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ABSTRACT: The notions of I-vague product of groups with membership and non-membership 

functions taking values in a complete involuntary dually residuated lattice ordered semigroup are 
introduced. This generalizes the notions with truth values in a complete Boolean algebra as well as 
those usual vague sets whose membership and non-membership functions taking values in the unit 
interval [0, 1]. We prove that if the complete involuntary dually residuated lattice ordered 
semigroup is infinitely meet distributive, then the set of all I-vague normal groups of a group with 
I-vague product forms a semilattice. 
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INTRODUCTION 

 

Ramakrishna and Eswarlal (2008) studied 
Boolean vague sets where the vague set of the 
universe X is defined by the pair of functions (𝑡𝐴, 
𝑓𝐴) where 𝑡𝐴 and 𝑓𝐴 are mappings from a set X 
into a Boolean algebra A satisfying the condition 

𝑡𝐴(𝑥)𝑓𝐴(𝑥)′ for all xX where 𝑓𝐴(𝑥)′ is the 
complement of 𝑓𝐴(𝑥)in the Boolean algebra A.  
Swamy (1965a, 1965b, 1966) introduced the 
concept of a Dually Residuated Lattice Ordered 
Semigroup (in short DRL -semigroup) which is a 
common abstraction of Boolean algebras and 
lattice ordered semigroups. The subclass of DRL -
semigroups which are bounded and involuntary 
(i.e having 0 as least, 1 as greatest and satisfying 
1 – (1 – x) = x) which is categorically equivalent 
to the class of MV-algebras of Chang (1958) and 
well -studied offer a natural generalization of the 
closed unit interval [0, 1] of real numbers as well 
as Boolean algebras. Thus, the study of vague 
sets (𝑡𝐴, 𝑓𝐴) with values in an involuntary DRL –
semigroup (Zelalem Teshome, 2010) promises a 
unified study of real valued vague sets and also 
those Boolean valued vague sets. 

Ramakrishna (2008) studied on a product of 
vague groups by introducing the concept of 
vague product. In this paper, using the definition 
of I-vague groups in (Zelalem Teshome, 2011a) 
and I-vague normal groups in (Zelalem Teshome, 
2011b), we define and study I-vague product 
where I is a complete involuntary DRL -
semigroup which generalizes the work of 
Ramakrishna (2008). Throughout this paper, we 

shall denote the identity element of a group G by 
e. 
 
Preliminaries 

Definition 2.1: A system (A, +, , -) is called a 
dually residuated lattice ordered semigroup(in 
short DRL -semigroup) if and only if  
i) (A, +) is a commutative semigroup with zero  
”0”; 

ii)  (A, ) is a lattice such that 

a + (bc) = (a + b)  (a + c)  and  a + ( bc) = (a + 

b)  (a + c)  for all a, b, c A. 

iii)  Given a, b A, there exists a least x in A such 

that b + xa, and we denote this x by a – b (for a 
given a, b this x is uniquely determined); 

iv) (a – b) 0 + bab for all a, b A; 

v) a – a 0 for all aA. 
 
Theorem 2.2: Any DRL-semigroup is a 

distributive lattice. 
 
Definition 2.3: A DRL -semigroup  A is said to 

be involuntary if there is an element 1(0)( 0 is 
the identity w.r.t. +) such that  
i)  a + (1 – a) = 1 + 1; 

ii) 1 – (1 – a) = a for all aA. 
 
Theorem 2.4: In DRL -semigroup with 1, 1 is 

unique. 
 
Theorem 2.5: If a DRL -semigroup contains a 

least element x, then x = 0. Dually, if a DRL -

semigroup with 1 contains a largest element , 

then  = 1. 
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Throughout this paper let I = (I, +, – , , , 0, 1) 
be a dually residuated lattice ordered semigroup 

satisfying 1– (1– a) = a for all a I. 
 
Lemma 2.6 Let 1 be the largest element of I. Then 

for a, b I 
i)  a + (1 – a) = 1. 

ii) 1 – a = 1 – ba = b. 

iii) 1 – (ab) = (1– a)  (1– b). 
 

Lemma 2.7: Let I be complete. If 𝑎𝛼 I for every 

, then  
i) 1 - ⋁ 𝑎𝛼𝛼∈∆ = ⋀ (1 − 𝑎𝛼)𝛼∈∆  . 
ii)  1 - ⋀ 𝑎𝛼𝛼∈∆ = ⋁ (1 − 𝑎𝛼)𝛼∈∆ . 

 
Definition 2.8: An I-vague set A of a non-empty 

set G is a pair (𝑡𝐴, 𝑓𝐴) where 𝑡𝐴: GI and 𝑓𝐴: GI 

with  𝑡𝐴(x)  1 –𝑓𝐴(x) for all x G. 
 
Definition 2.9: The interval [𝑡𝐴(x), 1 –𝑓𝐴(x)] is 

called the I-vague value of x G and denoted by 
VA(x). 

 
Definition 2.10: Let B1 = [a1, b1] and B2 = [a2, b2] 

be I-vague values. We say B1  B2 if and only if a1 

a2      and b1 b2. 
 
Definition 2.11: Let A = (𝑡𝐴, 𝑓𝐴)  and B = (𝑡𝐵, 𝑓𝐵) 

be I-vague sets of a set G. Ais said to be 

contained in B written A B  if and only if  𝑡𝐴(x) 

𝑡𝐵(x) and 𝑓𝐴(x) 𝑓𝐵(x) for all xG. A is said to be 

equal to B written as A = B if and only if A  B 

and B A. 
 
Definition 2.12: Let A = (𝑡𝐴, 𝑓𝐴) and B = (𝑡𝐵, 𝑓𝐵) 

be I-vague sets of a set G. 

i) Their union AB is defined as  

A  B = (𝑡𝐴∪𝐵, 𝑓𝐴∪𝐵) where  𝑡𝐴∪𝐵(x) = 𝑡𝐴(x) 𝑡𝐵(x) 

and  𝑓𝐴∪𝐵(x) = 𝑓𝐴(x) 𝑓𝐵(x) for all xG. 

ii) Their intersection AB is defined as  

AB = (𝑡𝐴∩𝐵, 𝑓𝐴∩𝐵) where 𝑡𝐴∩𝐵(x) = 𝑡𝐴(x) 𝑡𝐵(x) 

and  𝑓𝐴∩𝐵(x) = 𝑓𝐴(x) 𝑓𝐵(x) for all xG. 
 
Definition 2.13: Let B1= [a1, b1] and B2 = [a2, b2] 

be I-vague values. Then  
i)  isup{B1, B2}= [sup{a1, a2}, sup{b1, b2}]. 
ii)  iinf{B1, B2}= [inf{a1, a2}, inf{b1, b2}]. 

 
Lemma 2.14: Let A and B be I-vague sets of a 

set G. Then AB and AB are also I-vague sets 
of G. 

Let xG. From the definition of AB and AB 
we have  

i) VAB(x) = isup {VA(x), VB(x)}; 

 ii) VAB(x) = iinf{VA(x), VB(x)}. 
 
Definition 2.15: Let I be complete and {Ai = 

(𝑡𝐴𝑖
,𝑓𝐴𝑖

): i} be a non empty family of I-vague 

sets of G. Then for each xG. 

i) isup{𝑉𝐴𝑖
(x): i} = [⋁ 𝑡𝐴𝑖𝑖∈∆ (x), ⋁ (1 − 𝑓𝐴𝑖𝑖∈∆ (x))] 

ii) iinf{𝑉𝐴𝑖
(x): i} = [⋀ 𝑡𝐴𝑖𝑖∈∆ (x) ,⋀ (1 − 𝑓𝐴𝑖𝑖∈∆ (x))]   

 
Definition 2.16: Let G be a group. An I-vague 

set A of a group G is called an I-vague group of 
G if  

i) VA(xy) iinf{VA(x), VA(y)} for all x, yG.    

ii) VA(x-1)  VA(x) for all xG.    
 
Lemma 2.17: If A is an I-vague group of a 

group G, then VA(x) = VA(x-1) for all xG. 
 
Lemma 2.18: If A is an I-vague group of a 

group G, then VA(e)  VA(x) for all xG. 
 
Lemma 2.19: A necessary and sufficient 

condition for an I-vague set A of a group G is an 

I-vague group of  G is that VA(xy-1) iinf{VA(x), 

VA(y)} for all x, y  G. 
 
Lemma 2.20: If A and B are I-vague groups of a 

group G, then AB is also an I-vague group of G. 
 
Definition 2.21: Let G be a group. An I-vague 

group A of G is called an I-vague normal group 

of G if for all x, yG, VA(xy) = VA(yx). 
 
Lemma 2.22: Let A be an I-vague group of a 

group G. A is an I-vague normal group of G if 

and only if VA(x) = VA(yxy-1) for all x, y G. 
 
Theorem 2.23: If A and B are I-vague normal 

groups of a group G, then AB  is also an I-
vague normal  group of G. 
 
I-Vague Products 

Throughout this section I is complete. 
 
Definition 3.1: Let A = (𝑡𝐴, 𝑓𝐴) and  B = (𝑡𝐵, 

𝑓𝐵)be I-vague sets of a group G. Then the product 
of A and B, denoted A o B = (𝑡𝐴𝑜𝐵, 𝑓𝐴𝑜𝐵) is defined 

as 𝑡𝐴𝑜𝐵(x) = sup{inf{𝑡𝐴 (y), 𝑡𝐵 (z)}: y, zG, x = yz} 
= ⋁ [𝑡𝐴(𝑦) ∧ 𝑡𝐵𝑥=𝑦𝑧 (𝑧)] and  

𝑓𝐴𝑜𝐵 (x) = inf{sup{𝑓𝐴(y), 𝑓𝐵(z)}: y,zG, x = yz} = 

⋀ [𝑓𝐴(𝑦) ∨ 𝑓𝐵 (𝑧)]𝑥=𝑦𝑧 . 

Since x = xe = ex for all xG, 𝑡𝐴𝑜𝐵and 𝑓𝐴𝑜𝐵are 

defined for all xG. 
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Lemma 3.2: If A and B are I-vague sets of a 
group G, then A o B is also an I-vague set of G. 

Proof: Let A = (𝑡𝐴, 𝑓𝐴) and B = (𝑡𝐵, 𝑓𝐵)be I-vague 

sets of G. Let xG. Then 𝑡𝐴(x)  1 – 𝑓𝐴(x)and  𝑡𝐵(x) 

 1 – 𝑓𝐵(x). 
𝑡𝐴𝑜𝐵(x) =  ⋁ [𝑡𝐴(𝑦) ∧ 𝑡𝐵𝑥=𝑦𝑧 (𝑧)] 

⋁ [(1 − 𝑓𝐴(𝑦)) ∧ (1𝑥=𝑦𝑧 − 𝑓𝐵(𝑧))] 

            = ⋁ [1𝑥=𝑦𝑧 − (𝑓𝐴(𝑦) ∨ 𝑓𝐵(𝑧)] 

by lemma 2.6 (iii) 
= 1 − ⋀ (𝑓𝐴(𝑦) ∨ 𝑓𝐵𝑥=𝑦𝑧 (z))     

          = 1 −𝑓𝐴𝑜𝐵(x). 

Thus 𝑡𝐴𝑜𝐵(x) 1 −𝑓𝐴𝑜𝐵 (x) for all xG. 
Hence the lemma follows. 

 
Lemma 3.3: If A and B are I-vague sets of a 

group G, then 

VA o B(x) = isup{iinf {VA(y), VB(z)}: y, zG, x =  

yz} for each xG. 
Proof: Let A = (𝑡𝐴, 𝑓𝐴) and B = (𝑡𝐵, 𝑓𝐵)be I-vague 

sets of a group G. 

Let xG. Then 
𝑡𝐴𝑜𝐵(x)=⋁ [𝑡𝐴(𝑦) ∧ 𝑡𝐵𝑥=𝑦𝑧 (𝑧)] and 

𝑓𝐴𝑜𝐵(x)= ⋀ [𝑓𝐴(𝑦) ∨ 𝑓𝐵(𝑧)]𝑥=𝑦𝑧  where y, zG. 

VA o B(x) =[𝑡𝐴𝑜𝐵(x), 1 −𝑓𝐴𝑜𝐵(x)]  
=[⋁ (𝑡𝐴(𝑦) ∧ 𝑡𝐵𝑥=𝑦𝑧 (𝑧)), 

1− ⋀ (𝑓𝐴(𝑦) ∨ 𝑓𝐵(𝑧))]𝑥=𝑦𝑧  

=[⋁ (𝑥=𝑦𝑧 𝑡𝐴(𝑦) ∧ 𝑡𝐵(𝑧)),  

⋁ (1 – 𝑓𝐴(𝑦)) ∧ (1

𝑥=𝑦𝑧

− 𝑓𝐵(𝑧))] 

=⋁ [ 𝑡𝐴(𝑦) ∧ 𝑡𝐵 (𝑧), (1 − 𝑓𝐴 (𝑦)) ∧   (1 −  𝑓𝐵𝑥=𝑦𝑧 (𝑧))] 

= isup{iinf {VA(y), VB(z)}: y, zG, x = yz}. 

Thus VA o B(x) = isup{iinf{VA(y), VB(z)}: y, zG, x = 

yz} for each xG. 
 
Example 3.4 : Let I = the positive divisors of 30  

= {1, 2, 3, 5, 6, 10, 15, 30} 
In which 

xy = The least common multiple of x and y. 

xy = The greatest common divisor of x and y. 

x′ = 
30

𝑥
.  

Then I = (I, ,,′ , 1, 30) is a Boolean algebra. 
Hence it is an involutary DRL-semigroup. 
 
Consider the group G = (Z, +). Then H = (2Z, +) 
and K = (3Z, +) are subgroups of G. Define the I-
vague groups A and B of G as follows: 

VA(x) ={
[15, 30]𝑖𝑓𝑥 ∈ 𝐻 ;

[5,10]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

and 

VB(x) ={
[15, 30] 𝑖𝑓𝑥 ∈ 𝐾; 

[5,10]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Then  

VAoB (x) = [15, 30] for all x∈ G 
 
Corollary 3.5:  If a group G is abelian and A 

and B are I-vague sets of G, then A o B = B o A. 

Proof: Let xG. Then 
VA o B(x)  

= isup{iinf{VA(y), VB(z)}: y, zG, x = yz}  

  = isup{iinf{VB(z), VA(y)}: y, zG, x = zy}  
=VB o A(x). 

Thus VA o B(x)=VB o A(x) for each x G.  
Hence A o B = B o A. 

 
Theorem 3.6: Let A and B be I-vague sets of a 

group G. Then 

i) A A o B if and only if VA(e) V B(e). 

ii) B  A o B if and only if VB(e) VA(e). 
Proof: Let A and B be I-vague sets of G. 

i)  Suppose that AA o B. 

VAoB(e) = isup{iinf{VA(x), VB(x-1)}: xG}  
= iinf{VA(e), VB(e)} 

VB(e)by definition 2.10. 

Hence VAoB(e)V B(e). 

Since A A o B, VA(e)VAoB(e).  

Therefore VA(e) V B(e). 
 

Conversely, suppose that VA(e) V B(e). Now we 

prove that VA(x)VAoB(x)for each xG. 

VA o B(x) = isup{iinf{VA(y), VB(z)}: y, z G, x =  
yz}  

iinf{VA(x), VB(e)} 

iinf{VA(x), VA(e)} 
= VA(x) by lemma 2.18. 

Thus VA(x)VA o B(x)for each x G. 

Therefore AA o B.  
Hence (i) holds true. 

ii)  Suppose that B A o B. 

B  A o B implies VB(e)VAoB(e).  

VAoB(e) = isup{iinf{VA(x), VB(x-1)}: xG}  
            =iinf{VA(e), VB(e)} 

 VA(e) . 

Hence VAoB(e)  V B(e). 

Since VB(e)VAoB(e) and VAoB(e)  VA(e), it follows 

that VB(e) VA(e). 
 

Conversely, suppose that VB(e) VA(e).  

VA o B(x) = isup{iinf {VA(y), VB(z)}: y, zG, x = yz}  

iinf {VA(e), VB(x)} 

iinf {VB(e), VB(x)} 
= VB(x). 

Hence VB(x)VA o B(x)for each xG. 

Therefore B A o B. Thus (ii) holds true. 
Hence the theorem follows. 
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Corollary 3.7:  Let A and B be I-vague sets of a 

group G.  Then A A o B and B  A o B iffVA(e) = 
V B(e). 

Proof: Let A and B be I-vague sets of G. 

Suppose that A A o B and B  A o B. By 

theorem 3.6, A A o B if and only if VA(e) V B(e). 

Moreover, B  A o B if and only if VB(e) VA(e). 

Therefore A A o B and B  A o B iffVA(e) = V 

B(e). 
 
Lemma 3.8: If A is an I-vague group of a group 

G, then A o A = A. 

Proof: Let xG. Since A is an I-vague group of 
a group G, 
VA(x) = VA(yz)  

iinf {VA(y), VA(z)} when ever x = yz for  

y, zG. 

It follows that VA(x) isup{iinf{VA(y), VA(z)}: y, 

zG, x = yz}. 

Hence VA(x) VAoA(x). Thus A A o A. 

VA o A(x) = isup{iinf{VA(y), VA(z)}: y, zG, x = yz}  

iinf{VA(x), VA(e)} 
= VA(x). 

Thus VA o A(x)  VA(x) for each xG. 

Hence A o A A. 
Therefore A o A = A. 
  
 Example 3.9: Let I be the unit interval [0, 1] of 

real numbers. Define a b = min {1, a + b}. With 

the usual ordering (I, , , -) is an involutary 
DRL-semigroup. 
Consider G = (Z, +) and H = (3Z, +). Let A be the 
I-vague group of G defined by 

VA(x) ={
[1

2⁄ , 1]𝑖𝑓𝑥 ∈ 𝐻 ;

[ 0,   3
4⁄ ]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Since A be the I-vague group of G, Ao A = A. 
Hence 

VAoA(x) ={
[1

2⁄ , 1]𝑖𝑓𝑥 ∈ 𝐻 ;

[ 0,   3
4⁄ ]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
Theorem 3.10: Let A be an I-vague set of a 

group G. Then A is an I-vague group of G if 
i) A o A = A; 

ii) VA(x) = VA(x-1) for each xG. 
Proof: Suppose that A is an I-vague group of G. 

By lemma 3.8, A o A = A.  

 Moreover, VA(x)= VA(x-1) for all xG. 
 
Conversely, suppose that A o A = A and VA(x) = 

VA(x-1) for each xG. 

We prove that VA(xy)iinf{VA(x), VA(y)} for all x, 

yG. 

VA(xy) = VA o A(xy) 

    = isup{iinf{VA(a), VA(b)}: a, b G, xy = ab} 

iinf{VA(x), VA(y)}by taking a = x and b = y. 

Hence VA(xy)  iinf{VA(x),VA(y)}for all x, yG. 
Therefore A is an I-vague group of G. 
Hence the theorem follows. 

 
Definition 3.11: Let A be an I-vague group of a 

group G. A is said to be the I-vague group of G 

generated by an I-vague set B  A if A is the 
smallest I-vague group of G containing B. 

 
Theorem 3.12: Let A and B be I-vague groups 

of a group G with VA(e) = VB(e). If A o B is an I-
vague group of G, then the I-vague product A o 

B is the I-vague group of G generated by A  B. 
Proof: Suppose that A o B is an I-vague group 

of G and VA(e) = VB(e). Since VA(e) = VB(e),  it 

follows that A A o B and  B  A o B by corollary 
3.7. Therefore, A o B is an I-vague group of G 
containing both A and B. Let C be an I-vague 

group of G containing A and B. Then, A  C and 

B  C. 

Let xG. Then 

VA o B(x)= isup{iinf{VA(y), VB(z)}: y, zG, x = yz}  

 isup{iinf {VC(y), VC(z)}: y, zG, x = yz}  
 = VC o C(x) 
 = VC(x). 

Thus VA o B(x ) VC(x) for each xG. 

Therefore A o B  C. 
Hence the theorem follows. 
  
 Example 3.13: Let I be the unit interval [0, 1] of 

real numbers. Define a b = min {1, a + b}. With 

the usual ordering (I, , , -) is an involutary 
DRL-semigroup. Consider G = (Z, +) and H = (3Z, 
+). Define the I-vague groups A and B of G as 
follows: 

VA(x) ={
[1

2⁄ , 1]𝑖𝑓𝑥 ∈ 𝐻 ;

[ 0,   1
4⁄ ]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  and 

VB(x) ={
[1

2⁄ , 1]     𝑖𝑓𝑥 ∈ 𝐻 ;

[1
4⁄ , 1

3⁄ ]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 Hence 

VAoB(x) ={
[1

2⁄ , 1]     𝑖𝑓𝑥 ∈ 𝐻 ;

[1
4⁄ , 1

3⁄ ]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

A and B be I-vague groups of the group Z with 
VA(e) = VB(e). Moreover, A o B is an I-vague 
group of G. Hence the I-vague product A o B is 

the I-vague group of G generated by A  B. 
Theorem 3.14: Let A and B be I-vague groups 

of a group G. If A or B is an I-vague normal 
group of G, then A o B = B o A. 
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Proof: Let A and B be I-vague groups of G. 
Suppose that A is an I-vague normal group of G. 

We prove that VA o B(x)= VB o A(x)for each xG. 

Let xG. Then 

VA o B(x) = isup{iinf{VA(y), VB(z)}: y, zG, x =  
yz} 

= isup{iinf{VA(z-1yz), VB(z)}: y, zG, x = yz} 

= isup{iinf{VB(z), VA(z-1yz)}: y, zG, x = yz } 
Set  𝑧′ = z-1yz. Then z𝑧′ = yz. 

VA o B(x) = isup{iinf {VB(z), VA(z-1yz)}: y, zG, x  
= yz} 

 = isup{iinf{VB(z),VA(𝑧′)}:y,z, 𝑧′G,z𝑧′=yz = x} 

 = isup{iinf {VB(z), VA(𝑧′)}: y, z, 𝑧′ G, x = z𝑧′} 
= VB o A(x) by definition 

Thus VA o B(x) = VB o A(x) for each x G. 
Therefore A o B = B o A. 

 
Similarly, suppose that B is an I-vague normal 

group of G. By the above we have B o A= A o B. 
Hence the theorem follows. 

Remark: If G is an abelian group and A and B 
are I-vague groups of G, then A and B are I-
vague normal groups of G.  
Hence A o B = B o A. 

 
Theorem 3.15: If I is infinitely meet distributive, 

then the product of I-vague sets of a group G is     
associative.  

Proof: Let A = (𝑡𝐴, 𝑓𝐴), B = (𝑡𝐵, 𝑓𝐵) and C = (𝑡𝐶, 
𝑓𝐶) be I-vague sets of  G. We prove that                     

V(A o B)oC(x)=VA o (B o C)(x)for each x  G. 

Let x G. Then, 

V(A o B)oC(x) = isup{iinf{VAoB(y), VC(z)}: y, zG, x = 
yz} 

  =isup{iinf{isup{iinf{VA (u), VB(v)}: u, vG, y  

= uv}, VC(z)}: y, zG, x = yz} 
  =isup{iinf{[⋁ ( 𝑡𝐴(𝑢) ∧ 𝑡𝐵(𝑣)𝑦=𝑢𝑣 ) , ⋁ ((1 −𝑦=𝑢𝑣

 𝑓𝐴 (𝑢) ∧ (1 − 𝑓𝐵(v))], [tC(z), 1 - fC(z)], x = yz} 

=[⋁ { ⋁ (𝑡𝐴(𝑢) ∧ 𝑡𝐵(𝑣))𝑦=𝑢𝑣 ∧𝑥=𝑦𝑧

𝑡𝐶(𝑧)},⋁ { ⋁ ((1 − 𝑓𝐴(𝑢)) ∧ (1 − 𝑓𝐵(𝑣))𝑦=𝑢𝑣 ∧𝑥=𝑦𝑧

(1 − 𝑓𝐶(𝑧))}] 

=[⋁ 𝑡𝐴𝑥=𝑢𝑝 (u){⋁ (𝑡𝐵(𝑣) ∧ 𝑡𝐶(𝑧))𝑝=𝑣𝑧 }, ⋁ (1 −𝑥=𝑢𝑝

𝑓𝐴(u)){⋁ ((1 − 𝑓𝐵𝑝=𝑣𝑧 (v)) ∧ 

(1- 𝑓𝐶(z))}] 
= VA o (B o C)(x) 

Hence V(A o B)oC(x)=VA o (B o C)(x)for each x G. 
Therefore (A o B) o C = A o (B o C). 

 
Theorem 3.16: Let I be infinitely meet 

distributive. Let A and B be I-vague groups of a 
group G. Then A o B = B o A if A o B is an I-
vague group of G.  

Proof: Let A and B be I-vague groups of G. 
Suppose that A o B = B o A, 
To show that A o B is an I-vague group of G, we 
check  
i) A o B =(A o B) o(A o B) 

ii) VA o B(x)= V B o A(x-1)for each x G.  
i)  Since A and B be I-vague groups of G,A o A = 
A and B o B = B. 
A o B = (A o A) o (B o B)  
          = A o [A o (B o B)] 
          = A o [(A o B) o B)]  
          = A o [(B o A) o B]  
          = A o [B o (A o B)]  
          = (A o B) o (A o B) 
This completes the proof of (i) 
 

To prove (ii) let x G. Then 

VA o B(x) = isup{iinf{VA(y), VB(z)}: y, zG, x =  
yz}  

= isup{iinf{VA(y),VB(z)}:y-1,z-1G, x-1 = z-1y-1 } 

 = isup{iinf{VB(z),VA(y)}: y-1, z-1G,x-1 = z-1y-1 } 

= isup{iinf{VB(z-1),VA(y-1)}:y-1, z-1G,x-1= z-1y-1 }  
=  V B o A(x-1)by definition. 

Therefore VA o B(x)= V B o A(x-1) for each x G. 
Since A o B = B o A by our assumption,  

VA o B(x-1)= V B o A(x-1) for each x G. 

It follows that VA o B(x)=VA o B(x-1)for each x G. 
By theorem 3.10, A o B is an I-vague group of G. 
 

Conversely, suppose that A o B is an I-vague 
group of G. 

We prove that VA o B(x)=VB o A(x)for each x G.  
VA o B(x) = VA o B(x-1) 

  = isup{iinf{VA(y), VB(z)}: y, zG, x-1= yz} 

  = isup{iinf{VA(y-1), VB(z-1)}: y, zG, x = z-1y-1} 

 = isup{iinf{VB(z-1), VA(y-1)}:y-1, z-1G, x=z-1y-1} 
= VB o A(x) 

Hence VA o B(x)=VB o A(x)for each x G. 
Therefore A o B = B o A. 

 
Corollary 3.17: Let I be infinitely meet 

distributive. Let A and B be I-vague groups of a 
group G.  If either A or B is an I-vague normal 
group of G, then A o B is an I-vague group of G. 

Proof: If either A or B is an I-vague normal 
group of G, then A o B =B o A by theorem 3.14. 
By theorem 3.16, A o B is an I-vague group of G. 

 
Theorem 3.18: Let I be infinitely meet 

distributive. If A and B be I-vague normal groups 
of a group G, then A o B is an I-vague normal 
group of G. 
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Proof: Let A and B be I-vague normal groups of 
G. By corollary 3.17,A o B is an I-vague group of 
G. Now we show that VA o B(x)=VA o B(y-1xy)for all 

x, y G. 

VA o B(x)= isup{iinf{VA(p), VB(q)}: p, qG, x =  
pq} 

 = isup{iinf{VA(y-1py), VB(y-1qy)}: p, q, y G,  
x = pq} 

  = isup{iinf {VA(y-1py), VB(y-1qy)}: p, q, y G,  
y-1xy = y-1py y-1qy} 
= VA o B(y-1xy)  

Thus VA o B(x)=VA o B(y-1xy)for all x, y G. 
Hence A o B is an I-vague normal group of G. 

 
Corollary 3.19: Let NI(G) be the set of all I-

vague normal groups of a group G. If I is 
infinitely meet distributive, then (NI(G), o) is a 
semi lattice. 

Proof: Let A, B and CNI(G). Then A o B 

NI(G) by theorem 3.18. By lemma 3.8, A o A = 
A. By theorem 3.14, A o B= B o A. 
Moreover, A o (B o C) =(A o B) o C by theorem 
3.15. Therefore (NI(G), o) is a semi lattice. 

 
Theorem 3.20: Let I be infinitely meet 

distributive and A, B and C be I-vague groups of 

a group G.  If A C, then   

A o (B  C) = C  (A o B). 
Proof: Let A, B and C be I-vague groups of a 

group G. Suppose that A  C. 

We prove that A o (B  C) =C  (A o B). 
Step 1: First we prove that  

A o ( B  C) C  (A o B). 

Let xG. Then 

VC(Ao B)(x)= iinf{VC(x), VAoB(x)} 

  = iinf{VC(x), isup{iinf{VA(y), VB(z)}: y, zG,  
x=yz}} 

=iinf{VC(yz), isup{iinf{VA(y), VB(z)}}: y, zG,  
x=yz}} 

= isup{iinf{VC(yz), iinf{VA(y), VB(z)}}: y, zG,  
x=yz} 

isup{iinf{iinf{VC(y),VC(z)},iinf{VA(y),  

VB(z)}}: y, zG, x=yz} 
=isup{iinf{iinf{VC(y),VA(y)},inf{VC(z),  

VB(z)}}:y, zG, x=yz} 

 =isup{iinf{VA(y), iinf{VC(z), VB(z)}}: y, zG,  

x=yz} since A  C. 

= isup{iinf{VA(y), VBC(z)}: y, z G, x=yz} 

= VA o (BC)(x) by definition 

Hence VA o (BC)(x)  VC(Ao B)(x) for all xG. 

Therefore A o ( B C) C  (A o B). 
Step 2. Now we prove that  

C  (A o B)A o ( B C) 

Let xG. Then 

VA o (BC)(x) = isup{iinf{VA(y), VBC(z)}: y, zG,  
x=yz} 

=isup{iinf{VA(y), iinf{VB(z), VC(z)}}: y, zG,  
x=yz } 

 =isup{iinf{VA(y),iinf{VB(z),VC(y-1x)}}: y-1, zG,  
z = y-1x} 

isup{iinf{VA(y), iinf{VB(z), iinf{VC(y-1), VC(x)}}}: y 

-1, zG, z= y -1x} 
 =isup{iinf{iinf{VA(y),VC(y-1)}, iinf{VB(z),VC(x)}}: y, 

zG, x= yz} 
  =isup{iinf{iinf{VA(y)},VC(y)},  

iinf{VB(z),VC(x)}}: y, zG, x= yz}  

    = isup{iinf{VA(y), iinf{VB(z),VC(x)}}: y, zG,  

x= yz} since A  C 

     =isup{iinf{VC(x), iinf{VA(y),VB(z)}}: y,zG,  
x= yz} 

      =iinf{VC(x), isup{iinf{VA(y),VB(z)}: y, zG,  
x= yz}} 
       = iinf{VC(x), VAoB(x)} 

=VC(Ao B)(x) 

Thus VC(Ao B)(x)  VA o (BC)(x) for eachxG. 

Hence C  (A o B)A o ( B C). 
From step (1) and step (2), we have 

A o (B  C)= C  (A o B). 
Hence the theorem follows. 

 
Notation: Let NIe(G) denotes the set of all I-

vague normal groups of a group G whose I-
vague values at e are equal. Then we have the 
following corollary. 

 
Corollary 3.21: If I is infinitely meet 

distributive, then (NIe(G), ) is a modular lattice. 

Proof: We prove that (NIe(G), ) is a modular 
lattice. 

Let A, B, CNIe(G).  

First we show that AB, A o BNIe(G).   

AB is an I-vague normal group of G by theorem 
2.23. Moreover, A o B is an I-vague normal group 
of G by theorem 3.18. 

Since A, BNIe(G), VA(e) = VB(e).  

 VA B(e) = iinf{VA(e),VB(e)}= VA(e) = VB(e). Hence 

AB  NIe(G). 

 VA o B(e) = isup{iinf{VA(x),VB(x-1): xG} 
                = iinf{VA(e),VB(e)} 
                =  VA(e) 

Hence A o B  NIe(G). 
 

Consider (NIe(G), ). It is a lattice where  

A B = A o B by theorem 3.12 and  

A  B = A  B. 
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A  C implies A o( B  C)= C  (A o B) by 
theorem 3.20. 

Hence (NIe(G), ) is a modular lattice. 
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