T(r, v) = rλ and B(r, v) = πλrλ. 
ii) v(reiθ) = πλrλ cosλ(θ-α) for |θ-α| ≤ λ

π
2  

and for some α∈ [-π, π]. 
 
Proof. 
 By the Lemma there is a subharmonic function v 
such that 
 lim B(r, un) = B(r, v). Since lim B( , u1r n) = πλr1 , 

we have B(r

λ

1, v) = πλr1 , applying Peteronko’s 
inequality (5) with 

λ

  λ2
1γ = and using (6) we 

obtain 

 πλr1 =B(rλ
1, v)≤ )(* 2

0

λ
πi

tev∫
∞

k
6

,1 dt
t
r






λ

 .............. (11) 

  ≤ 
6

,1

0

dt
t
r

kt 





∞

γλ∫  

  =  πλr1  λ

 Hence equality holds through out in (11), which 
implies 

 v* 




λ

π
2ite  = tλ , (0 < t < ∞). 

 
Since v* (teiθ) ≤ T(t, v) ≤  tλ, it follows that  

 T(t,v) = tλ. .............................................................. (12)  
 Let 0 < α < λ

π
2 , γ = π

α  < 1 and apply (5) to get   

 v* (teiα )  = tλ  sin λα. 
 Since v* (teiθ) ≤ tλ sin λθ  0 ≤ θ ≤ λ

π
2 , it follows 

by the maximum principle 
 v*(reiθ) = rλ sin λθ, 0 ≤ θ ≤ λ

π
2      ................... (13)

 which proves (i) of Theorem 2. It follows from 
(13) and  (3) that 
 B(r, v) = πλrλ  (0 < r < ∞). 
 Thus, 
 lim  B(r, un) = πλrλ (0 < r < ∞ ). 
This proves assertion (b) of Theorem 1. 
 Since v* (z) is harmonic in the region 0 < arg z < 

λ
π

2 , it follows (Essén and Shea, 1978/79) that 

 v(reiθ) = πλrλ cos λ (θ - α) for |θ - α| ≤ λ
π

2 and 

for some α∈ [-π, π]. 
 Assertion (d) of Theorem 1 follows for (4) and an 
application of results in real analysis. We remark 
that the above results hold if we replace lower 
order by order of the subharmonic function. 
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