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ABSTRACT: Let f  be analytic on the compact set E ⊂ C , of positive transfinite diameter and let Cr 

denote the largest equipotential curve of E such that f is analytic within Cr. Generally, the growth of an 
entire function is measured in terms of its order and type. Here we have established the relations 
between maximum modulus, maximum term and interpolation error of best uniform approximation to 
a function =∈ )(ECf { f  holomorphic on int (E) and continuous on E } by algebraic polynomials 
and Lagrange polynomials, in the form of direct estimates. 
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INTRODUCTION 
 
Let E  be a compact set in complex plane and 
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 Again, let { }nnnn
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system of  (n+1) points in E such that 
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 Such a system always exists and is called the nth 
extremal system of E. The polynomials 
 

( ) ,,,1,0,, )()( nj
z

zL n

ok
nknj

nknj

jk
K=











−
−

= ∏
≠= ηη

η
η  

 
are called Lagrange extremal polynomials and the 

limit )1(/2lim)( +
∞→=≡ nn

nn VEdd  is called the 

transfinite diameter of  E. 

 Let us define the best uniform approximation to 
=∈ )(ECf  { f holomorphic on int (E) and 

continuous on E } as follows : 
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where ⋅ is the sup norm and )(zPn denotes the 

set of all polynomials of degree at most n. 
 We also define 
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is the Lagrange interpolation polynomial of degree 
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),(),,( frmfrM  are called respectively the 
maximum modulus and maximum term, of  f (z) 

on the circle .rz =  The order and type of an 

entire function are defined as 
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if  ρ ( f ) = 0 or ∞ , then  T ( f ) is underlined. 
 
 One way of characterizing the growth of an 
entire function in terms of interpolation  error  is  

to relate ,3,2,1),(, =jfjnµ  with order ρ and 

type T. Various  authors (Readdy, 1970; Winiarski 
1970; Rice, 1971; Juneja, 1974; Massa, 1981; Kasana 
and Kumar, 1994) established a relation between 
the growth parameters and interpolation error of 
an entire function, but as compared to the direct 
estimates of )(, fjnµ  or ),( frM  these are still 

rather crude. 
 
 Further, let 
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denote the Green’s function for E  with pole at ∞ 

and ro C
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curve defined by  

=rC  { } )( where,)(: zwrdzCz ψψ ==∈  

is holomorphic and maps the unbounded 

components of the complement of E  on 1>w  

such that and)( ∞=∞ψ 0)( >∞′ψ and EC ˆ\  
is simply connected. Also, 

.1for  )(sup),( >= ∈ rzffrM
rCz  It is clear 

that for ., ECdr r ==  
 The aim of this paper is to set up more precise 

interrelation between ),,( frM  

)( and),( , ffrm jnµ  for entire functions of 

relatively slow growth, in terms of direct estimates 
for these quantities. 
 We say an entire function slowly increasing if 

),( frM  increases essentially, not faster than 
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for β =2 and arbitrary c > 0 (critical value β =2 has 
been found to be significant). For rapidly 
increasing functions there are direct estimates of 

),( frM  and )(, fjnµ . If  f  increases like 

Equation (1) with ,21 << β  for example 
Proposition 2 and Corollary 1 apply, and for still 
more rapidly increasing entire functions of classical 
order ρ  > 0, Proposition 1 and Theorem 2 apply. 
Though in latter case a necessary and sufficient 
characterization of the growth of f in terms 
of )(, fjnµ  is possible, the results are still sharper 

than the limit relations. 
 
 

RESULTS 
 
Preliminary results 
Now we mention some preliminary results which 
have been utilized in the sequel; 
 
Lemma 1. (Winiarski, 1970). If f (z) is an entire 
function of order ρ and type T , then 
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Lemma 2. If a function  f  is defined and bounded 
on a compact set E , then 
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where nL  is the Lagrange interpolation 

polynomial with nodes at extremal points .njη  

 
Proof. The proof of this lemma is available as 
Lemma 2 in Winiarski (1970). 
 
Lemma 3. (Kasana and Kumar, 1994).  For every 
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Lemma 4. Let )(ECf ∈  be entire. Then for 

sufficiently large values of n, and for ,2 εder >  
we have 
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where K is a constant. 
 
Proof. Winiarski (1970:266) has proved that for any 
ε > 0, 
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where k is a constant and d > 0 is the transfinite 
diameter of  E. Using (3) with Lemma 2, the proof 
follows. 
 
Lemma 5. Let ).(ECf ∈  Then f can be extended 
to an entire function if and only if 

 .3,2,1,  as0)(/1
, =∞→→ jnfn
jnµ  

 
 This lemma is a direct consequence of Lemma 1, 
Winiarski (1970, eq. 4.5) and inequality due to 
Walsh (1969:77). 
 
Main results 
Maximum modulus and interpolation error 
 In this section we first prove two propositions 
for a class of entire functions of order ρ  > 0. Then, 
we restrict ourselves to entire function of slow 
growth in order to obtain a characterization 
theorem of desired precision. 

 We denote by ),[2 ∞xC  the class of twice 

continuously differentiable functions on ),[ ∞x  

and for any ),[2 ∞∈ xCα  with .,0 set>′′α  
 

( ){ }.)log()()log()(logexp)( 11 rrrrA −− ′−′= ααα  
  .......................(4) 
 
Proposition 1. Let ),(ECf ∈  has an analytic 
continuation as an entire function and 

),[2 ∞∈ xCα  be such that  
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Proof. By Lemma 4, we have for ,2 εder >  
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For ,exp/ αε ′=der  above inequality corre-
sponds to Equation (5). 
 
 We define Γ to be the class of functions 

0  somefor ),[ 1
2 ≥∞∈ xxCα  for which there 

exists a function w such that 
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Proposition 2. Let )(ECf ∈  be an analytic 
continuation as an entire function satisfying 
Equation (5) for some ψ such that 
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 Proof. Using Lemma 4, we have 
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In view of  Equation (5), it gives  
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Define ).(),( txttxh α−=  The right side of  
Equation (7) is estimated as 
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follows easily by Berg (1968,  Theorem 28.3). Hence 
the proof is completed. 
 
Remark. The conclusions of Proposition 1 and 2 
are best possible in the sense that 0 can not be 
replaced by o in Equations (5) and (6), respectively. 
In case ψ  grows at least as rapidly as 

,2),(exp ≥tx t  this will be a consequence of 
Theorem 1 below. For Proposition 2 and general ψ 
with Γ∈α  this is also clear from Eq. (7) by 
choosing f with ).1(/1)(, += nfjn ψµ  

 Now we consider the case of slowly increasing 
entire function expressed in terms of a particular 

)(xψ  of the form ,0),(exp)( >= ccxx βψ  it 
means that the Theorem 1 will cover the case β ≥ 2 
whereas Proposition 1 and 2 cover the case β  > 1 
and ,21 << β  respectively. Let Γ  denote the 

class of functions ),,[2 ∞∈ xCα  for some 
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Theorem 1. Let )(ECf ∈  has an analytic 
continuation as an entire function for some Γ∈α  
and let )(rA  be defined by Equation (4). The 
following statements are equivalent: 
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Proof. The (i) ⇒ (ii) follows by Proposition 1. For 
converse, consider first the case when 
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Now we have to show that the right hand side 
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),(ξαξ −x  by a result of Sirovich ( 1971:96–98) 
and Evgrafov (1979:18), we have 
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 Here ξξη  denotes the second derivative with 

respect to ξ and ).()()( 1 xxo
−′= αξ  The 

hypothesis of Sirovich (1971:98 case 2) are satisfied 
since, for each ),,(,1 ξη xxx >  a function of ξ has 

a global maximum at ),()()( 1 xxoo
−′== αξξ  it 
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In the consequence of definition of η, Eq.  (9) and 
Eq. (4), we get 
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holds if and only if 
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 The asymptotic relation (Eq. 7) is given by this 
for ψ , in  the  case β ∈ N  and β  > 2, respectively. 
 
Maximum term and interpolation error 
 Since hj(z) in an entire function and it is clear that 
hj(z) and f(z) have the same maximum term and is 
denoted by m(r, f ). A satisfactory characterization 
of m(r, f ) in terms of interpolation error holds for 
large class of entire functions, including those of 
order ρ >0 and type T ≥0. 
 
Theorem 2. Let f ∈ C(E) has an analytic 
continuation as an entire function with maximum 
term m(r, f ) and let α ,ψ   and A(r) be. Then 
condition (Eq. 5) is equivalent to  
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For fixed r, the maximum over x of the function  
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For each ,1rr >  it also gives that 
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where or  and oM  are constant. Taking 

αε ′= exp]/[ nder  for some n ∈ N  in (Eq. 11), 
we have for n large enough, since 

,  as)( ∞→∞→′ xxα  this implies (Eq. 5). 
 
Maximum modulus and maximum term 

Corollary 1. Let )(ECf ∈  has an analytic 
continuation as an entire function satisfying 

)( with )),/((),( rArderAOfrm ∞→= ε  
defined by Equation ( 4), for .Γ∈α  Then 
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 This is a direct consequence of Theorem 2 and 
Proposition 2. 
 
Corollary 2. Let )(ECf ∈  be given as in 
Theorem 1. The following statements are 
equivalent: 
 

(a) .)),/((),( ∞→= rderAOfrm ε  

(b) .)),/((),( ∞→= rderAOfrM ε  
 
 Combining Theorems 1 and 2 we can easily 
establish the above equivalent and it is concerned 
with functions of slow growth only. 
 
 

REFERENCES 

 
 1. Berg, L. (1968). Asympotische Darstellungin and Entwick-

lungen. VEB Deuscher Vertag der Wissen 
schaften, Berlin, Germany  

 2. Evgrafov, M.A. (1979), Asymptotic Estimates and Entire 
Functions, 3rd edn. (Russian) Nauka, Moscow. 

 3. Juneja, O.P. (1974), Approximation of an entire 
function. J. Approx. Theory 4(11):343–349. 



                                                                                                                                               Kumar, D. and Seid Mohammed 86

 4. Kasana, H.S and Kumar, D (1994). On approximation 
and interpolation of entire functions with 
index-pair (p, q), Publications Mathematiques 
38:255–267. 

 5. Massa, S. (1981). Remarks on the growth of an entire 
function and the degree of approximation. Riv. 
Mat. Univ. Parma 4(7):1–6. 

 6. Readdy, A.R. (1970). Approximation of an entire 
function. J. Approx. Theory 3:128–137. 

7. Rice, J.R. (1971). The degree of convergence for entire 
functions, Duke Math. J. 38:429–440. 

8. Sirovich, L. (1971). Techniques of Asymptotic Analysis . 
Springer-Verlag New York. 

9. Walsh, J.L. (1969). Interpolation and approximation by 
rational functions in the complex domain. 
Colloq. Publications, Vol. 20, Amer.Math. Soc. 
Providence R.I. 

10. Winiarski, T.N. (1970). Approximation and interpola-
tion of entire functions. Ann. Polon. Math. 
29:259–273. 

 


