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ABSTRACT: This paper presents a fitted non-polynomial cubic spline method for solving 

singularly perturbed delay differential equations with left and right end layers for which a small 
delay parameter is in the convection term. The stability and convergence of the method have been 
established. To validate the applicability of the proposed method two model examples without 
exact solution have been considered and solved for different values of the perturbation parameter 
and mesh sizes. Both theoretical error bounds and numerical rate of convergences have been 
investigated for the proposed method and observed to be in agreement. The numerical results have 
been tabulated and further to examine the effect of delay parameter on the boundary layer solution, 
graphs have been given for different values of delay parameter. 
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INTRODUCTION 
 

A differential equation in which the highest 
order derivative is multiplied by a small positive 
parameter   is called perturbed problem and the 
parameter is known as the perturbation 

parameter (Roos et al., 2008). Any system 
involving a feedback control will almost involve 
time delays. This is because a finite time is 
required to sense information and then to react 
on it. If we restrict the class of delay differential 
equations to a class in which the highest 
derivative is multiplied by a small positive 
parameter and involving at least one delay term, 
then it is said to be a singularly perturbed delay 
differential equations. In this problem typically 
there are thin transition layers where the solution 
varies rapidly or jumps abruptly, while away 
from the layers the solution behaves regularly 
and varies slowly. Thus, there has been a 
growing interest in the numerical treatment of 
such differential equations. This is due to the 
usefulness of such type of differential equations 
in the mathematical modeling of various physical 
and biological phenomena. For example, 
population ecology, control theory, viscous 
elasticity, and materials with thermal memory 
(Elsgolt's, 1973).  

Recently, many researchers have been trying to 
develop different numerical methods for solving 
singularly perturbed delay differential equations. 
For example, Awoke Andargie and Reddy (2013), 
presented parameter fitted scheme to solve 
singularly perturbed delay differential equations. 
Gemecchis File et al., (2017) and Gashu Gadisa et 
al., (2018) presented different fourth order finite 
difference methods for solving singularly 
perturbed delay reaction-diffusion equations 
with layer or oscillatory behaviour. Erdogan, 
(2009) presented an exponentially fitted method 
to solve singular perturbed delay differential 
equations. Cubic spline in compression 
approximations for singularly perturbed delay 
differential equation with large delay has been 
presented by (Chakravarthy et al., 2015). The use 
of cubic splines for the solution of linear two 
point boundary value problems was suggested 
by (Bickley, 1968). A fitted finite difference 
method using polynomial cubic on uniform mesh 
for solving singularly perturbed two-point 
boundary value problems is also presented by 
(Phaneendra and Prasad, 2015). But, still 
numerical treatment of singularly perturbed 
boundary value problems needs improvement. 
Thus, in this paper we present a fitted non-
polynomial cubic spline method for solving 
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singularly perturbed delay convection-diffusion 
equations.  

 
DESCRIPTION OF THE METHOD 

 
Consider singularly perturbed delay convection-
diffusion equations with variable coefficients of 
the form:  

''( ) ( ) '( ) ( ) ( ) ( ), 0 1y x a x y x b x y x f x x        (1)  

with interval and boundary conditions, 

( ) ( ), 0y x x x      ,  1y               (2) 

where   is small perturbation parameter, 

0  1 and   is delay parameter satisfying 

 0 ( ) 1a x     for all [0,1]x ; 

       ,  , anda x b x f x x are bounded 

functions in [0,1]  and   is known constant. 

Further, when   0a x  , Eqs. (1) - (2) has 

boundary layer on left end of the interval and 

when   0a x 
 
it has boundary layer on right 

end of the interval.    
By using Taylor series expansion on the delay 

term, we have: 

'( ) '( ) ''( ) (y x y x y x o      2)              (3) 

Substituting Eq. (3) into Eq. (1), we obtain an 
asymptotically equivalent singularly perturbed 
boundary value problem of the form: 

         '' 'y x a x y b x y x f x    , for  0,1x ,   (4) 

where,  a x     under the boundary 

conditions, 

  00y   and  1y           

Consider a uniform mesh with nodal points ix on 

 0,1 such that: 

0 1 2 1 0

1
0 ... 1, , 0,1,..., , whereN N ix x x x x x x ih i N h

N
          

 

For each segment  1, , 0,1,..., 1i ix x i N  
 

the 

non-polynomial cubic spline ( )S x
 

has the 

following form:
 

   i i iS x a x x b   +     i ix x w x x w

ie e c
  

 + 

    i ix x w x x w

ie e d
  

                                  (5)      

where, , ,i i ia b c  and
 id are unknown coefficients 

and w  is a free parameter.   
To determine the unknown coefficients in Eq. 

(5), we denote: 

 i iS x y ,  1 1i iS x y  ,  i iS x m  , 

 i iS x M  ,  1 1i iS x m 
  ,  1 1i iS x M 

 
 
 

The coefficients in Eq. (5) are determined as:  

       
2

i
i i

M
a y

w
 

 
,   

 
 1 2

2
2

i

i i

M e e
c M

w e e

 

 



 


 


,  

1 1i i i i
i

y y M M
b

h w
  

 
 
and 

22

i
i

M
d

w


            
(6)

 
where, wh  . 

Using the continuity condition of the first 

derivative at 
ix ,    1 i iS x S x 

  , we have: 

   1 1 1 2i i i i ib wc e e wd e e b wc   

           (7)  

Reducing indices of Eq. (6) by one and 
substituting into Eq. (7), we obtain: 

 

 
 

   

 
 

11 1 1

22

11 1

2

2

22

2
2

2

i ii i i i i

i ii i i i

M e e My y M M M
w e e w e e

h w ww e e

M e e My y M M
w

h w w e e

 

   

 

 

 







    





 



     
          

   
   
 
 

 

1 1
1 12

2
2i i i

i i i

y y y
M M M

h
   

 

 
                 (8) 

where, 

 2

1 2
1

e e 




 

 
  
 
 

 and  
2

1
1

e e

e e

 

 










 
  
 
 

.

 

As 0   in Eq. (8), we get 
1

2
   .

   Using  i i iS x y M    into Eq. (4), we get: 

  i i i i i iM f a y b y    ,   

1 1 1 1 1 1i i i i i iM f a y b y      
    and  

1 1 1 1 1 1i i i i i iM f a y b y      
  

                          
(9) 

  Using Taylor’s series expansions of 

1 1 1 1, , ,i i i iy y y y   
 

 
and simplifying, we 

have: 

1 1
1

2

i i
i

y y
y T

h

 
   ,   

1 1
1 2

4 3

2

i i i
i

y y y
y T

h

 


  
    and 

1 1
1 2

3 4

2

i i i
i

y y y
y T

h

 


 
                              (10) 

where,  
2

1 '''
6

h
T y     and  

2

2 '''
12

h
T y  , 

for  1,i ix x  . 

Using Eq. (10) into Eq. (9), we get: 

1 1

1

1

2

i i

i i i i i

y y
M f a T b y

h
    

     
  

,

  

            (11) 
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1 1

1 1 1 2 1 1

4 31

2

i i i

i i i i i

y y y
M f a T b y

h
 

    

     
     

  

,  (12) 

1 1

1 1 1 2 1 1

3 41

2

i i i

i i i i i

y y y
M f a T b y

h
 

    

    
     

  

  (13) 

Substituting Eqs. (11) - (13) into Eq. (8) and 
rearranging, we get: 

     

     

1
1 1 1 1 1 12

1
1 1 1 1 1 1 1 1

2
2 4 3

2 2

3 4 2
2

i i
i i i i i i i i

i
i i i i i i i i i i i i

a a
y y y y y y y y

h h h

a
y y y f b y f b y f b y T

h

 


 


     


       

       

         

                                                                              
(14) 

where,    
2

1 14 '''
12

i i i

h
T a a a y        is a local 

truncation error. 
From the theory of singular perturbations 

described in O’ Malley, (1974) and the Taylor’s 

series expansion of ( )a x about the point ‘0’ in the 

asymptotic solution of the problem in Eq. (4), we 
have:   

 
(0)

0 0 0( ) ( ) (0)

ih
a

i iy x y x y e


 
  

   

 
and letting 

h



 , we get:  

  (0)

0 0 0
0

lim ( ) (0) (0) a i

h
y ih y y e  


   , since 

0ix x ih ih   .  

Introducing a fitting factor     into Eq. (14), 

we get:

  
     

     

1
1 1 1 1 1 12

1
1 1 1 1 1 1 1 1

2
2 4 3

2 2

3 4 2
2

i i
i i i i i i i i

i
i i i i i i i i i i i i

a a
y y y y y y y y

h h h

a
y y y f b y f b y f b y

h

    


 


     


       

       

        

                       (15)
 

Multiplying Eq. (15) by h and taking a limit as 

0h , we get:  

 
 

 

   
 

 

1 1 1 1
0 0

1 1 1 1
0 0

0
lim 2 lim 4 3

2

0
0 lim lim 3 4 0

2

i i i i i i
h h

i i i i i
h h

a
y y y y y y

a
a y y y y y








   
 

   
 

     

     

                        (16) 
Thus, we consider two cases of the boundary 

layers.   

Case I: For   0a x  (Left-end boundary layer), 

we have: 

           0 0 0

1 1 0 0
0

lim 2 0 2
a i a a

i i i
h

y y y y e e e
  

 

 


     

                      (17) 

           0 0 0

1 1 0 0
0

lim 3 4 0 3 4
a i a a

i i i
h

y y y y e e e
 

 

 


       

                      
(18) 

           
00 0

1 1 0 0
0

lim 4 3 0 3 4
aa i a

i i i
h

y y y y e e e
 

 

 


     

                          (19) 

           0 0 0

1 1 0 0
0

lim 0
a i a a

i i
h

y y y e e e
 

 

 


     

                       (20) 
Using Eqs. (17) - (20) into Eq. (16) and 

simplifying, we get: 

  
   

   0

0 0

0 0
0

2

a a

a a

e e
a

e e

 

 
   






 

 

  
 0

0 coth
2

a
a


  

 
   

 

 

Case II: For   0a x  (Right-end boundary 

layer), we have: 

           1 1 1

1 1 0
0

lim 2 1 2
a i a a

i i i
h

y y y y e e e
  


 

 


     

                       (21) 

           1 1 1

1 1 0
0

lim 3 4 1 3 4
a i a a

i i i
h

y y y y e e e
  


 

 


         

                                                      (22) 

           1 1 1

1 1 0
0

lim 4 3 1 3 4
a i a a

i i i
h

y y y y e e e
  


 

 


         

                      (23) 

           1 1 1

1 1 0
0

lim 1
a i a a

i i
h

y y y e e e
  


 

 


   

                         (24) 
Using Eqs. (21) - (24) into Eq. (16) and 
simplifying, we get: 

  
   

      
 1 1

1 1

1
1 1 coth

22
N

a a

a a

ae e
a a

e e

 

 


      





 
     

   

 
 In general, we can take a variable fitting factor 
as:  

    
 

coth
2

i i

i i i

a x
a x


    

 
   

 

          (25) 

where, 
i

h



 .  

Thus, Eq. (15) can be rewritten as:  

 

11 1 1
1 12 2

1 1
1 1 1 12

23 2 2
2

2 2

3
2

2 2

ii i i i i i i i
i i i i

i i i i i
i i i i i

aa a a a
b y b y

h h h h h h h

a a a
b y f f f

h h h h

       
 

    
  

  
 

 
   

  
          

   

 
        
 

                          

(26) 
Further, Eq. (26) can be rewritten as a three 

term recurrence relation of the form:            

1 1i i i i i i iE y F y G y H    , for 1,  2,...,  -1i N .    (27) 

where, 

1 1
12

3

2 2

i i i i i
i i

a a a
E b

h h h h

    
 

      ,   

1 1

2

2 2 2
2i i i i

i i

a a
F b

h h h

   
    

1 1
12

3

2 2

i i i i i
i i

a a a
G b

h h h h

    
 

    

 

 and  

 1 1 2i i i iH f f f      
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The tri-diagonal system in Eq. (26) can be easily 
solved by the method of Discrete Invariant   
Imbedding Algorithm.  

 
Stability and Convergence Analysis 
 
Theorem 1: (Stability)  

Let B be a coefficient matrix of the tri-diagonal 

system, Eq. (26). Then, for all 0   and 

sufficiently small h , the matrix B is an 
irreducible and diagonally dominant matrix and 
hence the scheme is stable. 
Proof: Substituting Eq. (25) in Eq. (26) and 

multiplying both sides of the equation by h , we 
get the equivalent tri-diagonal scheme:  
 

  

1 1
1 1 1 1

1 1
1 1 1 1

3
coth coth 2 2 2

2 2 2 2 2

3
coth 2

2 2 2 2

i i i i i i i
i i i i i i i i

i i i i i
i i i i i i

a a a a a
h b a y a a h b a y

a a a a
a h b y h f f f

   
    

  
   

 
   

 
   

      
             

      

  
         

  

                            

(28)

 

This can be rewritten as   
* * * *

1 1i i i i i i iE y F y G y H   

         

(29) 

where,  

* 1 1
1

3
coth

2 2 2 2

i i i i i
i i i

a a a a
E h b a

  
  



 
     

 
,   

*

1 1coth 2 2 2
2

i i
i i i i i

a
F a a h b a


   

 
    

 
 

* 1 1
1

3
coth

2 2 2 2

i i i i i
i i i

a a a a
G a h b

  
  



 
     

 

  
and   *

1 1 2i i i iH h f f f      

 Rewriting Eq. (29) in a matrix vector form, we 
obtain: 
BY C             where, B is a coefficient matrix,  

 1 2 1, , ,
T

NY y y y  and 

 * * * * *

1 1 0 2 1 1, , ,
T

N NC H E H H G     .  

The matrix B is tri-diagonal matrix and its off-

diagonal elements are 
*

iE and
*

iG .  

Now, 

   * * *

1 1 1 1coth coth 2
2 2

i i i i
i i i i i i i i i

a a
E G a a a a a a F

 
    

   
          

   

 

 

This implies that for each row of B , the sum of 
the two off-diagonal elements is less than the 

modulus of the diagonal element. Therefore, B is 
diagonally dominant. 

Further, for sufficiently small h  . , 0i e h , we 

have: 
* 0iE  and

* 0iG  , 1,2,..., 1i N   .  

Hence, B is irreducible (Varga, 2000). Therefore, 
from these two conditions, the scheme in Eq. (27) 
is stable (Kadalbajoo and Reddy, 1989).  
 
Theorem 2: (Convergence) 

Let ( )y x  be the analytical solution of the 

problem in Eq. (4) and (5), and Ny  be the 

numerical solution of the discretized problem of 

Eq. (27). Then, 
Ny y 2ch  for sufficiently 

small h  and c  is positive constant.  

Proof: Multiplying both sides of Eq. (26) by 

2

i i

h

 



 
and simplifying, we obtain: 

     1 11 2 1 0i i i i i i i iu y v y w y g T          

                       (30)  
where, 

21 1
1

31

2 2

i i
i i i

i i

ha ha
u h b a h

 
 

 
 



 
    

 
,   

 2

1 1

2
i i i i

i i

v ha ha h b  
 

     

21 1
1

31

2 2

i i
i i i

i i

ha ha
w ha h b

 
 

 
 



 
    

 

,     
2

1 1 2i i i i

i i

h
g f f f 

 
 


  

 

and  

 
 

 1 1 4
4

'''
12

i i i

i

i i

a a a
T h h y

 


 

  
  is a 

local truncation error for 1,2, , -1i N .

 Incorporating the boundary 

condition  0 0 0y x   ,  1Ny y    in 

Eq. (30), we get the system of equation of the 
form: 

    0D P y M T h                 (31) 

where, 

2 1 0 0

1 2 1 0

0

1

0 1 2

D

 
 
  
   
 

 
    

,  

1 1

2 2 2

2

1 1

0 0

0

0

0

N

N N

v w

u v w

P

w

u v



 

 
 
 
   
 
 
     

are tri-diagonal 

matrices of order 1N  , 
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     1 1 0 2 3 1 11 , , ,..., 1
T

N NM g u g g g w  
        

,    4T h o h  and  1 2 1, ,...,
T

Ny y y y  , 

   1 2 1, ,..., ,
T

NT h T T T   0 0,0,0,...,0
T

 are 

associated vectors of Eq. (31). 

Let 
1 2 1, ...

T
N N N N

Ny y y y y
     

be the 

solution which satisfies the Eq. (31), we have:  

  0ND P y M              (32) 

Let
N

i i ie y y  , for 1,  2, ..., -1i N  be the 

discretization error then, 

 1 2 1, ,...,
TN

Ny y e e e   . 

Subtracting Eq. (31) from Eq. (32), we get: 

   ( )ND P y y T h              (33)   

Let 

1 1 2 1 3 1 1 2 1 3, , , , andi i i i i ia c a c a c b k b k b k        

       

Let 
,i jt be the  ,

th
i j element of the matrix P, 

then: 

31
, 1 2 3

33

2 2
i i i

i i

cch
t w hc k


 

 


 
     

 

,   1,  2, ., 2i N    

31
, 1 1 2

3

2 2
i i i

i i

cch
t u hk c


 

 


 
     

 
, 

 2,3, ., 1i N    

 
Thus, for sufficiently small h, we have: 

, 11 0i it    ,  1,  2 ., 2i N   ,         

, 11 0i it    ,   2,3, ., 1i N   .  

Hence, the matrix (D+P) is irreducible, (Varga, 
2000).  

 
Let iA

 
be the sum of the elements of the 

thi  row 

of the matrix  D P , then: 

 21 1
1 1

32
1 1 , for 1

4 2 4

i i i
i i i i i

i i

a a ah
A v w a a o h i

  
 

 
 

 

 
           

    

 

 
2

1 12 , for 2,3,..., 2i i i i i i i

i i

h
A u v w b b b i N  

 
         

 

 21 132
1 1 ,for 1

4 4 2

i i i
i i i

i i

a a ah
A u v o h i N

  

 
  

          
 

 

Let  1 1 1
1 1

1
min 2i i i
i N

i i

d b b b  
 

 
  

     

and 

 2 1 1
1 1

1
max 2i i i

i N
i i

d b b b  
 

 
  

    then,

1 20 d d  . 

For sufficiently small h, (D+P) is monotone, 
(Varga, 2000) and (Young, 1971). 

Hence,  
1

D P


 exists and  
1

0D P


  . 

From the error Eq. (33), we have: 

   
1Ny y D P T h


            (34) 

For sufficiently small h, we have: 
2

1iA h d   for 1,2,..., 1i N  .  

where, 

 1 1 1
1 1

1
min 2i i i
i N

i i

d b b b  
 

 
  

 
    

 
. 

Let  
1

,i k
D P


  be  ,

th
i k  element of 

 
1

D P


  and we define, 

   
1

1 1

,1 1
1

max
N

i ki N
K

D P D P


 

  


    and  

 
1 1
max i

i N
T h T

  
               (35) 

Since  
1

,
0

i k
D P


   , from the theory of 

matrices, we have: 

 
1

1

,
1

. 1
N

Ki k
k

D P A






  ,  for  1,2, ., 1i N    

Hence,  
1

1

2,
1 1

1 1

1 1

min

N

i k
k k

i N

D P
A h d





  

             (36) 

Now, from Eqs. (34) - (36), we get: 

 
 1 1 4

2

1

41 1
'''

12

i i iN

i i

a a a
y y h y

h d

 


 

   
   

 

 

    1 1 2 2

1

''' 4

12

i i i

i i

y a a a
h ch

d

  

 

 
  

  
 
 

 

where, 
  

 
1 1

1

4

12

i i i

i i

a a a
c y

d

 


 

  


  
which is independent of mesh size h .  
This establishes that the method is of second 
order convergent. 
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Numerical Examples  
 

To demonstrate the applicability of the 
method, two model examples one each for right 
and left layers have been considered. The 

numerical results are presented for 1
12

   and 

5
12

  . Since both examples (Examples 1 and 

2) have no exact solution, the numerical solutions 
are computed using double mesh principle. The 
maximum absolute errors are computed using 
double-mesh principle given by:  

2max , 1,2,..., 1
h

h

i i
i

E y y i N                   (37) 

where 
h

iy  is  the  numerical  solution  on  the  

mesh  
1N

ix


at  the  nodal  

point ix and
0 , 1,2,..., 1ix x ih i N    ,  2

h

y  
the  numerical  solution  on  a  mesh,  obtained  
by bisecting the original mesh with N number of 
mesh intervals, Doolan et al (1980). 
 
Example 1: Consider the following singularly 
perturbed delay convection-diffusion problem, 

( ) ( ) ( ) 0xy x e y x xy x       
subject to the interval and boundary conditions, 

( ) 1, 0, (1) 1.y x x y       
The maximum absolute errors are presented 

for the present method in Tables 1 and 2 for 

0.1  and different values of  , in Table 5 for 

different values of  and 0.5  , and the rate 
of convergence is presented in Table 6 for 

0.1  and 0.03  .   
 

Example 2: Consider the following singularly 
perturbed delay convection-diffusion problem, 

0.5( ) ( ) ( ) 0xy x e y x y x       
subject to the interval and boundary conditions, 

( ) 1, 0, (1) 1.y x x y       
The maximum absolute errors are presented 

for the present method in Tables 3 and 4 for 

0.1  and different values of , in  Table 5 for 

different values of , and 0.5   , and the rate 

of convergence is presented in Table 6 for 

0.1   and 0.03  . 
 
 
 
 
 

Numerical Results  
 
Table 1: Maximum Absolute errors of Example 1, for 
different values of  δ  and  ε = 0.1. 

     
N

 
210  

310  
410  

Our Method   

0.01 2.6064e-05 2.5938e-07 2.6486e-09 

0.03 2.1154e-05 2.1130e-07 2.1233e-09 
0.06 1.6255e-05 1.6241e-07 1.6528e-09 
0.08 1.4022e-05 1.4019e-07 1.4440e-09 

Reddy et al., 2012   
0.01 5.75975e-03 5.0842e-04 5.02478e-05 
0.03 3.93277e-03 3.6132e-04 3.58384e-05 
0.06 2.70257e-03 2.5507e-04 2.53643e-05 
0.08 2.24689e-03 2.1413e-04 2.13134e-05 

 
Table 2: Maximum Absolute errors of Example 1, for 
different values of δ and N = 100. 

0.1   0.01   

 
 

Awoke and 
Reddy, 2013 

Our 
Method 

 
 

Awoke and 
Reddy, 

2013 

Our 
Method 

0.04 1.05e-03 1.9248e-05 0.002 1.05e-02 3.0712e-04 
0.06 8.43e-04 1.6255e-05 0.005 8.79e-03 2.0784e-04 
0.07 6.93e-04 1.5062e-05 0.007 7.52e-03 1.6509e-04 
0.08 4.75e-04 1.4022e-05 0.008 6.95e-03 1.5229e-04 
0.09 3.35e-04 1.3114e-05 0.009 6.42e-03 1.4383e-04 

 
Table 3: Maximum Absolute errors of Example 2, for 
different values of δ and ε = 0.1. 

     N   
210  

310  
410  

Our Method   

0.01 2.0717e-05 2.0725e-07 2.0660e-09 

0.03 2.7350e-05 2.7363e-07 2.7496e-09 
0.06 4.4987e-05 4.5034e-07 4.5055e-09 
0.08 9.9507e-05 1.0389e-06 1.0389e-08 

Reddy et al., 2012   
0.01 6.32996e-03 6.74268e-04 6.78713e-05 
0.03 8.15917e-03 8.82563e-04 9.89869e-05 
0.06 1.38476e-02 1.57973e-03 1.60200e-04 
0.08 2.47716e-02 3.17323e-03 3.26028e-04 

 
Table 4: Maximum Absolute errors of Example 2, for 
different values of  δ and  N = 100. 

0.1   0.01   

 
 

Awoke and 
Reddy, 2013 

Our 
Method    

Awoke and 
Reddy, 2013 

Our 
Method 

0.04 6.29e-04 3.1822e-05 0.002 2.69e-04 8.6399e-05 
0.05 1.26e-03 3.7493e-05 0.004 2.00e-04 1.1103e-04 
0.06 1.55e-03 4.4987e-05 0.006 5.41e-04 1.5349e-04 
0.07 2.00e-03 5.5771e-05 0.007 7.48e-04 1.8883e-04 
0.08 2.77e-03 9.9507e-05 0.008 1.17e-03 2.4367e-04 

 
Table 5: Maximum absolute errors for different 
values of  ε and  δ = 0.5ε. 

   

N   
200 400 800 1600 3200 
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Example 1 

82
 1.4113e-04 3.1324e-05 7.6013e-06 1.8967e-06 4.7324e-07 

102
 4.1860e-04 1.3923e-04 3.5373e-05 7.8568e-06 1.9068e-06 

122
 5.0318e-04 2.4577e-04 1.0479e-04 3.4837e-05 8.8490e-06 

142
 5.0346e-04 2.5201e-04 1.2601e-04 6.1491e-05 2.6207e-05 

162  5.0346e-04 2.5201e-04 1.2608e-04 6.3056e-05 3.1515e-05 

202  5.0346e-04 2.5201e-04 1.2608e-04 6.3057e-05 3.1533e-05 

302
 5.0346e-04 2.5201e-04 1.2608e-04 6.3057e-05 3.1533e-05 

362
 5.0346e-04 2.5201e-04 1.2608e-04 6.3057e-05 3.1533e-05 

 
Example 2 

   

82
 4.3004e-04 2.1557e-04 1.9983e-05 5.0105e-06 1.2535e-06 

102
 7.6794e-04 2.6726e-04 7.6210e-05 1.9874e-05 5.0266e-06 

122
 8.7303e-04 4.3400e-04 1.9306e-04 6.7004e-05 1.9087e-05 

142
 8.7309e-04 4.3827e-04 2.1955e-04 1.0882e-04 4.8331e-05 

162
 8.7309e-04 4.3827e-04 2.1957e-04 1.0989e-04 5.4970e-05 

202
 8.7309e-04 4.3827e-04 2.1957e-04 1.0989e-04 5.4974e-05 

302
 

8.7309e-04 4.3827e-04 2.1957e-04 1.0989e-04 5.4974e-05 

362
 

8.7309e-04 4.3827e-04 2.1957e-04 1.0989e-04 5.4974e-05 

 
Table 6: Rate of convergence for Examples 1 and 2 

when  0.1   and   0.03  .  

h  
1/100 1/200 1/300 1/400 1/500 

Example 1 2.0023 2.0006 2.0003 2.0001 2.0001 
Example 2 1.9995 1.9999 1.9999 2.0000 2.0000 

 

The Effect of Delay Term on the Solution Profile  

To analyze the effect of the delay term on the 
solution profile of the problem, the numerical     
solution of the problem for different values of the 
delay parameters have been given by the     
following graphs.   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

x

y-
nu

m
er

ic
al

 s
ol

ut
io

n

 

 

 = 0

 = 0.3

 = 0.6

 
Fig. 1: The numerical solution of Example 1 with  

and N = 400. 
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Fig. 2: The numerical solution of Example 2 with  

and N = 400. 

 

DISCUSSION AND CONCLUSION 

 

Fitted non-polynomial cubic spline method for 
solving singularly perturbed delay convection 
diffusion equations has been presented. The 
stability and convergence of the method have 
been investigated. The study is implemented on 
two examples without exact solutions by taking 
different values for the perturbation parameter 

 and delay parameter . The numerical results 
have been presented in Tables (1 - 5) for different 
values of the perturbation parameter , delay 

parameter  and number of mesh points N. The 
results obtained by the present method are 
compared with results of (Reddy et al, (2012 and 
Awoke Andargie and Reddy, (2013)) and 
observed that the present method improved the 
results. Further, it can also be observed from the 
tables that the accuracy of the method increases 
as the resolution of the grid increases which is in 
agreement with the findings of (Kadalbajoo and 
Ramesh, 2007), i.e., it is the maximum absolute 
error decreases rapidly as N increases. As 
perturbation parameter   is sufficiently small 

(i.e. for h  ), some researchers Doolan et al., 
(1980), Kadalbajoo and Sharma, (2004) and Roos 
et al., (2008) state that there is a challenge to get 
more accurate solutions for singularly perturbed 
boundary value problems. However, in the 
present method gives good result for   is 

sufficiently small an h   (Table 5). The results 
presented confirmed that computational rate of 
convergence (Table 6) as well as theoretical 
estimates indicates that the proposed non-
polynomial cubic spline method is a second 
order convergent.    

To demonstrate the effect of delay on the left 
and right boundary layers solution, graphs for 
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different values of delay parameter , mesh size 

h  and perturbation parameter  are plotted in 
Figs. 1 and 2; Accordingly, depending on the sign 
of coefficient of delay term one can see that, from 

Fig. 2 as   increases the width of the left 
boundary layer decreases while the width of the 
right boundary layer increases Fig. 1.  
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