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ABSTRACT: Nowadays, electronic, magnetic and optical properties of (III, Mn)V diluted magnetic 

semiconductor (DMS) is a frontline research topic. This emerging research area, inspired us to give a 
great attention on the study of optical properties of these DMSs. The work can be affirmed by calculating 
optical conductivity of the aforementioned DMSs, particularly for the prototype, and for its base 
semiconductor. Hence the focus area of the study is to determine optical, magnetic and electronic 
properties using quantum concepts and quantum mechanical models such as linear response theory of 
Kubo formalism, Kohn-Luttinger Hamiltonian (theory), and Green function. In addition to these 
models, analytical calculations could be treated using perturbation theory of approximation, Fermi 
golden rules and Kramers-Kronig relations. Having all these models and analytical techniques, optical 
conductivity will be related as the product of the incorporated magnetic ion concentration and that of 
the reciprocal of the square root of photon energy in the infrared spectrum. All in all the results 
obtained fairly fits with others theoretical and experimental reports. Therefore, the findings indicated 
that there is a promising advancement of optoelectronic device functionalities, laser or spectroscopic 
experiments to provide background information about the optical linear response functions, high 
efficiency solar cells and thin film fabrications, magneto-optic materials determinations. 
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INTRODUCTION 

 

In the fundamental concept of spintronics study 
(Lino Miguel da C. P, 2011) data is stored in metal-
based magnetic devices, while data processing is 
carried out in semiconductor-based electronic 
devices. Integrating the existence of charge and 
spin functionalities in one system would 
necessarily increase the speed, energy efficiency 
and packing densities of electronic devices. 
 For instance gallium nitride (GaN) are not 
magnetic but semiconductor. However, 
ferromagnetic materials used in digital storage 
devices, such as iron (Fe), cobalt (Co), nickel (Ni) 
and their alloys are not semiconductors. In 
addition, the crystal and electronic structures of 
magnetic materials are usually quite different from 
that of the semiconductors used in ordinary 
electronics, making it difficult to combine the two 
in functional hetero structures. Also, the 
conductivity mismatch between metals and 
semiconductors limits the efficiency of spin-
injection. The alternative is then to use materials 

which combine ferromagnetic and semiconducting 
behavior.  
 
Crystal structure in diluted magnetic 
semiconductors 

The primitive unit cell is the smallest volume 
which can be periodically translated to reproduce 
the whole crystal structure (Razeghi M., 2002). There 
are two common crystal structures among 
semiconductors with the more common one being 
zinc-blende (ZB) and the other one is wurtzite. For 
cubic crystal structure, such as ZB, there is only 
one distance to be defined: the distance between 
nearest-neighbor of similar crystal sites, i.e., 
compounds such as 𝐺𝑎𝐴𝑠 have the zinc-blende 
structure. The arrangement of the atoms is the 
same as in diamond but the two species alternate: 
𝐺𝑎 occupies the original sites of the face centered 
cubic lattice, while 𝐴𝑠 occupies the tetrahedral 
sites, to give a unit cell that contains four atoms of 
each species. 
As already mentioned, isomorphic crystals 
of(𝐺𝑎,𝑀𝑛)𝐴𝑠 are fabricated by randomly 
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substituting a small amount of, typically 2% to 6%, 
for cation sites of the semiconductor host lattice. 
Hence, they have a ZB structure similar to that 
of 𝐺𝑎𝐴𝑠.  

Nowadays, optical properties of diluted 
magnetic semiconductors are among the best 
studied phenomena in solid state physics, mainly 
because of their technological advancement 
(Dressel M. and Griner G., 2002). Recently, new 
findings are emerging in the area. Hence advances 
made to date in photonic devices that have 
enabled optical communications could not have 
been achieved without rigorously conducting 
research in the optical properties of materials and 
how these properties influence the overall device 
performance. Consequently, research on optical 
properties of materials draws in not only 
physicists, who used to be the usual traditional 
researchers in this field, but also scientists and 
engineers from widely different disciplines (Singh 

J., 2006) 
Optical techniques have established 

themselves as providing key insight into the band 
structure of materials. In fact, the electronic 
structure of many semiconductors has been 
determined by comparing theoretical calculations 
to optical results (Yu P. and Cardona M., 2010). 
Furthermore, optical techniques cover a broad 
range of energy scales in magnetic 
semiconductors. Thus, optical studies have 
provided a unique view into the underlying 
physics governing various correlated electron 
materials. 

To better understand the effects of magnetism 
on the band structure of (𝐼𝐼𝐼 − 𝑉) semiconductors 
(and vice versa) extensive optical studies have 
been applied to (𝐼𝐼𝐼, 𝑇𝑀)𝑉ferromagnetic DMSs. As 
detailed throughout in many recent studies, 
magneto-optical experiments have demonstrated 
the ferromagnetism originates from a single 
(𝐼𝐼𝐼, 𝑇𝑀)𝑉phase and not from inclusions, such as 
in a matrix. Furthermore, magneto-optical 
measurements have provided a determination of 
the strength of the hybridization between the local 
moments and holes that mediate the magnetic 
state (Dietl T., 1994) As far as the evolution of the 
electronic structure with Mn doping is concerned, 
optical spectroscopy has uncovered a number of 
fundamental distinctions with the properties 
triggered by non-magnetic impurities of diluted 
magnetic semiconductors in the III-V series. 
 
 

Theoretical models 

In order to solve optical properties of the system, 
we need to formulate the Hamiltonian. However, 
it is essentially difficult to treat the Hamiltonian of 
the systems accurately for small 𝑀𝑛 concentrations 
(Moca etal, 2009). We therefore used the model 
amiltonian to describe the valence band system in 
a (𝐼𝐼𝐼,𝑀𝑛)𝑉 ferromagnet which adds the kinetic 
exchange field interactions to the six-band 𝑘. 𝑝 
Hamiltonian of the host III-V semiconductor. In 
order to manage the complexity of calculations, in 
this scheme, we ignored the effect of disorder. In 
the mean-field virtual crystal approximation, the 
interactions are replaced by their spatial averages, 
so that the Coulomb interaction vanishes and holes 
interact with a homogeneous exchange field. The 
unperturbed Hamiltonian for the valence band 
holes reads: 
 

𝐻 = 𝐻𝐾𝐿 + ℎ⃗ 𝑠,       (1) 
 
Where 𝐻𝐾𝐿  is the Kohn-Luttinger Hamiltonian of 
pure 𝐺𝑎𝐴𝑠,  s is the envelope function hole spin 

operator, and  ℎ⃗   is the effective exchange field that 
splits the valence bands and estimated as: 
 

ℎ⃗ = 𝑁𝑀𝑛𝑆𝐽𝑝𝑑�̂�.       (2) 

 

Here 𝑁𝑚𝑛 = 4 𝑥𝑚𝑛 𝑎𝑙𝑐
3⁄  is the substitutional 𝑀𝑛 

density in the𝐺𝑎1−𝑥𝑀𝑛𝑥𝐴𝑠epilayer with a lattice 
constant 𝑎𝑙𝑐 ≈ 0.565 𝑛𝑚 and 𝑥𝑚𝑛 = 3%, 4%, 5% is 
the 𝑀𝑛-concentration range fixed for this 
theoretical work, the spin 𝑆 = 5 2⁄ is the 𝑀𝑛 local 
moments with a semi-phenomenological local 
exchange interaction treated at a mean-field level, 
the strength of the exchange coupling constant is 
𝐽𝑝𝑑 = 55 𝑚𝑒𝑉𝑛𝑚−3 and�̂�indicates the angular 

momentum quantization direction chosen to be 
along the z-axis at zero temperature limit 
(Hankiewicz etal, 2004; Jungwirth et al, 2005). 

The host band part of the Hamiltonian is 
described via the four- or six-band Kohn-Luttinger 
model. The 𝑘 = 0states at the top valence band 
have p-like character and can be represented by 
the𝑙 = 1 orbital angular momentum eigen states 
|𝑚𝑙 >. For systems with spin-orbit coupling, the 
KL Hamiltonian, 𝐻𝐾𝐿 , by using the basis formed by 
angular momentum eigen states |𝑗, 𝑚𝑗 > can be 

written in the combination form. 
The split-off energy for the semiconductor 

𝐺𝑎𝐴𝑠is of the order of few hundred meV. On the 

other hand, the Fermi energy is of the order of few 
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meV for typical hole density. Thus, one can safely 

ignore the split-off band when the Fermi energy is 

sufficiently smaller than the split-off energy and 

hence the calculation can be approximated to 

describe the two upper most valence bands 

(known as heavy hole and light hole bands). The 

four-band KL Hamiltonian can be diagonalized 

analytically and yields a pair of Kramer's doublets 

with eigen-energies (Chow W. W. and Koch S. W., 

1999) 

 
Optical conductivity of the III-V diluted magnetic 
semiconductors  

In direct interband transitions, the optical 
conductivity, 𝜎(𝜔), is obtained from the Kubo 
formalism. Hence, we can evaluate the real part of 
the frequency dependent optical conductivity from 
the formula expression which relates it to the 
quasi-particle eigenvectors and eigen values as: 

 

𝑅𝑒[𝜎𝑥𝑦(𝜔)] =        −
𝑒2ℎ

𝑚2 ∫
𝑑𝑘

(2𝜋)3
∑ (𝑓𝑙′ −𝑙≠𝑙′

                                               𝑓𝑙) 
𝐼𝑚[<𝑙′|𝑝𝛼|𝑙><𝑙|𝑝𝛽|𝑙′>]

(ℏ𝜔−𝐸𝑙+𝐸
𝑙′
)(𝐸𝑙−𝐸

𝑙′
)

, (3) 

 
where 𝛼, 𝛽 = 𝑥, 𝑦; m is the bare electron mass; �̂�𝛼, 
�̂�𝛽 are components of the momentum operator; 

�̂� 𝑚⁄   is the 𝑘. 𝑝 velocity operator obtained by 
differentiating the 𝑘. 𝑝 Hamiltonian with respect to 
the wave vector; 𝑓𝑙 and 𝑓𝑙′  are the Fermi 

distribution functions and the appearance of 
(𝑓𝑙′ − 𝑓𝑙) follows from the Pauli exclusion 

principle, an interband transition occurs from an 
occupied state below the Fermi level to an 
unoccupied state above the Fermi level (i.e., 𝑙 =

1 𝑡𝑜 𝑙′ = 0 𝑎𝑡 𝑇 = 0𝐾); |𝑙 > 𝑎𝑛𝑑 |𝑙′ > are the eigen 
vectors (or crystal wave functions), corresponding 
to the Kohn-Luttingereigen values 𝐸𝑙  and 𝐸𝑙′ . 

Therefore, the dipole matrix elements in Eq. (3) can 
be written as: 
 

< 𝑙′|�̂�𝛼|𝑙 >=
𝑚

ℏ
< 𝑧𝑙′|

𝜕𝐻

𝜕𝑘𝛼
|𝑧𝑙 >=

𝑚

ℏ
(𝐸𝑙 − 𝐸𝑙′) <

𝜕𝑙′

𝜕𝑘𝛼
|𝑙 >. (4) 

 
To compute the ac-conductivity, we rewrite Eq. (3) 
in terms of the spectral function: 
 

𝜎𝑥𝑦(𝜔) = ∫ 𝑑𝜔′∞

−∞

𝐴𝑥𝑦(𝜔)

𝜔−𝜔′ , 

with 

𝐴𝑥𝑦(𝜔) = −
𝑒2ℏ

𝑚2𝑉
∑ (𝑓𝑙′ − 𝑓𝑙)

𝐼𝑚[<𝑙′|�̂�𝛼|𝑙><𝑙|�̂�𝛽|𝑙′>]

(𝐸𝑙−𝐸𝑙′)
𝑙≠𝑙′ 𝛿[ℏ𝜔 −

(𝐸𝑙 − 𝐸𝑙′)],        (5) 

Where 𝐴𝑥𝑦(𝜔) is given by different expressions in 

three different energy intervals. In the 
intermediate energy range transitions at all wave 
vectors within the Fermi surface are allowed, 
whereas in the lower and upper energy intervals 
only transitions at a fraction of the wave vectors 
within the Fermi surface contribute to 
𝐴𝑥𝑦(𝜔).Hence, considering the upper and lower 

limits of the heavy-hole and light-hole bands and 
their respective differences, we can obtain the 
three energy intervals that contribute to 𝐴𝑥𝑦(𝜔) 

and the fraction of the Fermi volume that 
contributes to it. But for the sake of simplicity we 
have taken one easily understandable case for the 
energy intervals. However, for clarity and more 
completed discussion in case of other intervals, see 
reference (Sinova etal, 2003) 
 The spectral function 𝐴𝑥𝑦(𝜔) is an odd 

function of𝜔, and hence we need only spectrum. In 
line with this, let us consider the transition ℎℎ+ →

𝑙ℎ+, among the four types of transitions that 
contribute to 𝐴𝑥𝑦(𝜔), separately. Therefore, we 

use: 
 

𝑚ℎℎ =
𝑚0

(𝛾1−2𝛾2)
, 𝑚𝑙ℎ =

𝑚0

(𝛾1+2𝛾2)
 ,𝜇 =

𝑚ℎℎ𝑚𝑙ℎ

𝑚ℎℎ+𝑚𝑙ℎ
(𝐸𝑙 − 𝐸𝑙′), 

and    
ℏ𝑘𝑙ℎ

2

2𝜇
= 𝜔 − �̂�, 

 
Where 𝑘𝑙ℎis the light-hole band Fermi wave vector 
of Fermi energy (𝐸𝐹  ) in zero exchange field. For 
ℎℎ+ → 𝑙ℎ±  transitions, we have 
 
𝐴𝑥𝑦(𝑤; ℎℎ+ →

𝑙ℎ±)=−
ℎ𝑒2

(2𝜋)2𝑚2 ∫ 𝑑(𝑐𝑜𝑠𝜃
1

−1
)

𝜇𝑘

ℏ2

𝐼𝑚[<𝑘,ℎℎ+|𝑝𝛼|𝑘,𝑙ℎ±><𝑘,𝑙ℎ±|𝑝𝛽|𝑘,ℎℎ+>]

𝐸ℎ𝑙
±  −𝐸ℎℎ

+ |𝑞 ,                   (6) 

 
where the subscript 𝑞 in the Eq. (6) is  
 

𝑞 = 𝑘 = √
2𝜇𝑘

ℏ
(1 ∓

ℎ𝑐𝑜𝑠𝜃

12ℏ𝜔 𝑐𝑜𝑠2𝜃′+
ℎ

4ℏ

⃗⃗  ⃗
 𝑐𝑜𝑠𝜃).                  (7) 

For the ℎℎ− 𝑡𝑜 𝑙ℎ± transition we obtain the same 
result, therefore with in this range we have the 
special function: 
 

𝐴𝑥𝑦(𝜔)=(
5𝑒2√2𝜇

48𝜋2ℏ2) (
4[𝑥𝑚𝑛]𝑆𝐽𝑝𝑑

𝑎𝑙𝑐
3 �̂�) (ℏ𝜔)−1 2⁄ ≈

𝐾. [𝑥𝑚𝑛] (
1

√ℏ𝜔
),                                                            (8) 

 

Where 𝐾 = (
5𝑒2√2𝜇

48𝜋2ℏ2) (
4𝑆𝐽𝑝𝑑

𝑎𝑙𝑐
3 ) �̂� is constant. 
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Optical conductivity of the bulk 𝐺𝑎𝐴𝑠 

 The transition probability from an initial 

state|𝑙 >  to a final state|𝑙′ > of higher energy can 
be written: 
 

𝑝𝑙→𝑙′(𝑡) =
|<𝑙′|𝐻𝑝|𝑙>|2𝑠𝑖𝑛2(1 2⁄ )(𝜔

𝑙𝑙′
−𝜔)𝑡

ℏ2(𝜔
𝑙𝑙′

−𝜔)2
.                       (9) 

  
 We note from this equation that the transition 
probability between two states depends 
sinusoidally on the time. This probability is 
proportional to the square of the matrix element of 
the perturbation. Replacing𝐻𝑝 by its expression we 

obtain the following expression for the absorption 
transition probability, which we shall use below: 
 

𝑝𝑙→𝑙′(𝑡) =
4|<𝑙′|𝑐+|𝑙>|2𝑠𝑖𝑛2(1 2⁄ )(𝜔

𝑙𝑙′
−𝜔)𝑡

ℏ2(𝜔
𝑙𝑙′

−𝜔)2
.                    (10) 

  
 Now we shall consider the Fermi's golden rule: 
since the transition probability is proportional to 
the time the perturbation acts, it is therefore useful 
to deal with a quantity called the transition 
probability per unit time. 
 The probability, for a given initial state|𝑙 >, of 
finding an electron in one or another of a set of 
final states of energy close to𝐸𝑙′ . If𝑛(𝐸𝑙′) is the 

density of these states the total probability of 
finding the electron in any one of these states is: 
 

𝑝(𝑡) =
4

ℏ
∫

|<𝑙′|𝑐+|𝑙>|2 𝑛(𝐸
𝑙′
) 𝑠𝑖𝑛2(1 2⁄ )(𝜔

𝑙𝑙′
−𝜔)𝑡

(𝜔
𝑙𝑙′

−𝜔)2
𝑑𝜔𝑙𝑙′ . (11) 

 
In this integral, the only non-negligible 
contribution comes from the region where 𝜔 is 
very close to 𝜔𝑙𝑙′because of the denominator 

(𝜔𝑙𝑙′ − 𝜔)2.We see that only a narrow frequency 

bandwidth of order 1 𝑡⁄ contributes to the integral. 
We can therefore extend the limits of the integral 

to±∞and use the fact that both 𝑛(𝐸𝑙′) = 𝑛(𝐸𝑙′ +

ℏ𝜔𝑙𝑙′  ) and the matrix element are approximately 

constant over the interval ℏ 𝑡⁄ to write: 
 

𝑝(𝑡) =
4

ℏ
|< 𝑙′|𝑐+|𝑙 > |2 𝑛(𝐸𝑙′) ∫

𝑠𝑖𝑛2[(1 2⁄ )(𝜔
𝑙𝑙′

−𝜔)𝑡]

(𝜔𝑙𝑙′−𝜔)2
∞

−∞
𝑑𝜔𝑙𝑙′,   

                                                                                            (12) 
or setting 

𝑥 =
1

2
(𝜔𝑙𝑙′ − 𝜔)𝑡, 

𝑝(𝑡) =
4

ℏ
|< 𝑙′|𝑐+|𝑙 > |2 𝑛(𝐸𝑙′)2𝜋𝑡,                        (13) 

 
where we have used the fact that: 
 

∫ (𝑠𝑖𝑛2 𝑥 𝑥2⁄ )𝑑𝑥 = 𝜋.
∞

−∞
                                            (14) 

 
 The total probability of transition from a 
given initial state to one or another of a set of final 
states which are very close to each other is 
proportional to the time. We may therefore define 
a transition probability per unit time W: 
 

𝑊 =
𝑝(𝑡)

𝑡
=

2𝜋

ℏ
|< 𝑙′|𝑐+|𝑙 >|2𝑛(𝐸𝑙′).                        (15) 

 
Which is often called Fermi's golden rule. 
 The fact that the only significant 
contributions to the integral Eq.(11) come from 

energies such that𝜔𝑖𝑓 ≅
𝑡2

4
is an expression of 

conservation of energy for states which were 
eigenstates of the unperturbed system. This 
conservation is exact in the limit of weak 
perturbations and long-time scales. In this limit, 
we can write Eq. (15) as: 
 

𝑊 =
2𝜋

ℏ
|< 𝑙′|𝑐+|𝑙 >|2𝛿(𝐸𝑙′ − 𝐸𝑙 − ℏ𝜔).                 (16) 

 
After some substitution of common expressions, 
we obtain: 
 

𝑊𝑇 =
𝑒2𝐴2𝑆𝑑𝑥

ℏ4𝑚24𝜋
(2𝑚Γ)

3 2⁄ 𝑝2(ℏ𝜔 − 𝐸𝑔)
1 2⁄ .                  (17) 

 

The average incident photon flux is 
�̅�

ℏ
per unit area 

and by definition the fraction of incident photons 
absorbed over a depth𝑑𝑥 is: 
 

𝑤𝑇 = 𝛼
�̅�

ℏ𝜔
𝑆𝑑𝑥.                                                          (18) 

 
Therefore, expression for absorption coefficient (𝛼) 
would be: 
 

𝛼(𝜔) =
(2𝑚Γ)

3 2⁄ 𝑒2𝑝2

2𝜋𝜖0𝑐𝑛 𝑚2ℏ3𝜔
(ℏ𝜔 − 𝐸𝑔)1 2⁄ ,                      (19) 

 

Where �̅� =
1

2
𝜖0𝜔

2𝐴2𝑐𝑛 and 
1

𝑚Γ
=

1

𝑚𝑒
+

1

𝑚ℎ
. 

Substituting all the constants in the Eq. (19), we 
get: 
Now, let us define the relationship between 
absorption coefficient and optical conductivity: 
 

𝛼(𝜔) =
8𝜋𝑅𝑒[𝜎(𝜔)]

𝑐(1+𝑛)
.                                                     (20) 
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Equation (20) provides that: 
 

𝑅𝑒[𝜎(𝜔)] =
𝑐(1+𝑛)×104

2𝜋
(ℏ𝜔 − 𝐸𝑔)

1 2⁄
.                      (21) 

 
 

RESULTS AND DISCUSSION 
 

In this paper we dealt with optical absorption 
coefficient (𝛼(𝜔)) and then conductivity (𝜎(𝜔)) 
of𝐺𝑎𝐴𝑠. In vicinity of these and other 
approximation techniques, we analytically 
obtained that 𝛼(𝜔) can be estemeated as the 
product of some constant and square root of 
(ℏ𝜔 − 𝐸𝑔) as given in Eq. (19). By using this result 

as an input we found that the real part of the 
frequency dependent optical conductivity is also 
approximated using Eq. (21) in the infrared region. 
These dependence of conductivity on photon 
energy (ℏ𝜔) with in the given limit is depicted in 
Fig. 1. Therefore, as the frequency of the 
electromagnetic radiation (photon energy) 
increases, strong interactions can occur and modify 
the optical conductivity substantially. From the 
same figure (or Fig. 1) one can also read that at 
lower photon energy less than 1.43 eV (i.e., 
ℏ𝜔 < 𝐸𝑔), no any effect on optical conductivity or 

absorption is observed. Therefore, the result agrees 
with the previous studies (Nag B.R. , 2002). 
 

 
  
Figure 1. A schematic of the optical conductivity versus 

photon energy of 𝑮𝒂𝑨𝒔 in the infrared spectral 
region. 

 
Spectral function of  𝐺𝑎𝑀𝑛𝐴𝑠 with respect to the 

infrared photon energy 

 In this work, we ideally handled an intrinsic 
optically active base (or host); intentionally doped 

with a few amount of magnetic impurity; allowed 
this doped semiconductors to respond towards the 
externally applied electromagnetic radiation in the 
infrared limit; and treated the nature of the 
response with the help of quantum mechanically 
sophisticated models listed. In running these 
calculations, we followed a long chain of physical 
and analytical steps as we have discussed before. 
When we express these comprehensive ideas into 
more technical and text wised terms again, because 
of the technological importance and practical 
applications, we focused on electronic nature 
rather than lattice vibrational (absorption and 
creation of phonons) techniques of study. Fairly to 
execute these tasks, conduction band for a few 
cases, and valence band (for almost 90% of the 
work) were mainly chosen to see the contributions 
of degenerate ℎℎ, 𝑙ℎ and split-off energy to the 
spectral function. For this matter, initially we 
started from concepts of electrodynamics (Ohm's 
law) and then passed over into fully quantum 
mechanical approaches. This method was 
straightforwardly directed to the problems at hand 
with the help of linear response Kubo formalism. 
Then 6-band Kohn Luttinger Hamiltonian (theory) 
was used and also 4-band spherical model was 
dominantly applied in the diagonalization of the 
matrix and eigen values or states determination. 
Finally, Kramers-Kronig relations were applied 
and spectral function was calculated. 
 On the other hand, by relating Kramers-

Kronig relations and discussions given in the 

above sections, we can see that spectral function 

(an imaginary part of the optical response function 

or conductivity) conveys important information 

about the triggered response in terms of the 

electron excitation.  

 Therefore, these organized way of calculation 

nourished us with lastly simplified equation 

(𝐴𝑥𝑦(𝜔) ≈ 𝐾. [𝑥𝑚𝑛][
1

√(ℏ𝜔)
]), where 𝐾 stands for 

some multiple of constants resulted from Eq. (8). 

This dependency of optical conductivity on the 

frequency of photon energy is shown in Fig. 2. 

Thus, one can easily observe that the imaginary 

part of the optical conductivity exponentially 

decreases with increasing the infrared photon 

energy.  
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Figure 2.The spectral function versus photon energy of 

𝑮𝒂𝑴𝒏𝑨𝒔 at three different impurity (𝑴𝒏) 
concentrations. 

 

Effect of impurity (magnetic ion) concentration on 
optical conductivity 

 In this study, based on the explanation given 

on sections above, we used three different 

manganese ion (𝑀𝑛+2) concentrations that are 3%, 

4% and 5% as depicted in Fig. 3. Accordingly, one 

can easily see that optical conductivity increases as 

concentration increases within the given limit. The 

physics behind this may be due to the fact that 

dopants provide the substrate with both a local 

moment and a hole. In other words, by keeping 

other factors constant, increasing concentration to 

the material agitates electron excitation and hole 

creation via the valence and conduction bands. 

This in turn, derives the relative elevation of the 

response function. 

 

 
 
Figure 3.The effect of 𝑴𝒏 − ions concentration on optical 

conductivity of 𝑮𝒂𝑴𝒏𝑨𝒔 and 𝑬𝒑𝒉 stands for infrared 

photon energy. 

Comparison of our results with other experimental 
or theoretical works 

 We obtained that for bulk 𝐺𝑎𝐴𝑠 within a 
small fraction of an electron-volt at energy nearly 
equal to the energy gap (𝐸𝑔) of the material. The 

increased absorption or conductivity is caused by 
transitions of electrons from the valence band to 
the conduction band and this concept is available 
in any fundamental semiconductor books.  
 Other important result of this work is: optical 
conductivity of our system exponentially decreases 
with increasing photon energy in the infrared 
region and optical conductivity of diluted 
magnetic semiconductor that we considered is 
directly related to the concentration the dopant 
magnetic ion. In general, previous studies (both 
experimentally and theoretically) using one band 
V-J model have been pointed out similar results 
with this study (Charles P. Poole Jr., 2004 ; Oudovenko 
etal, 2004 ; Eric Yang, etal, 2003 ; . Hartmut H. and 

Stephan W. K.,  2004). 
 
 

CONCLUSIONS 
 

The desire to integrate storage capabilities and 
information processing in single semiconductor 
based devices has fueled the development of 
ferromagnetic semiconductors based on (𝐼𝐼𝐼,𝑀𝑛)𝑉 
materials. The motivation behind the choice of this 
specific group of semiconductors is very clear: 
these semiconductors have enough potential for 
new device applications enriched with 
optoelectronic behavior. This is due to the fact that 
their magnetic, optical, and electronic effects are all 
interconnected so that they are likely to have a 
major technological impact if systems with Curie 
temperatures or above room temperature can be 
created and better control of disorder effects can be 
achieved. 
 We know that scientific study have its own 
sequence and nature, without losing these, we 
have also proposed to use quantum mechanically 
sophisticated approaches like linear response 
theory of Kubo formalism, Kohn-Luttinger 
Hamiltonian (𝑘. 𝑝theory), and Green function 
models. These models are not chosen without any 
reason. Instead, those very recent nobilities like 
spintronics and optoelectronics features are 
quantum concepts, and any problems targeted to 
have important contribution towards or against 
these concepts should be treated quantum 
mechanically, otherwise classical models may fail. 



 66           Habte Dulla Berry and Duna Abuye Milkiso 

 Due to these quantum mechanical 
advantages, our problem (i.e., optical conductivity 
of the chosen diluted magnetic semiconductors 
and their base semiconductors) are treated 
systematically. In order to manage some 
challenges and complexities during analytical 
calculations, we used some approximations, rules 
or relations like perturbation theory of 
approximation, Fermi golden rule, and Kramers-
Kronig relations.  
 In conclusion, we obtained somewhat 
interesting relationships in which the magnetic, 
optical, and electronic behaviors of our system 
coexisted. The conductivity of 𝐺𝑎𝑀𝑛𝐴𝑠is the 
product of the incorporated magnetic ion 
concentration and the reciprocal of the square root 
of photon energy in the infrared regime. In 
comparison, this result agrees with the others 
theoretical and experimental findings.  
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