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ABSTRACT: High quality moment-axial-force interaction diagrams have been developed for
hexagonal and octagonal steel-concrete composite columns subjected to uniaxial bending. Comparative
discussion with the procedures stipulated in relevant building code standards has been presented. A
unified approach has been presented for the procedure of establishing design charts for concrete-filled
steel tubes under uniaxial bending and valuable charts have been prepared for hexagonal and
octagonal shape composite columns. This paper also outlines procedures that will enable preparation of
similar design charts for other shapes and material types.
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INTRODUCTION

Hexagonal steel columns and to a limited extent
octagonal columns are used to impart aesthetic
values to building structures and bridge piers
besides their structurally improved buckling
properties as compared to rectangular or circular
shapes with regard to the steel component of the
cross sections. They are also used as flood-light
poles and in communications as well as
transmission structures. Their strength and other
structural properties are enhanced by making
use of steel-concrete composite form of these
columns.

Composite construction lies between steel-only
and concrete-only constructions. It is the most
important and most frequently encountered
combination of construction materials with appli-
cations in multi-storey buildings, industrial
buildings and in a variety of large-span building
systems. They are also employed in large-span
bridge piers and towers.

Composite steel-concrete columns are structural
elements that can assume a variety of shapes and
compositions depending on, among other things,
the loading type and magnitude. Typical cross
sections of such columns are shown in Fig. 1.

These structural elements make use of the
attractive structural and non-structural features of
each of the constituent materials while they
minimize their undesirable features and properties

" Author to whom correspondence should be addressed .

Fig. 1. Typical cross-sections of steel-concrete

composite columns.

as a result of which their use is enhanced in the
construction industry. With respect to their
structural properties, the two materials are
completely compatible and complementary to each
other in that they exhibit an ideal combination of
strengths and enhanced stiffness and ductility
(Hajjar, 2000; Johansson and Gylltoft, 2001). In this
regard, the efficiency of concrete in compression
and that of steel in tension is made use of.
Furthermore, the restraining feature of concrete to
local or lateral-torsional buckling of slender steel
elements is also another attractive feature
especially in concrete-filled tubes. It has also been
shown that such type of columns maintain
sufficient ductility when high strength concrete is
used (Lahlou ef al.,, 1999). Regarding their non-
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structural behaviour, their combined wuse in
composite  construction exhibits minimized
potential differential deformation under the low
temperature ranges in which steel-concrete
composite structural elements are assumed to
operate. While the present case of CFT does not
benefit from it, the other attractive feature of
concrete in composite construction is the fact that it
also gives corrosion protection and thermal
insulation to the steel at elevated temperatures
(Eurocode Notes, 2001).

Further benefits of composite construction are
attributed to the structural planning aspect of the
design process (Ermiyas Ketema and Shifferaw
Taye, 2006). In this respect, the concept of
composite construction has given engineers ample
opportunity to design steel-concrete composite
structural systems to produce more efficient
structures when compared to designs using either
material alone.

As in all design undertakings, the economy of
resulting structures is of great concern. CFT
columns can effectively replace other commonly
used structural columns such as ordinary
reinforced concrete, structural steel with reinforced
concrete or structural steel alone with superior
performance while at the same time reducing
material costs to a minimum especially when both
structural and non-structural features are
considered in an integrated manner (Viest et al.,
1997).

Unlike other forms of steel-concrete composite
columns, concrete-filled steel tubes of all shapes
may not require additional reinforcement steel
especially when the structural action is not signifi-
cantly large. While generally higher concrete
grades provide better results, no concrete grade
below C20/25 shall be used in these columns.
Likewise, hot-rolled steel tubes are used while
cold-formed and welded sections are generally
avoided in practice.

There are generally four types of hexagonal and
octagonal concrete-filled steel tube columns as
shown in Fig. 2 depending on the relative
magnitude of moment/axial-force combination to
which the member is subjected. In general, larger
concentration of the steel component is desirable to
resist mainly axial-load systems while distributed
placement of the steel component is required in
those cases where the dominance of the flexural
moment is significant.

Design of composite columns, as in all types of
compression members, calls for a procedural
approach in which the effects of both axial and
flexural stresses are taken into consideration in
order to assess the capabilities of the particular
member. To this effect, interaction diagrams have
been proposed for a variety of structural column
systems-concrete (see, for example, EBCS 2 Part 2,
1997) and steel (see, for example, Hofmann, 2002)
under various loading conditions including
procedures to produce such diagrams for steel-
concrete composite columns (EBCS 4, 1995;
Eurocode 4, 2002; Bode and Bergmann, 1985).

The purpose of this paper is to propose high
quality interaction chart procedures the outcome
of which will have dual purpose-enable easy
determination of the necessary cross-sectional
dimensions and material requirement for a CFT
column under a specified set of loads on one hand
and to assist in the determination of the capacity
of a given cross-section when the size and relevant
material properties of concrete and steel are
known in advance. The proposed charts may be
used both for short and long columns. Utilization
of the proposed charts will be facilitated and
generalized for any cross-sectional shape if their
development is based on non-dimensional para-
meters. Towards this goal, the capacity equations
to be developed and subsequently used to estab-
lish the charts will be made non-dimensional.

axial force N small large moderate moderate
moment M insignificant insignificant moderate large
e =M/N small small moderate large

Fig.2. Possible arrangement of composite polygonal tubular columns with reference to loading.
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COLUMN LOAD CAPACITY

The crosssectional resistance of a composite
column under axial compression and uniaxial
bending is given by an M-N (moment-axial force)
interaction curve. The interaction curve can be
determined point by point by considering different
positions of plastic neutral axis in the principal
plane under consideration Hofmann, 2002). The
concurrent values of moment and axial resistance
are then found from the stress blocks. Fig. 4
illustrates this process for four particular positions
of the plastic neutral axis corresponding, respec-
tively to the points A, B, C,D marked in Fig. 3. While
the subsequent presentation will be given by
referring to hexagonal-shaped columns, the discus-
sion is indeed applicable to any shape and, thus,
octagonal columns are also covered by the
presentation.

in which Wpsand Wik are the plastic moduli of the
steel section and the concrete, respectively. Point D
corresponds to the maximum moment resistance
MmaxRrd that can be achieved by the section. This is
greater than Mpird because the compressive axial
force inhibits tensile cracking of the concrete, thus
enhancing its flexural resistance (Petersen, 2001).

Point E: Situated midway between A and C.

The enhancement of the resistance at point E is
only insignificantly more than that given by
direct linear interpolation between A and C, and
determination of this point can therefore be
omitted.

The concurrent values of moment and axial
resistance for establishing the M-N interaction
diagram of Fig. 3 are then found from this set of

N stress blocks. Code standards usually substitute
1'/:“\ the linearized version AECDB (or the simpler ACDB)
10 qreeee e / “exact” shown in Fig. 3 for the more exact interaction
- polygonal curve, after carrying out the calculations to

. approximation

Nmed = NpI,Rd,c1

D
NRa/2 il
Bu/y >
10 '\
M max Rd
Fig. 3. M-Ninteraction curve for uniaxial bending.
Point A:Axial compression resistance alone:
Na =Npgirdg Ma =0 (1)
Point B: Uniaxial bending resistance alone:
Ng =0 Mg =M Rd woereeeennnne (2)

Point C: Uniaxial bending resistance identical to
that at point B, but with non-zero resultant
axial compressive force:

NC =N pmRd M c= M PILRA sseesesesees (3)

where Nomrd = Acfcd compressive resistance
of the concrete section.

Point D: Maximum moment resistance
ND :O.SNmed :0'5Acfcd .................. (4a)

Mp = Woafyg + 0.5Woef o o (4b)

determine these points. However, the results tend
to be approximate since the entire curve is based
only on four control points.
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This paper outlines and develops a refined
uniaxial interaction chart procedure based on exact
formulation of a set of concurrent points.

CHART DEVELOPMENT

Calculation method and scope

The structural engineering practice calls for a
variety of cross-sectional types to be used as
compression members and as beam-columns.
While the procedure to be proposed in this work
is general and may easily be modified for
adaptation to other shapes, the cross-sections
considered are those that fulfill the criteria for
simplified method of analysis given in the EBCS 4
(1995) and Eurocode 4 (2002).

From the permissible steel ratios w stipulated in
the EBCS 4 (1995), those for which w£ 4.0 have been
selected for drawing the chart as this range utilizes
comparatively less amount of steel, thus resulting
in more economical sections (compared to those
with higher steel ratios).

The national code standard EBCS 4 (1995)
recommends applicable structural steel and
concrete grades for use in steel-concrete composite
constructions. For the purpose of this paper, Steel
Grade Fe360 with cross-sectional thickness of up to
C30 have been

procedure for
interaction charts and

40mm and concrete Grade
implemented. However, the
establishing improved
diagrams are fairly general and can, thus, be used
to deal with other material properties as well.

Fundamental equations

The fundamental equations to be used for the
development of these charts with respect to typical

(a) Hexagonal section

composite aoss-section as shown in Fig. 5 are the
following;:

Steel ratio w:

Af
WS 2 e (5a)
A cfcd
Moment capacity Mu:

f,
M, = (\Nps - Wpsn) fyd "‘(\NpC - Wpcn)7d ....... (5b)

Axial capacity Nu:
NU :ACCde +As,netfyd ...................................... (5C)
where:
Asand A total cross-sectional area of the steel

and con crete sections, respectively

Wps and Wy plastic section modulus of the total
steel and concrete section parts,

respectively

Wopsn and Wpen plastic section moduli of the steel
and concrete sections, within the
shaded region (Region b, see Fig.
5), respectively

Asc and Acc cross-sectional areas of the portion
of the steel and concrete sections in
compression, respectively

Ast cross-sectional area of the portion of
the steel section that is subjected to
tension

Asre = Ax- Ag

(b) Octagonal section

Fig. 5. Notations, orientations and regions of composite cross-section for computing

section capacity.
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Equations (5) form the Dbasis for the
establishment of interaction diagrams and will be
referred to frequently in subsequent sections. It
will be noted that especially the six parameters
Wps, Wpc ’ Wpsn, Wpcn, Asc and Acc in EqS (5) w111
play the central role as sources of variation in the
establishment of the various components of the
interaction diagrams as they are dependent upon
the positions of the neutral axis.

Computing section apacity for a given reutral
axis position

In hexagonal composite columns, structural
response to external actions-direct compression
and bending moment-are influenced by the
orientation of the axis about which bending takes
place. This is due to the fact that the cross-sectional
properties of such sections about all possible
orthogonal axes may not be similar. In this context,
therefore, the determination of section capacity
will be carried out separately for bending moment
about x and y axes, shown in Fig. 5a.

On the other hand, the perfect symmetry of
octagonal sections about any two orthogonal axes
as shown in Fig. 5b facilitates the formulation to be
carried out only about a single axis.

Formulation of interaction equations will be
facilitated by employing non-dimensional parame-
ters. To this goal, we adapt the following relation-
ships between the outer side dimension s of the
entire column cross section and the thickness ¢ of
the steel component as shown in Figs. 5 (a &b):

As will be shown in subsequent sections, the
term h/t, where h is the distance of the neutral
axis relative to the centroidal axis of the cross
section and t are shown in Fig. 5 appears
frequently as a result of substitutions and
simplifications. For the sake of brevity, we replace
this term as follows:

b:ﬂ
t

The procedure for establishing the interaction
diagrams is enhanced by employing two
non-dimensional parameters. To this end,
expressions for two non-dimensional parameters n
and m corresponding to the axial force Ny and the
bending moment M, respectively, are formulated
through normalization as follows:

N
N S et (8a)
Ac fcd
M
= e s (8b)
A.fysS

where the various terms have been defined earlier
along with Egs. (5) and s' is as shown in Fig. 5.

Details for the determination of N, and M, for
the implementation of Eqs. (8) will be presented
subsequently. Those equations will then be used to
establish nand m in terms of cross-sectional and
material properties and, subsequently, to produce
high quality uniaxial bending-axial force interaction
diagrams in terms of n and mfor hexagonal and
octagonal composite sections.

Uniaxial chart procedures for hexagonal sections

Based on the principles discussed this far, the
uniaxial chart procedure for hexagonal CFT will be
presented in detail subsequently.

Determining value of a for a particular steel ratio w
In Eq. (5a), for a given steel ratio and material
properties, the only unknown quantity is the
variable a as given by Eq. (6). One can also see that
for a hexagonal section, A.=2.598s2, A=2.598(s25"2)
and s'=s-1.156t are valid where all terms are defined
in Egs. (5) and the various terms shown in Fig. 5.
Substituting these relationships given into the
equation for w and dividing the numerator and

denominator by 2.598t?, one obtains:
[a® - (a- 1.155)%]f 4 = w(a - 1.155)* f 4

This can be explicitly solved for a after a series of
simplifications and re-arrangement as:

- 5.333Wf oy (W og +fyq)

281000 +¥) + 231y + i)

2wf

This is applicable irrespective of the axis of bending.
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Cross-sectional capacities for different neutral-axis
positions-bending about X-axis

While the general expressions given by Egs. (5)
are valid, one needs to establish major cross-
sectional properties when refereeing to bending
stresses about different axes. Thus, referring once
again to Fig. 6:

Total cross-sectional area
Net area of concrete A=2.598s"2........ (10b)
Net area of steel As=2.598(s2-5") (10c)
Area of the shaded region DEFGA' = 3.464sh .....(10d)

Area of region ABC

A=2.5988.......... (10a)

Ay, =1732(s- h)? -(10e)
Total section modulus W =1.0183 ......... (10f£)
Section modulus of the shaded region DEFG
W'=1732sh? ....(10g)
Section modulus of region ABC
W, =0.577(s- h)%(s- 2h") ....... (10h)
Section modulus of concrete portion in the
W, =17325h? ... (10i)

shaded region

h’ is the distance between the neutral axis X and the line A-B.

Fig. 6. Hexagon of side lengths.

The position of the neutral axis varies depending
on the relative size of the bending moment and the
associate axial force. To establish the desired
relationships as was presented in Sec. 2, five
different cases of neutral axis position are selected;
these cases will be dealt with separately.

When the entire cross-section is under
direct compression

Casei:

a. Moment capacity

This is the case when only the drect axial force
exists and, thus, the whole part is subjected to
direct (not flexural) compression. Consequently, no

moment-resistance capacity is needed. Under this
circumstance,
Mu=0

Thus, in this particular instance,
m=0

b. Axial load capacity

N u=— N pl,rd where NpI,rd :Acfcd + Asfyd

Taking into account Egs. (10b) and (10c), and
carrying out appropriate substitution into:

_ Acfcd + Asfyd

Acfcd
one gets:
2 2 2
. (8- 1155)fq +{a” - (x-1.185)"}yq (11b)
(a- 1.155)%f
Caseii: More than half the area under

compression (Fig. 7) where the position of
the neutral axis is given by % £hEs- 1155
c neutral

Fig. 7. Location of neutral axis

for Case (ii).

a. Moment capacity

Referring to Eq. (5b) and taking the relationships
and associated description of the notations
involved, the following relationships hold for this
particular case:

W, - W, =27 W, =1.155s- h)?(s- 2h) - 1.155s- h)?(s- 2h)
Wie = Woen =27 Wope =1.155s- h;) %(s- 2h)

Appropriate substitution in Eq. (8b) yields the
required relationship for mas:

_1155(s- h)*(s- 2h) - 1.155(s- h)’(s-2h) f,, +{1155(s- h)*(s- 2N) /2

2.598s" f o
Now, dividing the numerator and denominator by t, the non-dimensional parameter N in terms of
the cross-sectional dimensions and material properties becomes:

1.155 (a - b)?(a - 2b)- 1.155 (a - 1.155 - b)*(a - 1.155 - 2b)f,
m= +

2.598 (a - 1.155)%f

{1.155(a - 1.155 - b)*(a - 1.155 - 2b)}f 4 /2

2.598 (a - 1.155)3f
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b. Axial load capacity
The size of the axial force is established by Eq. (5¢) taking the following relationships in this case:

Ag = A, - Ay = 2.59852- 1.732(s'- h)?
Agg =A- Ay =A - 2A, =2598s* - $%)- 3.464{(s- h)? - (S-h)?}

it can be seen that n assumes the following form:
{2.598s- 1.73(s- h)?}f , +[2.598(s? - $2) - 3.464{(s- h)? - (s- h)?}]f v
n=
2.598sf 4

Dividing equation by £, the non-dimensional parameter n will attain its final form in terms of the
cross-sectional dimensions and material properties as:

o = {259 (x- 1155 )2 -1.732 (a - 1.155 - b)%} f,
2.598 (a - 1.155)* f
[2.598 {a - (a - 1.155)%}- 3.464 {(a - b)*- (a - 1.155 - b)*}] f,
2.598 (a - 1.155 )7 fq

c. Values of b used
In order to sketch the interaction diagram in the given range of the neutral axis, for the various steel

ratios w, four values of b are used: 0.5a, 0.6a,0.8a and a-1.155. el
neutra
axis

Caseiii: In this case, too, more than half the area under compression (Fig. 8);
however, the possible range of neutral axis will be different from
that assessed in Case (ii) above. In this particular case, the depth of
the neutral axis will vary as gz ¢ S.

2

a. Moment capacity
In this situation, the general expression for M, as given by Eq. (5b)  Fig. 8. Location of neutral axis
can be established by substituting the following cross-sectional values: for Case (iii).

W, =10L(s*- s%) W, =1.732(s- s)h? = 2ty

W, =1.01s* W,,, =1732s'h?

Thus, taking the relationships in Eq. (8b) and associated description of the notations involved, and after
appropriate substitutions and simplifications, one obtains the final form of the non-dimensional
parameter in terms of cross-sectional and material properties as:

. [1.0¥a®- (b - 1.155)% - 2b?] f , +{101(a - 1.155)° - 1.732(a - 1.155b? f /2

...(13
2598(@a - 1.155°f (139

b. Axial load capacity
The following relationships hold in this particular case:

A, = 1.29982+1.7328 h Agg = 4Nt
Referring to Eq.(5c) and carrying out appropriate substitutions, the axial load is given by:

N, =[2.598s?-0.5{(2s"- 1.155h) + (s- 1.1551)}{.866s- t- h}] f, +4.62htf ,
(1.29982+1.732s h)f ;4 + 4htf

The non-dimensional parameter n is then given by: n = >
2.598s'“ f

Dividing the above equation by t2, n will attain its desired form as function of cross-sectional variables,
parameters and material properties as:

{1.299(a - 1.155)* +1.732(a - 1.155)b}f o + 4bf 4
n=
2.598(a - 1.155)%f
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c. Values of bused
Values of b used are (a, 0.1a, 0.3a and (@-
1.155)/2

Case iv: Less than half the area under compression
(Fig. 9) where the neutral axis position

withoghgs_l
2

neutral
axis

Fig. 9. Location of neutral axis
for Case (iv).

a. Moment capacity

The moment capacity is given by the same
expressions developed for Case (iii) above and,
consequently, the non-dimensional parameter m
will be given by:
m= [1.01{a®- (b - 1.155)%} - 2b°] f

- 2508 (a - 1.155)° f _,

,{101(a - 1.185)* - 1.732 (a - 1.155)b ?} f, /2

2.598 (a - 1.155)° f

b. Axial load capacity
In this case, the following relationships hold:

A, =1299s2-1732sh A, =-4ht

The value-4ht, obtained as the area of steel
under compression minus that under tensile
stress, will be wused in the computational
algorithm.

The axial-force will then attain the following
form:

N, =0.5(2s- 1.155h)
+(s- 1.155t)}(0.866s- t - h) f, - 4.62htf ,

The non-dimensional parameter n will then
become:

_ (1.299s%-1.7328 h)f 4 - 4htf

n 2
2,598 f

Now, dividing the above equation by £, one
obtains the desired expression for n:
{1.299 (a - 1.155)% - 1.732 (a - 1.155)b}f o4 - 4bf 4
n=

2598 (a - 1.155)*f

c. Values of bused
Values of b used are (n, 0.1a, 0.3a and (@-

1.155)/2

Case v: In this case, too, less than half the area
under compression (Fig10), but with
position of the neutral axis keing given

S
by SERES.
Y3

neutral
axis

Fig. 10. Location of neutral axis for

Case (iii).

a. Moment capacity
The moment capacity is the same as that given

in Case (ii) and the non-dimensional parameter m
will be given by:
. 1155(@ - b)*(a - 2b)- 1.155a - 1155~ b)*(a - 1155 2b) f,,

2598@ - 1155°f

{11552 - 1155- b)? (a- 1155- 2b)}fy, /2
2598(a - 1155°%f

b. Axial load capacity
Again, the axial-load capacity is given by:
Nu = Accfcd + Asnetfyd
In this case, the following relationships hold
with regard to cross-sectional properties:

A, = A, =1732(s- h)?
P =259(S - 8)- 2464 (s~ h)*- (S~ 1)}

The non-dimensional parameter n will then

be given by:
0= 1.732(s'- h)* f, +[2.598(s” - s7?)
2.598s” f,
3464 (s- h)*- (s-h)*}] f,
2.598s f,

Dividing equation by t2 and making appropriate
substitutions, n will attain its final desired form as:
= 1.732a - 1.155- b)? f,+[2598a 2. (a-1155?)

2.594a - 1.155°*f_,
3.464 (x- b)*- (a - 1.155- b)}]f,
2.598(a - 1.155)? fq
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c. Values of bused

Values of b used are 0.5a, 0.6a, 0.8a and a-1.155
Equations (11) through (15) will be used to
establish the wuniaxial interaction chart for
hexagonal section as shown in Fig.19a for various
wvalues.

Cross-sectional capacity for different neutral axis
positions-bending about Y-axis

Following the similar procedure adopted to
establish the various parameters for bending about
x-axis as presented earlier, corresponding
quantities will be derived for bending about the y-
axis. The cross-sectional properties of these
columns frequently referred to in subsequent
developments are summarized hereafter. Thus,
again, referring to Fig. 11:

Fig.11.Hexagonal section: bending

_ about Y axis. . .
- Cross-sectional area of the entire section

A=2.5988......ooe s (16a)
- Cross-sectional area of the concrete portion

Ac=2.5985"......ieieeee s (16b)
- Cross-sectional area of the steel portion

As=2.598(52-52)...ovcveeeees s (16c)

- Total area of the shaded region
A'=3.464s% - (1.732s- h)(2s- 1.155h) .... (16d)
- Section modulus of the whole section

W S S oeesssee s (16e)
- Total section modulus of the shaded region
W'=2s® - (L732s- h)(2s- 1.155h)(0.577s+.667h)

As was noted earlier, the position of the neutral
axis varies depending on the relative size of the
bending moment and the associated axial force.
To establish the desired relationships as was
presented in Sec. 2, four different cases of neutral
axis position are selected; these cases will be
dealt with separately.

Casei: When the entire cross-section is under
direct compression.

a. Moment capacity

This is the case when only the direct axial force
exists and, thus, the whole part is subjected to
direct (not flexural) compression. Consequently,

no moment-resistance capacity is needed. Under
this circumstance,
M,=0
Thus, in this particular instance, the non-

dimensional parameter mof Eq. (8b) turns out to be
zero. Thus,

n=0 (17a)

b. Axial load capacity
Nu = Npl,rd
where Nerd =ACde + Asfyd

Now, applying Eq. (8b) and considering the
relationships expressed by Eqs (16b) and (16c), one
gets:

(a- 1155°f 4 +[a®- (a- 1155°]f
n=
(a- 1.155)%f

Case ii: When some part of the flange of the steel
section is in tension while other parts of
the cross-section are in compression and
the neutral axis will assume any position

(Fig. 12).

Fig.12.Location of neutral
axis for Case (i).

In this case, the moment- as well as axial-load
capacities are established as follows:

a. Moment capacity

Referring to Eq. (5b) and nothing in this case
the fact that only the steel portion of the
composite column contributes for the moment
capacity of the cross-section, Eq. (5a) modifies to:

M u-— (Wps - Wpsn)fyd

In this case, one can see that the following
relationships hold with respect to cross-sectional
properties:

— 3
W, =s
W, = 28°- (L.732s- h)(2s- 1.155h)(0.577s+.667h)

Thus, applying Eq. (8b):
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10
= M u
A, fys'
_[$*- {25’ - (1.732s- h)(2s- 1.155h)(0.577s+ .667Th)}]f

2508s°f

Diving both the numerator and denominator
by £ one obtains the non-dimensional parameter
N in terms of the cross-sectional dimensions and

material properties as:

. [a®- {2a° - (L.732a- b)} (2x- 1158)(0577a- 0.66D)]f
2.598(a- 1159°f,

b. Axial load capacity

The size of the axial load in this case is given
by:
N, =2.508s2 f, +
[{3.4645° - (1.732s- h)(2s- 1.155h)} - 2.598s”] f
Applying Eq. (8a):
259881, |

A fcd
[{3.4645° - (1.732s- h)(2s- 1.155h)} - 2.5985s7]f,,
At fcd

Dividing equation by t2 the
non-dimensional parameter n in terms of the

cross-sectional dimensions and material
properties as:

2.598(a - 1.155)" f,,
n= -+
2.598(a - 1.155) f_,
[{346%4° - (L7321 - b)}- (2a - 1155) - 2598a - 1.159°] f
2598a - 1155° f,

yd

one obtains

c. Values of bused
Values of b are 1.732a-1, 1.732a -2/3 and
1.732a-1/3

Case iii: When more than half of the cross-section
is under compression while the neutral
axis assumes any position in the range

givenby g g ¢ % ¢ (Fig.13).

neutral

Fig.13.Location of neutral
axis for Case (iii).

a. Moment capacity

Referring to Eq. (2) and based on Eq. (5b), one
can see that the following relationships are
applicable for this particular case,:

-3 3
W, =s - (s- 1.155)
W,,, = 2.31h%t
W, =s°
W,,, =2s°- {(1.732s- h)(2s* 1.155h)(0.557 $+0.667 h)}
Now, making appropriate substitutions into

Eq. (8b), the expression for non-dimensional
parameter N in terms of the cross-sectional
dimensions and material properties will finally
become:
{a®- (a -1.155)°- 2.31b %} f .
2.598 (1- 1.155)°f,

m =

[- (- 1155°+{1732(a - 1.159- b}{0577a - 1.155+O.6670}]f—;d
2598(1- 1.155°f

b. Axial load capacity

Appropriate substitution and re-arrangement
shows that Nu in Eq. (5¢) will be given by:
N, = 4.62ht f, +
[2.59852- 0.5 (2s- 1.155h) +(s- 1.155t)} (0.866s- t- h)] fo

Subsequently, using Eq. (8a) for the non-
dimensional parameter n, substituting appropri-
ate cross-sectional dimensions and material prop-
erties and, finally, after a series of simplifications,
the desired expression for n becomes:
N = 462bf , +[2.598 (a - 1.155)%] f 4

2598 (a - L155)*f,

_[05{(2a - 1.159 - 1.158h) + (a - 1L155}{0.866a - 1- b}]f,,

2598(a - 11557 f,

c. Values of bused
Values of b used are 0, 0.2a, 0.4a, 0.6a, 0.8a, a,
1.3a and 1.5a.

Case iv: When less than half the cross-sectional
area is under compression and the
neutral axis assumes any position in the

range given by gcp ¢ Af3s 1 (Fig.
: 2

Neutral
axis
Fig. 14. Location of neutral axis

for Case (iv).
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a. Moment capacity

The moment capacity given by the mrresponding
expression in Case (iii) above and, consequently,
the expression for the non-dimensional parameter m
is identical that given by Eq. (19a).

_{a®-(a-1155)°- 231b% f, .
2508 (L- 1.155)3 f

[- (@ - 1.155)* +{1.732 (a - 1.155)- b}{0.577(@ - 1.155)+0.667b}]f2i
2598 (1- 1.155)° T,

b. Axial load capacity

The general expression for axial load for this

position of neutral axis is:

N, = 0.5[(2s"- 1.155h) +(s- 1.155t)] (0.866s- t- h)f
- 4.6e2ht f

Subsequently, using the expression for the

non-dimensional parameter n, the desired
expression becomes:
_ 05{2(a - 1155)- 11550} +(a - 1155(0866 - 1- b)]f,,
n= 2.508a - L155)° 1,
4.62bf.,

2508 (@ - 1.155)° f,,

c. Values of bused

Values of b used are 0, 0.2a, 0.4a, 0.6a, 0.8a, a,
1.3a and 1.5a.

Equations (17) through (20) will be used to
generate the uniaxial interaction curves for

bending about Y axis for different values of w;
this will be given in Fig. 19b.

Uniaxial charts for octagonal sections
Determining value of a for a particular steel ratio w
In Eq. (5a), for a given steel ratio and material
condition, the only unknown is the variable
quantity a as given by Eq. (8). but, A, =4.82852,
A, =4.828s*-s?) where s'=s- 0.828t.
Substituting the above equation in equation of
w and dividing both equations by 4.828t?
[a% - (a- 1.155)°]f,4 = w(a - 1.155)%f
Simplifying the above equation and solving for
a:
a = 1.656 (f, +w fy)
2w f

+J{1.656(fw +w )} 2 - 2744 W foy (W foy + fq)

2w fy

Cross-section capacities for different neutral axis
positions

Fig. 5b shows the dimensional parameters used
to describe the section and these will be em-
ployed subsequently to develop the moment-
axial force interaction diagrams.

The following cross-sectional properties will be
referred to in subsequent developments:

- Cross-sectional area of the entire section

A =4.8285 ... (22a)
- Area of polygon ABCD

A oy =5.328s° - 0.5(3.414s- 2h)?
- Area of the shaded region ABEF

A ¢ = 0.54.414s- 2h)(1.207s- h) ...(22c)
- Section modulus of the entire cross-section

W = 2.5458% e (22d)
- Section modulus of the shaded region ABEF
W = 2{1.616s° - 0.25(3.414s- 2h)?(0.569s+ 0.667h)}

The whole cross-section is under

compression.

Case i

a. Moment capacity

This is the case when only the direct axial force
exists and, thus, the whole part is subjected to
direct (any, net, not flexural) compression.
Consequently, no moment-resistance capacity is
needed. Under this circumstance,

b. Axial load capacity
Noting that A, =4.8285%and A = 4.828s° - A,

and substituting these parameters into Eq. (5c)
and subsequently into Eq. (8b), one gets:

_ Acfcd +Asfyd
Acfcd

Dividing the above equation by t2 and

simplifying
- 0.828)*f 4 +[a? - (a- 0.828)]f,q
(a - 0.828)°f
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Case ii: More than half the area under compression (Fig. 15) wherein the nggj(gal
neutral axis can assume any position within the range given by

§£ h £1.207s- t

a. Moment capacity
In this situation, the general expression for My as given by Eq. (5b) can  Fig. 15, Location of neutral axis for
be established by substituting the following cross-sectional values: Case (ii).

W, =2545(s°- s°)

W,,,=2{16165- 0.253414- 2h)’ (056%+0.66T)}- W,
W, =2.545 s°

W, = 2{1.6165°- 0.25(3.414s- 2h)* (0.5695+0.667 h)}

Thus, taking the relationships in Eq. (2) and associated description of the notations involved, and
after appropriate substitutions and simplifications, one obtains:

m_[2.545{a3 - (@ -0828)°%}- 2" 1.6a°- (a - 0.828)%} - 0.25(3.414a - 2b)*(0.569a +0.667b)]f
4.828(a - 0.828)° f
, 05 [{3414(a - 0.828) - 2b}*{0.569(a - 0.828) +0.667b}] ,
4.828(a - 0.828)* f

f
[2.545(a - 0.828)%- 2" 1.616(@a - 0.828) - 0.25{3.414(a - 0.828) - 2b}*{0.569(a - O.)+0.667b}]%d
4.828(a - 0.828)° f,

b. Axial load capacity
To establish the axial force Ny, it is important to note that the following relationships hold with
regard to cross-sectional properties:
Ay, =A, - A, = 4.8285%- 0.54.414s- 2h - 3.656t)(L.207s- t- h)
Age SAx ™ Ag
Ay =5.328(s - s%)- 05{(3.414s- 2h)? - (3.414s- 2h)?*}

The non-dimensional parameter n will then be given by after a series of substitutions and
simplifications:

_{4.828(a - 0.828)* - 0.5(4.414a - 2b - 3.656)(1.207a - 1- b)}
n =
4.828(a - 0.828)* f
.\ [5.328a”- (a - 0.828)’} - 0.5{(3.414a - 2b)*- (3.414(a - 0.828) - 2h)*}]f,,
4.828(a - 0.828)*f_,
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c. Values of bused
Values of b used are 0.5a, 0.6a, 0.8a, a and
1.207a -1

This is also another case where still
more than half the area wunder
compression (Fig. 16). The neutral axis
will have the following position with
0£ h £0.5s- 0.414t

Case iii:

neutral
axis

Fig.16. Location of neutral axis for Case
(iii).

a. Moment capacity

To establish the M, as given by Eq. (5b), it is
important to note the following relationships for
this particular case:

W, =2.545(s’ - s°)
W, = 2.5455°

W, = 2h’t
W,,, = (2.414s- 2t)h?

After a series of substitutions and simplifica-
tions, the non-dimensional parameter in its final
form becomes:

oo [2.545 {a *-(a - 0.828)°% - 2b?] f
4.828 (a - 0.828 )% f
L {2545a - 0.828°- (2414 - 2)b?}f,,/2
4828(a - 0.829°f ,

b. Axial load capacity

In this case, the following relationships hold
for the establishment of Nu:

A, = 2.414 s?+2h(1.207 s - 1)

The the
parameter n becomes:

&ﬂe{ = 4r]t

final form of non-dimensional

{2414(a - 0.828)2 + 2h(L.207a - D)}f 4 +4bf
n=
4.828(a - 0.828)%f

c. Values of bused

Values of b used are 0, 0.2a, 0.4a and 0.5a -
0.414.

Caseiv: When less than half the area is under
compression (Fig. 17) and the neutral
axis can take any position within the
range O £ h £0.5s- 0.414t

neutral
axis

Fig.17. Location of neutral axis for Case (iv).

a. Moment capacity
Expressions for moment capacity and those of

the non-dimensional parameter mare similar to
those for Case (iii). Thus,

o [2.545{a®- (a - 0.828)% - 2b 2] f,
4.828 (a - 0.828 )% f
,{2545(@ - 0.828)° - (2414a - 2)b *} f, /2
4.828 (a - 0.828)°f

b. Axial load capacity

In order to arrive at the desired result for the
non-dimensional parameter n, we will take the
following relationships into consideration for this
case:

A, =2.414s%-2h(1207s-t) A, =-4ht

Now, making appropriate substitutions into
Eq. (8a), n will attain the following form:

. {2.4145%- 2h(1.207s - t)}f , - 4htf
4.8283° f

Dividing equation by £, the desired expression
for n becomes:

{2.414(a - 0.828)? - 2h(L207a - D} , - 4bf
n=
4.828(a - 0.828)%f
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c. Values of bused
Values of bused are 0,0.2a, 0.4a and 0.5a -0.414.

Case v: This is the other case where less than half the area under compression (Fig. 18). Here, the

neutral axis may take up any position in range % £h£1.207s- t.

neutral
axis

Fig.18.Location of neutral axis for Case (v).

a. Moment capacity
Moment capacity is same as in Case (ii). Thus:

__2545{a°- (a - 828))- 2" 1616a°- (a - 0.828)%) - 0.253.4148 - 20)(0.56% +0.667)]f,,
4.828a - 0.828)°f,,
, 08{3414@ - 0.828)- 2b}*{0.56%(a - 0.828) + 0.667b} ],
4.828(a - 0.828)° f_,

f
[2.545(a - 0.828)°- 2° 1.616(@ - 0.828) - 0.253.414(a - 0.828)- 2b}*0.56%a - 0.829) +O.667b}]—£d
4.828a - 0.828)° f

b. Axial load capacity

The following relationships hold in this range:
Ay = Ay, =0.54.414s- 2h - 3.656t)(1.207s- t- h) Aga =Ag- Ay
A,y =-[5.328(s* - $?)- 0.5{(3.414s- 2h)? - (3.414s- 2h)?}]

Substituting these into Eq. (8a), dividing the resulting equation by t2, the final form of the
non-dimensional parameter n becomes:

- _{05(4.414a - 2b - 3656)(1.207a - 1- b)} fy, ,
4.828@ - 0.828)°f
[-5.328{a’- (a - 0.828)% - 0.5{(3.414a - 2b)?- {3.414(a - 0.828) - 2h}?}]f
4.828( - 0.828)°f

c. Values of bused
Values of b used are 0.5a,0.6a,0.8a,a and 1.207a -1

All the above relationships will now be used to establish the interaction diagram for concrete-filled
steel tubes.
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UNIAXIAL INTERACTION CHARTS

Based on the various relationships developed for the non-dimensional parameters n and min the
preceding sections, interaction diagrams have been provided both for hexagonal and octagonal section

and these are given in Fig. 19 and Fig. 20, respectively.

C 30 Fe 360
6.0

5.0

4.0

)

2.0
1.0
0.0 T T T
0.0 0.5 1. 1.5
=M
Acfegs

\_)”'Ejvﬁ

Fig. 19a. Uniaxial interaction diagram for hexagonal section with bending about x-axis.

hex'f\gonal sectlon. C30 Fe 360
bendine about v-axis

Fig. 19b. Uniaxial interaction diagram for hexagonal section with bending about y-axis.

These charts can be used to assess the validity d hexagonal or octagonal uniaxial steel-concrete
composite columns of established cross-sectional and material properties or may be used to propose

an appropriate design for a given set of axial compression and/or uniaxial moment.

CONCLUSION

Concrete-filled steel tubes used as structural columns have significant economic, structural and
functional advantages. However, their design procedures stipulated in various code standards have
been computationally demanding as they need development of interaction curves for each trial cross-

section considered in the design process.
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octagonal section

C 30 Fe 360

4.0

My

n=
Ac feds'

Fig. 20. Uniaxial interaction diagram for octagonal section.

To alleviate this problem, normalized charts
have been produced that simplify the design
calculation. The charts can be used to directly
compute the amount of steel required for a given
cross-section without resorting to the code-based
trial-and-error procedure. In addition to this,
they can also be effectively employed to propose
a design capable of withstanding a given set of
loads. Besides being computationally efficient,
the produced charts also provide more accurate
results than using the method stipulated in
EBCS4(1995).

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial
support of the Office of Research and Graduate Office,
Addis Ababa Universi ty, to the first author during the
preparation of this paper. The continued material
support of Alexander von Humboldt Foundation,
Federal Republic of Germany, to the second author is
also thankfully appreciated.

REFERENCES

1. Bode, H. and Bergmann, R. (1985). Betongefiillte Stahl-
holhlprofilstiitzen, Markblatt 167, Beratungs-
stelle fiir Stahlverwendung, Diisseldorf.

2. EBCS4 (1995). Design of Composite Steel and Concrete
Structures, Ministry of Works and Urban
Development, Addis Ababa, Ethiopia.

3. EBCs 2 Part 2 (1997). Design Aids for Reinforced
Concrete Sections on the basis of EBCS-2:1995,

Ministry of Works and Urban Development,
Addis Ababa, Ethiopia.

4. FErimiyas Ketema and Shifferaw Taye (2006).
Improved design chart procedures for
rectangular co ncrete-filled steel columns under
uniaxial bending, submitted for publication to
ZEDE: Journal of the Ethiopian Architects and
Engineers.

5. Eurocode Course Lecture Note (2001). Structural Steel
Work Eurocodes, Development of a Trans-
National Approach, Chapter VII - Composite
Columns.

6. Eurocode 4 (2002). Design of Composite Steel and
Concrete Structures: ENV 1994-1-1: Part 1.1:
General rules and rules for buildings, CEN,
Antwerp, Belgium.

7. Hajjar, J.F. (2000). Concrete-Filled Steel Tube Columns
Under Earthquake Loads", Prog. Structural
Engineering Material.

8. Hofmann, B. (2002). Stahl-Verbundbau-Verbund-
konstruktionen im Hochbau, Verlag Stahleisen
GmbH, Diisseldorf.

9. Lahlou, K., Lachemi, M. and Aitcin, P.C. (1999).
Confined High Strength Concrete Under
Dynamic Compressive Loading. Journal of
structural engineering, ASCE 125(10):1100-1108.

10. Johansson, M and Gylltoft, K. (2001). Structural
Behavior of Slender Circular Steel-Concrete
Composite Columns Under Various Means of
Load Application, Steel and Composite
Structures, Vol. 1, No. 4, Chalmers University
of Technology, Sweden.

11. Peterson, C. (2001). Stahlbau, 3. Auflage, Friedrich
Vieweg & Sohn, Braunschweg,/ Wiesbaden.

12. Viest, ML.L,, Colaco, ].P., Furlong, RW., Griffs, G.L,,
Leon, R.T,, Laring, A. and Willey, L.A. Viest, M
(1997). Composite Construction Design for
Buildings, McGraw -Hill, NewYork.



