
SINET: Ethiop. J. Sci., 43(2):125–133, 2020                     ISSN: 0379–2897 (PRINT) 
© College of Natural and Computational Sciences, Addis Ababa University, 2020                            eISSN: 2520–7997 
 

_____________________ 

*Author to whom correspondence should be addressed. 

 

 

Magnon specific heat and magnetic susceptibility of Fe/Gasb diluted magnetic semiconductor in the 
presence of applied electric field, magnetic field, and anisotropic energy 

 
Mesefin Birile Woldetsadik, Chernet Amente*, and P Singh 

 
Department of Physics, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia. E-mail: 

chernet.amente@aau.edu.et 
 
 

ABSTRACT: Ferromagnetism has been established in a Fe-doped ferromagnetic semiconductor 

Fe/GaSb with the Curie-Weiss temperature of 340 K for dopant concentration, x = 25%. These 
ferromagnetic semiconductors are very promising candidates for future spintronic devices as they 
show both semiconducting and magnetic properties. Ferromagnetism can be tuned and controlled by 
application of electric and magnetic fields, and by radiation. In the present work, the importance of 
dopant concentration x, effects of electric and magnetic fields, and magnetic anisotropy on the magnon 
specific heat and magnetic susceptibility of Fe/GaSb are studied. Heisenberg localized spin model 
Hamiltonian with account of nearest neighbor interaction and with the electric and magnetic fields 
applied, and magnetic anisotropy energy included is second quantized using Holstien-Primakoff 
transformation to obtain the magnon dispersion from which magnon specific heat and magnetic 
susceptibility are calculated. Our results show that the magnon specific heat decreases with the increase 
of magnetic impurity concentration x, while magnetic susceptibility increases. It is also shown that 
electric and magnetic fields, and magnetic anisotropy can control the magnetic properties of the diluted 
magnetic semiconductors which are of vital importance for spintronics applications. The results 
obtained are in broad agreement with experimental and theoretical predictions. 
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INTRODUCTION 
 

A class of materials known as dilute magnetic 
semiconductors (DMSs) have been a front line 
research topic since early 1960s (Mauger and 
Godart, 1986). The pioneering work on the 
identification of Europium chalcogenides, 
especially EuO (Matthias et al., 1961), as to posses 
integrated magnetic and semiconducting 
properties has motivated the scientific community 
for the investigation of alternatives presuming 
doping a small fraction of transition elements into 
semiconductor crystals circumvent the difficulty of 
controlling magnetic spin concentration (Furdyna, 
1988; Munekata et al., 1989; Ohno et al., 2002; 
Peaton et al., 2003). 
 The underlying principle behind 
ferromagnetism in these materials was the 
interaction (Yosida, 1957; Dietl et al., 2000) between 
the itinerant electrons/holes in the semiconductor 
and the atomic magnetic moments of the dopants 
via an exchange mechanism which resulted in 

spin-polarization of carriers in the semiconductor 
(Furdyna, 1988; Munekata et al., 1989) for the 
ferromagnetic intervention. 

The work by Ohno and Munekata (Munekata et 
al., 1989; Ohno et al., 2002) on Mn doped InAs 
aroused curiosity about the possible significance of 
III-V semiconductors as potential hosts for DMS 
applications. This field has been advancing rapidly 
ever since. However, the search for better materials 
and an understanding of the physical mechanisms 
underlying the magnetism is an ongoing process. 

Control of magnetic phase in DMS is one of the 
most important processes for magnetic recording 
and information storage. The use of electric field-
controlled magnetization reduces power 
consumption for storage devices (Ohno et al., 2000; 
Climente et al., 2005). Electric field control of 
ferromagnetism was so far demonstrated in a field 
effect transistor (FET) structure which have been 
used for non-volatile spin logic devices via carrier-
mediated effect (Boukari et al., 2002; Xiu et al., 
2010). 
 Currently there has been tremendous upthrust 
in research activities on GaSb-based systems (Tu et 
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al., 2015; Tu et al., 2016) especially (Ga,Fe)Sb (Tu et 
al., 2016). This compound has proved to be an 
interesting material for both basic and applied 
research for applications in spintronics (Wolf et al., 
2001; Dietl, 2001), which employ the spin degree of 
freedom of electrons in addition to their charge 
(Zutic et al., 2004). 

Theoretical and experimental analysis show 
that the specific heat of magnons depend on 

temperature with the characteristic 
5/1T  (Kane, 

2007). However, recent researches demonstrated 

that the 
5/1T  dependence is not the only attribute 

as far as the variation may come due to impurity 
concentration (Twardowski et al., 1991; Bouzerar et 
al., 2003; Lashkarev et al., 2009) and other defects, 
such as interstitials, dislocations, voids, etc. The 
other feature is the ferromagnetic susceptibility 
dependence since DMS materials are quite 
temperature sensitive and cease to become 
ferromagnetic above a temperature known as the 
Curie temperature TC, leading merely to 
paramagnetic (Twardowski et al., 1991; Kane, 2007; 
Esmailian et al., 2012) and below which spin-glass 
nature is formed sometimes (Manyala et al., 2008). 
It is also understood that magnetic impurity 
interstitials, elements from the group V anti-sites 
(Sanvito and Hill, 2002) and magneto-crystalline 
anisotropy are some of factors affecting properties 
of magnetic impurity doped (III,V) 
semiconductors. The origin of the anisotropy 
energy is attributed to be the spin-orbit coupling in 
the valence band (Jungwith et al., 2006). 

In this article, the specific heat capacity and 
magnetic susceptibility of Fe/GaSb DMS system is 
theoretically studied using a standard model 
Hamiltonian to explain the response of the 
material to applied electric and magnetic fields, 
and magnetic anisotropy energy. 

 
 

MATERIALS AND METHOD 
 

The model Hamiltonian 

The model Hamiltonian constitutes the Heisenberg 
exchange energy (Hilbert and Nolting, 2005; 

Jungwith et al., 2006)  
ji jiij SSJ

,


for the 

designations of spin-spin interaction of the 
localized spins in Fe+3 distributed over sites i and j 

with exchange energy ijJ ; the Zeemann energy 


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z

iB SBg

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 is applied, where g  is the degeneracy 

factor (or gyromagnetic ratio) and B  the Bohr 

magneton; 
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je SE
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localized moments with the applied electric field 
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iS , due to the interaction of 

localized spins with magnetic anisotropic energy 

(MAE),  , where e  is the electric dipole 

moment. Hence, 
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The atomic spin operators can be converted into 
a more standard many-body interaction problem 
by replacing the spins with boson creation and 

annihilation operators iâ  and 


iâ , respectively, 

using the Holstein-Primakoff (HP) transformation 
(Holstein and Primakoff, 1940), 
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 and ii
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i aaxSS ˆˆ  ; 

where S and x are, respectively, total magnetic spin 

per atom and concentration of magnetic ions at the 
cation sites (Chernet Amente, 2018). 
Restricted to the lowest powers and hence, 

ignoring spin wave scattering, ii axSS ˆ2
; 

  ii axSS ˆ2 , an approximation around the 

state of saturation magnetization, and 

i

z

i nxSS ˆ , where iii aan ˆˆˆ  represents spin 

reversal. 
Using the aforementioned terminologies and 

making rearrangements the system Hamiltonian 
can be written in the form of: 
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Here an average of JJ ij   is considered and   

represents the nearest-neighbor distance. 
Propagations of spin deviations are described 

by the Fourier transformations, 
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where 
ir


 is the vector from an arbitrary origin to 

the ith atom, whose magnitude measures the 

corresponding distance in units of the lattice 
constant (Holstein and Primakoff, 1940). The 

Fourier variables, 
kâ  and 



kâ  also satisfy the 

bosonic relations
',']ˆ,ˆ[ kkkk aa 
, hence, Eq. (1) 

would be simplified to 
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where kkk aan ˆˆˆ   is the number of magnons in 

state k and N is the total number of atoms in the 
system. Note that for one dimensional z number of 

neighbors,  



 zkae ki

z
/)cos(21



, where a is 

the nearest neighbors distance.  

Then, employing the limit to long wavelength 

excitation ( 1ka ) so that 

2/1)cos( 22akka   and considering only the 

nearest neighbors (i.e., z = 2), Eq. (2) can be 
rewritten as 
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For non-interacting magnons, we can write 

0
ˆˆ EHH mag   neglecting the last term involving 

magnon- magnon scattering; where 
 


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Hence, 

     k kkmag nH ˆˆ ,     (5) 

where 

    SEBaJxSk eBk 2222  ,

    (6) 
is the overall magnon dispersion, whose variation 

with the applied fields and anisotropic energy is 

plotted and discussed in our previous work 

(Mesfin Birile et al., 2020). 

 
 
 

 
 
 

RESULTS AND DISCUSSION 
 

The magnon specific heat capacity of the (Ga, 
Fe)Sb DMS 

The expression for specific heat, Cmag of the diluted 
magnetic semiconductor system would be 
obtained from internal energy U of magnons given 
by (constant term E0 does not contribute to 
magnon heat capacity and gives rise to energy gap 
in the magnon spectrum (Mesfin Birile et al., 2020)). 

     
k kknU ˆ ,     (7) 

where  
k kn̂  is the total number of magnons 

excited in all modes at temperature T and 
1)1()(ˆ  kekn


 is the number of spin 

waves with wave vector k in a single mode in 
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which 
1)(  TkB . Hence, substituting Eq.(6) into (7), 
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where 
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2JxSaR  , and 

SDEBF eB 22   . We have also 

introduced B, E, and D for the magnitudes of the 
MF, EF and MAE, respectively. 
For ν > 1 the Bose-Einstein (BE) function is given 
by 
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For small z (z << 1), classical limit T >> 0, we can 
use the expression 
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From Eq. (9) and Eq. (10), we get 
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Using Eq. (11) into Eq. (8) with ν = 3/ 2 and 
Fecz  /1 , results 

 

   



























1

2
3

2/3

)(

2/33
1

2
5

2/5

)(

2/53

0 1

)12/3(

2/330 1

)12/5(

2/53

)2(2)2(2

1)2(21)2(2

n

F

n

F

x

z

x

z

n

eF

n

eR

dx
e

xF
dx

e

xR
U

nn 





.  (12) 
Assuming that the first term (n = 1) is much larger 
than all other terms, Eq. (12) simplifies to 
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 . Following the last 

expression magnon specific heat, Cmag, could be 
obtained from the partial derivative of internal 
energy with respect to temperature, Cmag = ∂U/∂T, 
hence 
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            (14) 
where α, γ and ξ are numerical constants. 

For the purpose of analysis the following 

parameters are used; the structure of (GaFe)Sb is 

considered to be fcc as of the host material with 

lattice parameter a = 6.09593 Ǻ. Scanning tunneling 

electron circular dichroism measurement reveal 

that the structure does not change with doping 

(Tu. et al., 2016].  In Fe3+ the 3d electrons would 

give rise to S = 5/2, μB= 9.2741 x 1024 J/T = 0.0579 

meV/T, μe ≈ 0.08625 C.m, and J ≈ 0:0365 meV. 

The magnon specific heat of the material is 
explained with respect to impurity concentration, 
magnitudes of the MF, EF and MAE, as shown in 
Figs. 1-5. 
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Figure 1. Magnon specific heat vs. temperature for different 

values of x when B = E = D = 0. 

 
Figure 1 shows zero magnon specific heat at 

absolute zero and increase exponentially with 

temperature. The specific heat tends to dwindle as 

the magnetic impurity concentration x increases, B, 

E, and D being set to zero. This could lower the 

heating up and magnetic disordering in the 

material leading to enhanced carrier conductivity 

and long-range parallel orientation of Fe3+ 3d spins. 

In such cases Eq. (13) turns out to retrieve the 

typical characteristic T3/2  law [Kὃnig et.al., 2000]. 
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Figure 2. Magnon specific heat vs. temperature for the same 

values of B, E, and D, separately and all together, 

successively at 20% dopant concentration. 
 

Figure 2 illustrates the difference in the 
exponential increase of the magnon specific heat 
with only B, when E and D are set to zero; with 
only E, when B and D are set to zero; with only D, 
when E and B are set to zero; and with their 
combination as temperature increases. The specific 
heat increase is observed with temperature when 
both MF and EF are turned on compared to 
separate impinging, conversely to the contribution 
of the magnetic anisotropic energy. 
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Figure 3. Magnon specific heat vs. temperature for varied 

similar values of B, E and D considered 
simultaneously at a concentration x = 20%. 
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Figure 4. Magnon specific heat as a function of temperature 

with the same values of B; E and D simultaneously 
at a concentration of x = 25%. 
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Figure 5. Magnon specific heat as a function of temperature 

for different values of D at the concentration x = 
20% with B and E set to zero. 

 
Figure 3 shows how the exponential raise in the 

specific heat decreases as temperature increases 
with the increase of E, B, and D simultaneously 
and uniformly at a concentration of x = 20%, and 
decrease further for further increase of impurity 
concentration as shown in Fig. 4. These could 
indicate the augmentation of magnon density in 
the Fe/(GaSb) DMS material in agreement with 
previous theoretical results for the case of Ga1-

xMnxAs (Chernet Amente et al., 2010) and Zn1-xFexS 
DMS (Twardowski et al., 1991). 
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However, the inclusion of magnetic anisotropic 
energy into the basic Hamiltonian has resulted in 
slight increase in magnon specific heat. This is 
illustrated in Fig. 5. The effect of the anisotropic 
energy is actually very small and very difficult to 
identify in the absence of EF and MF, perhaps both 
fields could enhance the anisotropic energy itself. 
The anisotropy is material dependent and some 
DMSs can be more anisotropic than the others. The 
value of D can be guided by specific material and 
applications. 

Le and Yarmohammadi (Le et al., 2019) have 
also studied magnon transport in Lieb lattice using 
Heisenberg model and including Dzyaloshinskii-
Moriya interaction (Kim et al., 2018) and obtain 
similar results, however, they have not included 
anisotropy. Le et al. (Le et al., 2018; Le et al., 2019) 
also investigated magnon impurity interaction 
effect on the magnon heat capacity on the Lieb 
lattice using similar model. 
 
 
The magnetic susceptibility of the (Ga,Fe) Sb DMS 
 
At a temperature T , the magnetization per site is 
given by 

 
k kB ngMTM ˆ)0()(  ,    (15) 

where M(0) is magnetization at absolute zero 
temperature and g = 2 for a system of spin ½  
particles. 
Since the system is attributed to resonate in bulk, 
Eq. (15), requires integration over a space as, 
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The corresponding magnetic susceptibility of the 
system, 
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where Q is another constant given by 

)/2( BB kY  . 

The temperature gradient of Eq. (18) shows that 
the magnetic susceptibility is the area under the 
curves below the maximum picks which 

corresponds to the Curie temperatures as 
illustrated in Figs. 6-9. As temperature increases, 

the curves increase until maximum T  is 

attained and then decrease exponentially with 
further increasing of temperature. 
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Figure 6 shows the temperature gradient of 
magnetic susceptibility vs. temperature for 
random choice of impurity concentrations, 20%, 
21%, 23%, and 25% with B = E set to five and D set 
to zero. The area under the curve, for the 

temperature interval from 230 K to at which T  

reaches its maximum, significantly reduce. This 
shows that the magnetic susceptibility is dropping 
and hence ferrimagnetic, antiferromagnetism 
and/or paramagnetism is overwhelming as the 
impurity spin concentration increases. 
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Figure 6. Temperature dependence of magnetic susceptibility 

for different values of x, B and E being set to five 
and D to zero. 

 
Figure 7 compares the effects of E, B, and D 

when tuned on separately or simultaneously for 

the choice of 20% magnetic spin concentration. The 

illustrated four different cases indicate that 

maximum magnetic susceptibly is attained when 

electric and magnetic fields are tuned on and 

subjected to similar temperature variation. From 

the figure, inclusion of magnetic anisotropy energy 

leads to suppression of the susceptibility as it 

prevents alignment of magnetic spins. 
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Figure 7. Temperature dependence of the magnetic 

susceptibility of GaFeSb for the same values of E, B, 
D and 20% magnetic impurity concentration. 

 
Figure 8 also illustrate the enhancement of the 

magnetic susceptibility when the values of the 
combination of B and E increase at a concentration 
x = 20%, D being set to zero. On the other hand, 
the decrease in the peak of the temperature vs. 

T , in the absence of E and B, shown in Fig 9, 

envisage the reduction of the magnetic 
susceptibility as D increases. 
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Figure 8. Temperature dependence of magnetic susceptibility 

with different values of B = E at a concentration of x 
= 20% and D = 0. 
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Figure 9. Temperature gradient of magnetic susceptibility vs. 

temperature for different values of D at x = 20%, 
and E = B = 20. 

 
 

CONCLUSIONS 

 
The magnon heat capacity Cmag and magnetic 
susceptibility χ of a ferromagnetic semiconductor 
(Gax-1Fex)Sb have been theoretically studied. Their 
expressions have been obtained as functions of 
magnetic dopant concentration x using Heisenberg 
localized spin model in the presence of external 
electric field, magnetic field and magnetic 
anisotropy. Cmag and χ have been plotted for varies 
values of concentration x as functions of 
temperature T. The results demonstrate that it is 
possible to manipulate these magnetic properties 
of the diluted magnetic semiconductors by electric 
field, magnetic field and also magnetic anisotropy 
which are very important for spintronic device 
applications. The study is important as electric 
field controlled ferromagnetism is very much 
needed from the stand point of developments in 
the fast developing field of spintronics. The 
inclusion of magnetic anisotropy has also 
considerable practical significance in the design of 
magnetic materials for commercial importance. 
The results obtained are in broad agreement with 
recent experimental and theoretical findings. 
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