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ABSTRACT: Various methods of modeling correlated binary data are compared as applied to data 
from health services research. The methods include the standard logistic regression, a simple 
adjustment of the standard errors of logistic regression by a single inflator, the weighted logistic 
regression, the generalized estimating equation, the beta-binomial model, and two proposed bootstrap 
methods. First, these approaches are compared for a fixed set of predictors by individual tests of 
significance. Next, several subsets of predictors are compared through the AIC criterion, whenever 
applicable. 
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INTRODUCTION 
 
Correlated binary data appear in many areas of 
research. Responses are often binary in nature like 
in decision-making: approve/disapprove, reject/-
accept and in evaluations: appropriate/inappropri-
ate, disease status: diseased/not diseased, etc. A 
sequence of binary responses can be correlated for 
a number of reasons. A common example occurs in 
toxicological studies where malformations 
(present/absent) are correlated for litters of mice 
from the same dam. In other applications, 
clustering typically occurs as a result of repeated 
measurement on the same subject. Analysis of this 
type of data has gained much attention in the past. 
 In a first step, one approaches the problem of 
modelling binary responses with the standard 
logistic regression. This method is based on the 
binomial likelihood. Therefore, unless the 
underlying assumptions are satisfied, the analysis 
can result in drawing completely incorrect 
inferences. There are two important ways in which 
the binomial assumptions can be violated: 
heterogeneity of the success probabilities and 
dependence among the binary responses. The 
latter is the focus of the analyses in this report. 
 In the statistical literature a number of methods 
have been proposed to model correlated binary 
data. The methods range from a simple rescaling of 
the covariance matrix by a single inflator factor to a 
full likelihood based inference. To mention few, 

Williams (1975) first proposed the use of beta-
binomial model and later proposed fitting 
weighted logistic regression (Williams, 1982). More 
recently, the generalized estimating equation was 
proposed by Liang and Zeger (1986) in regression 
analysis of repeated measurement. This method 
can be easily adapted for binary outcomes. A more 
comprehensive review of methods for analysing 
clustered binary data is presented by Pendergast et 
al. (1996) and Aerts et al. (2002). 
 The concern of this paper is to compare 
commonly used methods of modelling correlated 
binary data as applied in health services research. 
As described by Lohr (1998), an important 
component of health services research is the study 
of how populations and individuals can obtain 
effective, appropriate, competent, and compassion-
ate health care services in short and high-quality 
health care. In this regard, there are two extreme 
situations that need attention: the overuse of 
unnecessary and inappropriate services and 
underuse of needed and appropriate care. In this 
regard, two variables of interest are the length of 
stay (e.g., in the hospital) and the number of 
inactive days. Gange et al. (1996) applied the beta-
binomial distribution in modelling the effect of 
policy changes on appropriateness of hospital 
stays. The response variable is binary (inappropri-
ate/appropriate), and it is retrospectively recorded 
for each patient during his or her stay in the 
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hospital. Obviously, the responses are dependent 
(repeated daily observations on the same patient). 
Gange et al. (1996) modelled both the mean 
response (probability of inappropriateness) and the 
scale parameter. The scale parameter (also related 
to the intracluster correlation) is used to measure 
the degree of propagation of inappropriateness in 
the hospital, with low correlation implying 
efficient and high-quality service.  The same data is 
used in this paper to compare various models, and 
to further investigate the final model of Gange et al. 
(1996). 
 The data consists of 1383 patients. The response 
variable is binary, with two possible values: 0 (a 
day of stay in the hospital is appropriate) and 1 (a 
day of stay in the hospital is inappropriate). Other 
variables of interest are Length of Stay in hospital 
(LOS), Number of inappropriate days (r), Gender, 
Age at Admission, Ward (1=Medical, 2=Surgical, 
3=Other), and Year (1988, 1990). The covariate Year 
is important because there was a policy change 
during the two years. All variable transformations 
are adopted as they were in the analysis by Gange 
et al. (1996). 
 The objectives of this paper are twofold. First, the 
paper examines, based on a fixed set of predictors, 
how different modelling approaches lead to 
different significant effects. We investigate the final 
model of Gange et al. (1996) which is based on the 
beta-binomial by including the quadratic effect of 
LOS, and we also select one or more optimal 
models in the sense of Akaike’s information 
criterion (AIC) (Akaike, 1973). The second main 
objective is that of comparing the performance of 
two bootstrap methods (resampling binary values 
versus resampling clusters) with other methods. 
 
 

DESCRIPTION OF THE PROBLEM 
 
The logistic regression for analysing binary 
responses (modelling proportion) demands 
independence among the binary observations. As a 
consequence, the variability in the data would not 
be satisfactorily captured by fitting a logistic 
regression. This is called extra-binomial variation 
or overdispersion. Overdispersion is common in 
count data, where the mean and variance have a 
functional relationship as they do in the case of 
binomial and Poisson distributions. A more 
detailed discussion of overdispersion can be found 
in Collett (1991). In the next section, some methods 
of accommodating for overdispersion are briefly 
introduced. 

THE MODELS 
 
Logistic regression 
Suppose that Yij is a binary response having 
Bernoulli (πi) distribution, i=1,2,…,N; j=1,…,ni. The 
success probability πi is related to a set of k 
potential predictors through the logit transform: 
 
  logit ( .) βπ ii X=  
 
 It is assumed that the binary responses are 
independent and that the probabilities πi of 
subjects with the same covariate pattern Xi are 
identical. For the hospital stays data, repeated 
measurements are taken on the patients.  The 
responses from the same patient form a natural 
cluster. Basically, since the logistic regression 
ignores this clustering, there are some pitfalls in 
fitting this model. In particular, the standard errors 
of the regression coefficients will be underesti-
mated, giving rise to inflated test statistics. This 
model will be fitted as a first trial. 
 
Single inflator factor (scaled deviance/scaled 
Pearson) 
 This is a simple way of correcting for 
overdispersion. Analogously to the normal 
regression, the dispersion parameter φ can be 
estimated by the scaled deviance statistics, 

 or the scaled Pearson,  (see 
McCullagh and Nelder, 1989). The dispersion 
parameter for the binomial distribution is 1, as can 
be seen from its general exponential family 
representation. Therefore, an estimate of φ  that is 
by much greater than 1 implies that the variability 
in the data is more than the binomial variation.  To 
correct for overdispersion, we multiply the 
covariance matrix of  by . This adjustment 
does not affect the estimates of the regression 
coefficients. An option in SAS system for this 
adjustment is Scale=D (or SCALE=P) in the PROC 
LOGISTIC procedure. 

dfD /2χ dfP /2χ

β̂ φ̂

 
Williams procedure 
Williams (1982) proposed using a weighted logistic 
regression. For the ith subject, if the binomial 
variance is given by , an estimate 
of the regression coefficients are obtained itera-
tively by using the weights . The 
weights have the effect of inflating the standard 
errors of the regression coefficients. More details 
can also be found in Collett (1991). An option in 

2)1( iiiin σππ −

1iw = 2ˆ/ iσ
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SAS system for this adjustment is SCALE=W in the 
PROC LOGISTIC procedure. 
 
Generalized estimating equations (GEE) 
 GEE, also known as marginal models, are a 
multivariate generalization of the quasi-likelihood 
method. Quasi-likelihood is a function, which if 
existing, acts like a log-likelihood (Wedderburn, 
1974).  In the construction of this function, the 
mean and variance relationship in the real 
likelihood is perturbed in order to accommodate 
for overdispersion. Briefly, the steps in GEE as 
applied in regression analysis of repeated 
measurements with binary responses are:  (i) relate 
the mean to linear combination of the covariates, 
(ii) express the variance of the response as a 
function of the mean, and  (iii) choose the structure 
of the working correlation matrix. Several choices 
are discussed by Liang and Zeger (1986), including 
for instance, the independence, exchangeable and 
unstructured working correlations.  More details 
can be found in Stocks et al. (1995). In SAS, GEE 
models can be fitted using the PROC GENMOD 
procedure. 
 
Beta-binomial model 
 Beta-binomial distribution is a compound 
distribution of the binomial distribution with a 
prior beta density (with parameters α and β) for 
the response probability.  The mean and variance 
of a random variable R having beta-binomial 
distribution with parameters n, α and β are: 
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The variance of the distribution, which can be 
written as a product of the binomial variance and 
some nonnegative quantity, is used to model the 
extra-binomial variation.  Let )/( βααπ += , then 
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For binary responses, assuming an exchangeable 
correlation structure, it can be shown that 
 
 , [ ]ρππσ 1)-(1)1( 2 nnR +−=
where ρ is the intracluster correlation. 

 Thus, in modelling overdispersion using the 
beta-binomial model, we equate ρ to 

. Mathematically, as both α and β 
tend to zero, the density approaches a U shape and 
the intracluster correlation approaches 1. 

1)1 ( −++ βα

 Now, for a random sample of size N from the 
beta-binomial distribution, the log-likelihood 
function in terms of iπ  and iρ  is given by: 
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where  is the beta function. Since the main 
interest lies in studying the relationship between a 
given set of potential predictors and both the 
success probability 

.) (.,B

π  and the correlation ρ , two 
well-known transformations, namely the logit and 
Fisher’s Z transform of correlation are used as link 
functions in estimating the regression coefficients 
(see Aerts and Claeskens, 1997). Thus, we can 
simultaneously estimate the models 
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where Xi is a design matrix, β and η are vectors of 
regression coefficients. Beta-binomial regression is 
not available in most of the commonly used 
standard packages. To our knowledge, it is 
available only in EGRET (Epidemiological, 
Graphics, Estimation and Testing Program). In this 
paper, the analysis is done by writing a program in 
R (an open source package), which gives the 
maximum likelihood estimates. The R code can be 
provided on request. 
 
Bootstrap method 
 This is a computer intensive method in which 
several bootstrap samples are generated, and in 
each case the parameters in the standard logistic 
regression model are estimated as usual. A good 
reference for this purpose is Davison and Hinkley 
(1997). Based on the sequence of bootstrap 
estimates (empirical sampling distribution), 
standard errors and p-values can be estimated. 
Two bootstrap samples are possible depending on 
whether the resampling is done with regard to 
clusters (subjects) or binary responses (over all 
subjects). This latter approach ignores the 
intracorrelation and is expected to yield 
(misleading) results close to those of the first 
method (ordinary logistic regression). 
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 Let β  be a sequence of bootstrap 

estimates (replicates) for a particular parameter

**
2

*
1 ,...,, Mββ

tβ  
in the logistic regression model, where M is the 
number of bootstrap samples. The bootstrap 
standard error (BSE) of an estimate of tβ  is given by 
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where *β  is the mean of the bootstrap replicates. 
For estimating the variance, M=250 or M=500 
should be sufficient. The asymptotic bootstrap p-
value can be calculated based on the standard 
normal curve and the estimated bootstrap 
standard error. 
 Other important methods of modelling 
correlated binary data include the fitting of finite 
mixture distributions and the generalized linear 
mixed model, also called the random effects 
model. The latter is useful when the interest is in 
the subject-specific effects. 
 
 

RESULTS 
 
The estimates of the various approaches described 
in the previous section are briefly presented here. 
In this first phase of the analysis, the same set of 
predictors (as in the full model of Gange et al., 
1996) is used across all methods to facilitate 
comparison. The predictors are Gender, Age, 
Ward, Length of Stay (transformed as log(LOS/10)), 
Year and the interaction of Year and log(LOS). In all 
outputs, the reference category for gender is male 
and for Ward is Ward 1 (Medical). Ward 2 and 
Ward 3 are indicator variables for the other two 
categories, namely, Surgical and Others, 
respectively. For Year the reference is 1988. 
 The fit of logistic regression to the seven 
predictors is summarized in Table 1. 
 
 
Table 1. The fit of standard logistic regression. 

Parameter Estimate SE Sign. Prob 
Constant -0.9548 0.0394 < 0.0001 
Gender -0.0508 0.0379    0.1804 
Age 0.0061 0.0010 < 0.0001 
Ward 2 -0.4618 0.0379 < 0.0001 
Ward 3 -0.6200 0.1606    0.0001 
LogLOS10 0.5150 0.0310 < 0.0001 
Year 0.6373 0.1394 < 0.0001 
Year×logLOS -0.2046 0.0462 < 0.0001 
 dfD /2χ  = 5.75 

 At a single glance, one observes from the last 
column that all terms except Gender are 
statistically significant. However, as pointed out 
earlier, there is overdispersion due to the 
interdependence of the binary responses. This is 
evident from the estimate of the dispersion 
parameter. The standard errors are underesti-
mated, giving rise to small p-values. 
 By the single-inflator (scaled deviance) approach, 
the standard errors in Table 1 are inflated by a 

factor of 2.399 )ˆ( φ . The point estimates of the 
regression parameters remain the same (Table 2). 
 
 
Table 2. Single inflator (scaled deviance).  

Parameter Estimate SE Sign. Prob 
Constant -0.9548 0.0945 < 0.0001 
Gender -0.0508 0.0910    0.5765 
Age  0.0061 0.0025    0.0126 
Ward 2 -0.4618 0.0909 < 0.0001 
Ward 3 -0.6200 0.3852 0.1075 
logLOS10  0.5150 0.0744 < 0.0001 
Year  0.6373 0.3343 0.0566 
Year×logLOS -0.2046 0.1109    0.0650 

 
 
 After adjustment, the effect of Ward 3 is no 
longer significant, while the effect of Year and the 
interaction term are significant at the 10% level. 
 By the Williams procedure, somewhat different 
results are obtained compared with the scaled 
deviance (Table 3). Here the effect of Ward 3 is 
significant, but Age, Year and the interaction term 
are not. By scaled deviance Age is significant at 5%, 
but by the Williams procedure it is insignificant 
even at the 10% level. On the other hand, the effect 
of Ward 3 is insignificant by the scaled deviance 
but significant by the Williams procedure. This 
shows that by implementing the two methods one 
can arrive at completely different final models. 
 
 
Table 3. Williams procedure.  

Parameter Estimate     SE Sign. Prob 
Constant -0.9705 0.0869 < 0.0001 
Gender -0.0383 0.0943 0.6847 
Age 0.0039 0.0026 0.1248 
Ward 2 -0.4914 0.0973 < 0.0001 
Ward 3 -0.8403 0.3616 0.0201 
LogLOS10 0.6111 0.0787 < 0.0001 
Year 0.4488 0.2782 0.1067 
Year×logLOS -0.1164 0.1105 0.2922 

 
 
 In GEE, the estimates in Table 1 will be input as 
initial values for the iteration. The output in Table 
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4 corresponds to the exchangeable working 
correlation matrix. 
 
 
Table 4. GEE estimates. 

Parameter Estimate SE* Sign. Prob 
Constant -0.9706 0.0932 <0.0001 
Gender -0.0382 0.0996 0.7010 
Age  0.0039 0.0026 0.1317 
Ward 2 -0.4916 0.1025 <0.0001 
Ward 3 -0.8411 0.3114 0.0069 
logLOS10  0.6114 0.0768 <0.0001 
Year  0.4489 0.2618 0.0864 
Year×logLOS   -0.1164 0.1038 0.2623 

 
* Empirical standard error estimate. 
 
 
 Both in terms of the point estimates of the 
coefficients and the significance probabilities, GEE 
results resemble much those of the Williams 
procedure. Unlike the single-inflator, Age and the 
interaction term are insignificant in the GEE 
analysis. 
 The beta-binomial model differs from the 
methods discussed so far in that it models not only 
the success probability π but also the correlation ρ. 
Two models are estimated under this approach. In 
the first case π is modeled as a function of the set of 
covariates under study, and ρ is estimated on its 
own. In the second case both π and ρ are modelled, 
thus two vectors of regression parameters are 
estimated at the same time.  
 Under this approach the effects of Ward, length 
of stay and Year are found to be significant 
predictors of inappropriateness of hospital stays.  
The intracluster correlation is estimated to be 0.46, 
and it is significant (p<0.0001) as anticipated. Thus, 

there is a real dependence among the binary 
responses belonging to the same cluster (subject). 
On the basis of the significance probabilities in 
Table 5, one retains the same set of predictors as in 
the GEE analysis. 
 
 
Table 5. Parameter estimates for beta-binomial 

model. 
Parameter Estimate SE Sign. Prob 

π Constant -1.158 0.0910 0.0000 
 Gender -0.0721 0.0948 0.4473 
 Age  0.0041 0.0026 0.1075 
 Ward 2 -0.2728 0.0978 0.0053 
 Ward 3 -0.5753 0.3198 0.0720 
 logLOS10  0.5473 0.0794 0.0000 
 Year  0.4823 0.2717 0.0758 
 Year×logLOS -0.0498 0.1090 0.6479 
ρ Constant  0.4573 0.0147 < 0.0001 

 
 
Finally, the bootstrap analysis is based on 103 

bootstrap samples. The samples are generated by 
resampling both clusters and binary 0-1 responses. 
In the first case, the number of clusters is the same 
as the number of patients in the study (N=1383). 
And in the second case, the total number of binary 
responses is equal to the total of length of stays 

 ).14833( 1 =∑ i
N n

 The bootstrap standard errors and p-values in 
Table 6 are comparable with the ones obtained by 
the other methods. The result based on resampling 
binary 0-1 responses is almost identical to that of 
the standard logistic regression. This is true 
because the dependence between the binary 
responses is lost while duplicating the sample in 
the bootstrap. 

 
 
 Table 6. Bootstrap results. 

Resampling clusters  Resampling  0-1 responses 
Parameter 

tβ̂  BSE Sign. Prob  tβ̂  BSE Sign. Prob 

Constant -0.9548 0.1131 0.0000  -0.9548 0.0388 0.0000 
Gender -0.0508 0.1293 0.6943  -0.0508 0.0371 0.1707 
Age 0.0061 0.0033 0.0597  0.0061 0.0010 0.0000 
Ward 2 -0.4618 0.1302 0.0004  -0.4618 0.0378 0.0000 
Ward 3 -0.6199 0.3632 0.0879  -0.6200 0.1661 0.0002 
logLOS10 0.5149 0.1092 0.0000  0.5150 0.0301 0.0000 
Year 0.6371 0.3747 0.0891  0.6373 0.1313 0.0000 
Year×logLOS  -0.2045 0.1461 0.1615  -0.2046  0.0434 0.0000 
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 By resampling clusters, one keeps the 
intracorrelation. The standard errors under this 
approach are larger and more reliable than those of 
the standard logistic regression. These results are 
in line with those of the beta-binomial and the GEE 
approach, except that age seems to be significant at 
10%. 
 The main conclusion of this comparative analysis 
is the importance of using an appropriate model. It 
should take the real nature of the data into account.  
As a general guideline, we recommend the use of 
GEE for clustered binary data. The single inflator 
factor (scaled deviance/Pearson) method is too 
rudimentary, whereas the GEE methodology offers 
a general estimation paradigm.  It has shown its 
applicability in a variety of settings and is 
nowadays well-established and widely available in 
software.   In case the correlation itself is of interest 
(rather than being nuisance), a full likelihood 
approach based on the beta-binomial model is 
preferable. Typically, the results of GEE and the 
beta-binomial are close or comparable, GEE (only 
based on the first two moments) being more robust 
but consequently slightly less efficient, the beta-
binomial on the other hand being somewhat more 
efficient and allowing direct modelling of the 
correlation parameters but being more sensitive to 
misspecification. As a final conclusion, it is good 
practice to fit both models, compare results and 
finally choose the method according to specific 
needs in the analysis. 
 
 

MODEL SELECTION 
 
As mentioned at the beginning, one of the aims of 
this paper is to select one or more optimal models. 
For the cases where the AIC is available, it will be 
used as a model selection criterion. AIC is 
calculated as: 

).2(    )log(2 parametersNumber of likelihoodAIC +−=  
The best model has the smallest AIC. For model 
selection, over forty models consisting of different 
combinations of terms are fitted for the logistic 
regression, single-inflator, Williams procedure and 
the beta-binomial. Only the AIC values of the 
logistic regression and the beta-binomial are 
computed from real likelihoods. 
 The AIC values of the standard logistic regression 
are observed to be much larger than those of the 
other modelling approaches. The AIC for the scaled 
deviance is calculated by adjusting the log-
likelihood function of the binomial (i.e., dividing 
the log-likelihood in the standard logistic 

regression by an estimate of the dispersion 
parameter). 
 For the standard logistic regression, the smallest 
AIC (17470.41) corresponds to the model consisting 
of Gender, Age, Ward, Year, Length of Stay (LOS), 
quadratic terms in Age and LOS, and three 
interaction terms. In contrast, the smallest AIC 
(2931.90), after adjusting by the scaled deviance is 
associated with the model consisting of only Year 
as a predictor. By the Williams procedure, the 
model consisting of Gender, Ward, LOS, Year, 
quadratic term in LOS, and two interaction terms is 
identified as the best model (AIC=2675.02). 
 For the beta-binomial the model consisting of the 
covariates Ward, LOS, Year and quadratic term in 
LOS is found to have the smallest AIC (4482.07) 
when both the mean response and the correlation 
are modeled with the same set of predictors.  In 
this model, since two of the coefficients in the 
model for correlation are not significant, the 
corresponding predictors are removed, giving rise 
to the best final model according to AIC (4478.78). 
 The above discussion indicates that the use of 
AIC for non-likelihood models has to be taken with 
care. Indeed, Akaike’s information criterion 
originates from information theory and maximum 
likelihood estimation.  A simple adjustment of the 
log-likelihood function, as in the case of the scaled 
deviance, might not result in a model selection 
criterion with the same (optimal) performance as 
the original AIC. This is confirmed here. Although 
the other models clearly show the significance of 
several variables, the scaled deviance AIC version 
selects a too simple model. 
 The final beta-binomial model identified by 
Gange et al. (1996) consists of Ward, Length of Stay 
and Year in modelling π and Year in modelling 
ρ . As shown in Table 7, it is evident that the 
quadratic effect of LOS and the effect of Ward are 
also important covariates in modelling π and ρ , 
respectively. 
 
Table 7. Parameter estimates for the best beta-binomial 

model. 

Parameter Estimate SE Sign. Prob 
π Constant -0.9222 0.0880 0.0000 
 Ward 2 -0.4133 0.0989 0.0000 
 Ward 3 -0.7753 0.3115 0.0128 
 logLOS  0.5147 0.0596 0.0000 
 Year  0.2743 0.0972 0.0048 
 (logLOS)2 -0.2451 0.0526 0.0000 
ρ Constant 1.2912 0.0652 0.0000 
 Ward 2 -0.4342 0.0738 0.0000 
 Ward 3 -0.6193 0.1910 0.0012 
 Year -0.2202 0.0725 0.0024 
 AIC     = 4478.78 
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 The estimates indicate that the probability for a 
day to be inappropriate was high in 1990 in the 
medical ward. There was a decline in the 
correlation (degree of propagation) from 1988 to 
1990 in the three Wards, and there was higher 
degree of propagation in the medical ward 
compared with all others. 
 
 

SUMMARY AND DISCUSSION 
 
First, various modelling approaches are compared 
for a given set of predictors merely through tests of 
significance of the individual coefficients. For the 
standard logistic regression, the fit is found to be 
poor (D/df =5.75) because of the dependence 
between the binary observations. Consequently, 
the standard errors of the estimates are seriously 
underestimated, and all predictors except gender 
appeared to be significant (p<0.001). As a first 
attempt to correct for this apparent overdispersion, 
the scaled deviance is used. After this adjustment 
the effects of four predictors are found to be 
insignificant. 
 The performance of the beta-binomial model can 
also be compared with all the methods to some 
extent. To have comparable results, the beta-
binomial model consisting of the correlation 
parameter and the regression parameters in 
relating the mean response to the covariates is 
taken. It is observed that the significance 
probabilities associated with GEE and the beta-
binomial are close to each other. This is partly true 
because of the exchangeable correlation structure 
assumed in both models. In the beta-binomial 
model, the correlation is estimated to be 0.46. This 
correlation is significant (p<0.0001) and it confirms 
one’s expectation of the natural clustering in the 
binary responses. 
 The application of the bootstrap method showed 
that the appropriate data generating mechanism is 
to resample the clusters rather than the binary 0–1 
responses in order to preserve the dependence 
between responses belonging to the same cluster. 
One can obtain satisfactory estimates of the 
standard errors (which are under estimated by the 
standard logistic regression) by the bootstrap 
technique when other methods of modelling 
overdispersion are not readily available. 
 As to model selection, the AIC values associated 
with the standard logistic regression are found to 
be much larger than the AICs of other methods 
used to model overdispersion. Too many 

covariates are identified to be important by the 
standard logistic regression. This is obviously due 
to underestimated standard errors. After correcting 
for overdispersion using scaled deviance, the 
model with only one predictor, namely, Year is 
selected based on the AIC values. The performance 
of the scaled deviance, which is often used as a 
quick means of handling overdispersion, appeared 
to be poor. Many significant covariates are not 
included in the best model. This correction for 
standard errors is based on the assumption that the 
subpopulation sizes are approximately equal. This 
is certainly not the case in the data analyzed. 
Therefore, though this adjustment of the standard 
errors is simple, one has to be cautious in using it. 
 For the beta-binomial model, the best model is 
found to be the one with the mean response 
(probability of inappropriateness) related to Ward, 
LOS, Year, and LOS2 and the correlation (degree of 
propagation) related to Ward and Year. This is an 
improvement over the final model in the analysis 
of Gange et al. (1996), where the final model 
consists of Ward, LOS and Year for modelling mean 
response, and Year to model the correlation. 
 It should be remarked that the comparison in 
this paper is based on a single dataset. To get a 
more complete picture one may need to simulate 
correlated binary data under a wide range of 
experimental situations (e.g., varying the 
intracorrelation) and compare the models. But 
based on the analysis presented in this paper, we 
recommend the use of GEE and the beta-binomial 
model. As a full likelihood approach, the beta-
binomial model allows the direct use of AIC as a 
model selection criterion as well as simultaneous 
modelling of probability and correlation 
parameter. If modelling of the correlation 
parameter is no issue, the GEE model, being a 
robust semiparametric method, offers an 
interesting alternative and as mentioned before, it 
can confirm the validity of the beta-binomial 
model. The same holds for the bootstrap method 
(resampling clusters), but its high computational 
cost makes it less tractable. 
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