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ABSTRACT: Let m be a positive integer, αi : Cn −→ C, for i = 1, 2, ...,m, be linear forms

and Hi = {P ∈ Cn : αi(P ) = 0} be the corresponding hyperplane for each i = 1, . . . ,m. The

linear forms α1, ..., αm define a hyperplane arrangement and X = Cn \V(α), where α =
m∏
i=1

αi and

V(α) = {p ∈ Cn : α(p) = 0}. The coordinate ring OX of X is the localization C[x1, . . . , xn]α and the

ring OX = C[x1, . . . , xn]α is a holonomic An-module, where An is the n-th Weyl algebra, hence it has

finite length. In this work, we will compute the number of decomposition factors of the A3−module

C[x]α, where α defines a central hyperplane arrangement in space, in terms of the no-broken circuits

and describe the decomposition factors in terms of their supports.
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Introduction

Let m be a positive integer, αi : Cn −→ C,
for i = 1, 2, ...,m, be linear forms and Hi =

{P ∈ Cn : αi(P ) = 0} be the correspond-
ing hyperplane for each i = 1, . . . ,m. The lin-
ear forms α1, ..., αm define a hyperplane arrange-

ment and X = Cn \V(α), where α =
m∏
i=1

αi and

V(α) = {p ∈ Cn : α(p) = 0}. The coordinate
ring OX of X is the localization C[x1, . . . , xn]α
and the ring OX = C[x1, . . . , xn]α is a holonomic
An-module, where An is the n−th Weyl algebra.
Since holonomic An-modules have finite length
(see Björk, 1993 and Coutinho, 1995), and hence
it has finite length. We will use the notation
C[x] = C[x1, . . . , xn] in our discussions.

In general, D-module is a module over a
ring D of differential operators. The major inter-
est of such D-modules is as an approach to the
theory of linear partial differential equations (see

Björk, 1979) and algebraic D-modules are mod-
ules over the Weyl algebra An over a field K of
characteristic zero (see Coutinho, 1995).

The number of decomposition factors of a
twisted form of C[x]α and their descriptions in
the plane case defined by a central hyperplane
arrangement are computed by Abebaw and Bøg-
vad (2010) and the number of decomposition fac-
tors of a twisted form of C[x]α and their descrip-
tions in the hyperplane arrangement in the gen-
eral position are computed by Abebaw and Bøg-
vad (2012).

The length and multiplicity of the local co-
homology with support in a hyperplane are com-
puted by Oaku (2015).
In this work, we compute the number of decom-
position factors of the A3−module C[x]α, where
α defines a central hyperplane arrangement in
space, in terms of the no-broken circuits and de-
scribe the decomposition factors in terms of their
supports.
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Preliminaries and Notations

In this section, preliminary results on the topic
and appropriate notations for the purpose of our
use are given.

For a positive integer n ≥ 1, let
x1, ..., xn, ∂1, ..., ∂n be the operators on
C[x1, x2, ..., xn] which are defined on a polyno-
mial f in the polynomial ring C[x1, x2, ..., xn] by
the formulas xi(f) = xif for all i = 1, ..., n and
∂i(f) = ∂f

∂xi
for all i = 1, ..., n and these are linear

operators of C[x1, x2, ..., xn]. The n − th Weyl
Algebra An is a C sub algebra of EndCC[x] gener-
ated by operators x1, x2, ..., xn and ∂1, ∂2, ..., ∂n
on the polynomial ring C[x], that is, An is given
by

An = C〈x1, x2, ..., xn, ∂1, ∂2, ..., ∂n〉.

For the sake of consistency, we write A0 =

C and a multi-index α is an element of Nn, say
α = (α1, ..., αn) and by xα we mean the mono-
mial xα1

1 ...xαnn .
Some basic properties of the n−th Weyl Al-

gebra An are given in the following proposition.

Proposition 1 (Björk (1979), Coutinho (1995)).
For a positive integer n ≥ 1.

(i) the Weyl algebra An is not commutative.
(ii) The algebra An is a domain.
(iii) The only elements of An that have an inverse

are constants.
(iv) The set B = {xα∂β|α, β ∈ Nn} is a basis of

An as a vector space over C.

With the actions of xi and ∂i on the poly-
nomials in C[x], the polynomial ring C[x] be-
comes and An−module.

Lemma 1 (Björk (1979), Coutinho (1995)). The
An−module C[x] is simple.

Let X be a smooth affine algebraic variety
(X will be Cn or an open subset of Cn which is the
complement of a union of hyperplanes defined by
forms). We denote by DX the ring of differential
operators on X and if X = Cn, this is the same
as An. If X is an affine open subset of Cn defined
by 0 6= f ∈ C[x], then DX = C[x]f ⊗C[x] An and

in this case we use the notation OX = C[x]f .
If M is a DX-module then it can be viewed as
an OX-module and hence has an annihilator,
AnnOX

M.

Definition 1. V(AnnOX
M) is called the support

of M, and is denoted by SuppM. (With V(I) for
an ideal I ⊂ OX means the closed subvariety of
zeroes defined by I.)

We have the following examples that can
illustrate our definition of support.

(1) For M1 = C[x, y]xy/(C[x, y]x + C[x, y]y),
SuppM1 = V(x, y) = (0, 0).

(2) For M2 = C[x, y]x/C[x, y],
SuppM2 = V(x) = {(0, y) : y ∈ C}.

(3) For M3 = C[x, y], SuppM3 = V(0) = C2.

Definition 2. Let R be a ring and M be an R

module. If 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M is
composition series of M, then the set DF (M) :=

{Mi/Mi−1}ni=1 of R modules is called the set of
decomposition factors of M.

The next definition is about the length of
modules and only modules with finite number of
decomposition factors are considered in this arti-
cle.

Definition 3. Let R be a ring and M be an R
module. Then we define the length of M over R
by: c(M) = 0 if M = {0} and c(M) = n for
M 6= {0} and if there exists composition series
0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M ofM such
that Mi/Mi−1 is simple and non-zero R-module,
for each i = 1, . . . , n. If M is simple, c(M) = 1.

The following theorem is about the length
of a module in terms of its submodule.

Theorem 1 (Abebaw and Bøgvad (2010)). Let
R be a ring, M be an R module and N be a sub-
module of M. Then

(1) DF (M) = DF (N) ∪DF (M/N)

(2) c(M) = c(N) + c(M/N)

The length of a module which is a direct
sum of two modules is the sum of the lengths of
the direct summands.
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Theorem 2 ([1]). Let R be a ring and M be an
R-module. If M1 and M2 are submodules of an
R module M, then c(M1⊕M2) = c(M1)+c(M2).

Corollary 1 (Abebaw and Bøgvad (2010)).
Let R be a ring and M be an R-module. If
M1,M2, . . . ,Mn are submodules of an R mod-
ule M, then c(M1 ⊕M2 ⊕ · · · ⊕Mn) = c(M1) +

c(M2) + · · ·+ c(Mn).

Decomposition factors of the An−module
C[x]α.

Let α1, ..., αm be linear forms in C[x]. In
this subsection we find the number of decompo-
sition factors of C[x]α, which is equivalent to an-
alyzing expressions in partial fractions for func-
tions in C[x]α. Let us proceed in the following
way.

To every subset

S = {αi1 , . . . , αid} ⊂ ∆ = {α1, . . . , αm}

that consists of linearly independent forms,
choose coordinates zd+1, . . . , zn such that
αi1 , . . . , αid , zd+1, . . . , zn are linear coordinates
in space. In order to simplify the notations let
us denote αik = zk, k = 1, 2, ..., d.
Let AS = C[zd+1, . . . , zn] be the corresponding
ring of polynomials and define RS = {h ∈ C[x]α :

h = g∏d
j=1 z

mj
j

; g ∈ AS ,mj > 0,∀j}. We use these

modules for certain subsets S called no-broken
circuits defined below.
Consider the following sequence of An-modules

0 ⊂ R0(= C[x]) ⊂ R1 ⊂ · · · ⊂ Rr = C[x]α,

where r ≤ n and Rk is the subspace of
C[x]α which is generated by monomials in
x1, ..., xn, α

−1
1 , ..., α−1m such that at most k of

α1, ..., αm have strictly negative exponents for
all k = 0, 1, ..., r. Clearly each Rk is an An-
submodule of C[x]α.

The following result is the main theorem in
this section.

Theorem 3. Considering the notations given
above, we have

Rk/Rk−1 = ⊕W ⊕S RS

where W runs over the subspaces of dimension k
generated by elements of ∆ and S runs over cer-
tain subsets of k elements of ∆ (the so called no-
broken circuits, see definition below) which gen-
erate W.

The proof of Theorem 3 can be found in
De Concini and Procesi (2006) and also in De
Concini and Procesi (2010), whose exposition is
what we follow to make our computations and
some parts of it are indicated below.

Basic Lemma.
The following lemma is one of the basic and

most powerful tools that we use to prove our main
results. The proof is included as it can give us
ideas how to make our computations.

Lemma 2 (De Concini and Procesi (2010)). Let
α1, . . . , αk, αk+1 be non-zero linear forms with

α1 =
k+1∑
j=2

cjαj . Then we have

1∏k+1
j=1 αj

=

k+1∑
j=2

cj
1

α2
1

∏j−1
i=1 αi

∏k+1
i=j+1 αi

Proof.

1∏k+1
j=1 αj

=
α1

α2
1

∏k+1
j=2 αj

=
k+1∑
j=2

cj
αj

α2
1

∏k+1
j=2 αj

.

Let d be the dimension of the vector space
that the non-zero linear forms α1, . . . , αm gener-
ate. Then the following is established.

The following proposition gives a partial
fraction expression for the expression 1

m∏
j=1

α
hj
i

.

Proposition 2 (De Concini and Procesi(2010)).
Every expression 1

m∏
j=1

α
hj
i

can be expressed

as linear combinations of expressions 1
d∏
j=1

α
mj
ij

with αi1 , αi2 , . . . , αid linearly independent and
d∑
j=1

mj =
m∑
i=1

hi.

Proof. Using the given ordering we can take the
first linearly dependent elements that appear in
the product with non-zero exponents.
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Using Lemma 2, we can substitute the
product of these terms with a sum which results
the vector of exponents is increased in the lexi-
cographical order maintaining the same sum. In
each term the space generated by the factors re-
mains the same.

Clearly this recursive procedure terminates
after a finite number of steps, when all the sum-
mands are of the required type.

No-broken circuits.
We will systemize the procedure in the

proof of Proposition 2.

Definition 4. Let α1, . . . , αm be non-zero linear
forms. Let αi1 , αi2 , . . . , αih , i1 < i2 < ... < ih
be an ordered sublist of linearly independent el-
ements. We say that the sublist is a broken cir-
cuit if there exists an integer k ≤ h and an inte-
ger i < ik such that the elements αi, αik , . . . , αih
are linearly dependent, otherwise it is called no-
broken circuit.

Lemma 3 (De Concini and Procesi (2006)). If
αi1 , αi2 , . . . , αih is a broken circuit, then 1

h∏
j=1

αij

is

a linear combination of expressions 1
m∏
j=1

α
hj
j

with

the vector of exponents lexicographically bigger
than the vector of exponents of 1

h∏
j=1

αij

.

Proof. From the given hypothesis we have αi =
h∑
j=k

cjαij , with i < ik. Let us substitute and sim-

plify:
1∏h

j=1 αij
=

αi

αi
∏h
j=1 αij

=
ckαik + · · ·+ chαih

αi
∏h
j=1 αij

Simplifying every term in the numerator with the
corresponding factor in the denominator we get
the desired expressions.

Theorem 4 (De Concini and Procesi (2010)).
Every expression 1

m∏
j=1

α
hj
j

can be expressed as a

linear combination of expressions 1
d∏
j=1

α
mj
ij

, with

αi1 , . . . , αid a no-broken circuit and
d∑
j=1

mj =∑m
i=1 hi.

Proof. The fact that an expression of the given
type can be written as a linear combination of
expressions relative to no-broken circuits can be
proved by induction on the lexicographic order
of the vector exponents as in Proposition 2 and
repeatedly using Lemma 3.

Corollary 2. The space RS has basis the mono-

mials
n∏
i=1

zhii such that hi ≥ 0 ∀i > d and hi < 0

∀i ≤ d and C[x]α =
∑

S RS as S varies among
the no-broken circuits.

Proof. The elements z1, z2, . . . , zn are linear co-
ordinates in space and RS is contained in the
ring of Laurent polynomials in these variables.
These polynomials have as basis all the monomi-
als in the variables with integer exponents. The
proposed monomials are thus part of these basis
and so linearly independent.
From Theorem 4 it follows immediately that ev-
ery function f in R can be written as a linear
combination of expressions

f =
g∏d

j=1 α
mj
ij

such that g ∈ C[x], mj > 0, ∀j and S =

αi1 , . . . , αid a no-broken circuit.
We write f as a polynomial in the variables
αi1 , . . . , αid , zd+1, . . . , zn. Simplify the αi that
appear in the numerator and the denominator.
Thus with as easy induction we can prove that
every element in R is a sum of elements of the
spaces RS .

The following Proposition is an immediate
consequence of the above discussions.

Proposition 3 (De Concini and Procesi (2010)).
Each RS is irreducible An−module and the num-
ber of decomposition factors C[x]α is equal to the
number of no-broken circuits.
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Main Results

In this section, we describe the main results
obtained in this article when n = 1, compute
the number of decomposition factors of the
A2−module C[x]α, where α defines a central
hyperplane arrangement in the general position,
using a direct sum method and compute the num-
ber of decomposition factors of the A3−module
C[x]α, where α defines a central hyperplane ar-
rangement using the idea of no-broken circuits.
The idea of partial fractions is highly involved in
our proofs.

Results in the Line and Plane Cases.
Let us start our discussion about the de-

composition of the modules using Lemma 3 above
for the one variable case.

Theorem 5. Let α1 = x, αk = x + ck, for
k = 2, . . . ,m, where c2, . . . , cm are nonzero dis-
tinct constants, and α =

∏m
i=1 αi. Then the

A1−module C[x]α has

(i) one decomposition factor with support C;
(ii) one decomposition factor with support the

origin;
(iii) one decomposition factor with support V (x+

ck) for each k = 2, . . . ,m and
(iv) has m+ 1 decomposition factors.

Proof. We have the following sequence of
A1−modules {0} ⊂ C[x] ⊂ C[x]α. The
A1−module C[x]α is a space generated by mono-
mials in x, α−11 , ..., α−1m such that at most one of
α1, ..., αm has strictly negative exponent. The
main important thing in this case is that, using
the idea of partial fraction we can write 1

α as a
linear combination of 1

αk
for k = 1, . . . ,m and we

have the following isomorphism of A1−modules

C[x]α/C[x] ∼=
m⊕
k=1

RSk ,

where RSk is the A1−module generated by eSk =
1
αk

(modC[x]) for k = 1, . . . ,m.
Then C[x] and RSk for k = 1, . . . ,m are all

simple A1−modules and hence

(i) C[x] ∼= C[x]/{0} is a decomposition factor of
C[x]α with support V (0) = C;

(ii) RS1 is a decomposition factor for C[x]α with
support V (x);

(iii) RSk is a decomposition factor for C[x]α with
support V (x+ ck) for k = 2, . . . ,m and

(iv) The number of decomposition factors of
C[x]α is given by

c(C[x]α) = c(C[x]) + c(C[x]α/C[x])

= 1 +
m∑
k=1

c(RSk) = 1 +m.

That is, c(C[x]α) = m+ 1 and this completes
the proof.

The set of no-broken circuits of given linear forms
is {{}, x, x + c2, . . . , x + cm}. The cardinality of
this set is m+ 1 and this is the same as number
of decomposition factors of C[x]α.

Theorem 6. Let α1 = x, α2 = y, αk = x + cky

for k = 3, . . . ,m,where the c′ks are distinct
nonzero constants in C and α =

∏m
i=1 αi. Then

the A2−module C[x, y]α has

(i) one decomposition factor with support C2;
(ii) one decomposition factor with support the

hyperplane V (αk) for each k = 1, . . . ,m;
(iii) m − 1 decomposition factors with each has

support the origin and
(iv) 2m decomposition factors.

Proof. Consider the sequence of A2−modules,
R0 ⊂ R1 ⊂ R2, where R0 = C[x, y], R1 is
the subspace of C[x, y]α generated by monomi-
als in x, y, α−11 , ..., α−1m such that at most one
of α1, ..., αm has strictly negative exponent and
R2 = C[x, y]α. Then

(i) C[x, y] ∼= C[x, y]/{0} is a decomposition fac-
tor for C[x, y]α with support C2;

(ii) we have the following isomorphism of
A2−modules R1/R0

∼=
⊕m

k=1RSk , where RSk
is the simple A2−module generated by eSk =
1
αk

for k = 1, . . . ,m. Thus, RSk is a decompo-
sition factor of C[x, y]α with support V (αk)

for k = 1, . . . ,m and
(iii) the quotient R2/R1 is given by R2/R1

∼=
⊕mk=2RTk , where RTk is the simple



SINET: Ethiop. J. Sci., 43(1), 2020 51

A2−module generate by eTk = 1
α1αk

(modR1)

and RTk is a decomposition factor with sup-
port V (α1, αk) = {(0, 0)} for k = 2, . . . ,m.
The most important thing in this case is
that, using the idea of partial fractions, we
can write 1

α as a linear combination of 1
α1αk

for k = 2, . . . ,m.
(iv) The number of decomposition factors of

C[x, y]α is given by,

c(C[x, y]α) = c(R0) + c(R1/R0) + c(R2/R1)

= 1 +
m∑
k=1

c(RSk) +
m∑
k=2

c(RTk)

= 1 +m+m− 1 = 2m.

That is, c(C[x, y]α) = 2m.

The set of no-broken circuits defined by α is
{{}, α1, . . . , αm, α1α2, . . . , α1αm} and the cardi-
nality of this set is 2m which is equal to the num-
ber of decomposition factors of C[x, y]α.

Results in the Space Case.
The main results of the work are on the

lengths and decomposition factors of D-modules.
Our main results are based on the results in
Abebaw and Bógvad (2010) and the idea of par-
tial fractions is heavily involved.

Theorem 7. Let α1 = x, α2 = y, α3 = z, αi =

x + y + aiz for i = 4, . . . ,m be nonzero dis-
trict linear forms with nonzero distinct constants
ai in C for i = 4, . . . ,m and α = α1 · · ·αm.
Then the number of decomposition factors of the
A3−module C[x, y, z]α is m2 −m+ 2.

Proof. Consider the following sequences of
A3−modules R0 ⊂ R1 ⊂ R2 ⊂ R3, where R0 =

C[x, y, z], R1 is the subspace of C[x, y, z]α gen-
erated by monomials in x, y, z, α−11 , ..., α−1m such
that at most one of α1, ..., αm has strictly nega-
tive exponent, R2 is the subspace of C[x, y, z]α
generated by monomials in x, y, z, α−11 , ..., α−1m
such that at most two of α1, ..., αm has strictly
negative exponents and R3 = C[x, y, z]α.
Then we have the following isomorphism of
A3−modules.

(a) The module R1/R0 is given as a direct sum
by: R1/R0

∼=
⊕m

k=1RSk , where RSk is the
simple A3−module generate by eSk = 1

αk
for

k = 1, . . . ,m.
(b) We also have the following quotient module.

R2/R1
∼= (⊕mk=2RSk)⊕

(⊕mk=3RTk)⊕
(⊕mk=4RUk)

⊕
N

where N = (⊕mj=5RU4
j
)
⊕

(⊕mj=6RU5
j
)
⊕
· · ·
⊕

RU(m−1) .

(1) the module RSk is the simple A3−module
generate by eSk = 1

α1αk
(modR1) for k =

2, . . . ,m;
(2) the module RTk is the simple A3−module

generate by eUk = 1
α2αk

(modR1) for k =

3, . . . ,m;
(3) the module RUk is the simple A3−module

generate by eUk = 1
α3αk

(modR1) for k =

4, . . . ,m;
(4) the module RU4

j
is a simple A3−module

generated by eU5
j

= 1
α4αj

(modR1) for
j = 5, . . . ,m.
...

(m-1) the module RU(m−1) is a simple
A3−module generated by

eU(m−1) =
1

α(m−1)αm
(modR1).

(c) Consider the quotient A3−module R3/R2.
Then we have the following isomorphism of
A3−modules,

R3/R2
∼=
⊕(

⊕mj=3RSj
)⊕(

⊕mj=4RTj
)⊕

M,

where

M =

m⊕
j=5

RU4
j

m⊕
j=6

RU5
j

⊕
. . .
⊕

RU(m−1)

and have the following simple A3−modules:
(1) the module RSj is a simple A3−module

generated by eSj = 1
α1α2αj

(modR2) for
each j = 3, . . . ,m;

(2) the module RTj is a simple A3−module
generated by eTj = 1

α1α3αj
(modR2) for

each j = 4, . . . ,m and also
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(3) the moduleRU4
j
is a simple A3−module

generated by eU4
j

= 1
α1α4αj

(modR2) for
j = 5, . . . ,m.

(4) the module RU5
j
is a simple A3−module

generated by eU5
j

= 1
α1α5αj

(modR2) for
j = 6, . . . ,m.
...

(m-2) the module RU(m−1) is a simple
A3−module generated by

eU(m−1) =
1

α1α(m−1)αm
(modR2).

The most important thing in this case is that,
using the idea of partial fractions, we can
write 1

α as a linear combination of the frac-
tions 1

xyz ,
1

xyαi
, 1
xzαi

and 1
xαiαj

, for i 6= j and all
i, j = 4, . . . ,m.

Then the number of decomposition factors
of the A3−module C[x, y, z]α is given by

c(C[x, y, z]α) = c(R0) + c(R1/R0)

+c(R2/R1) + c(R3/R2).

So we have c(R0) = 1, c(R1/R0) = m,

c(R2/R1) = (m−1)+(m−2)+ · · ·+1 = m(m−1)
2

and

c(R3/R2) = (m− 2) + (m− 3) + · · ·+ 1

=
(m− 1)(m− 2)

2
.

Thus, we have

c(C[x, y, z]α) = 1 +m+
m(m− 1)

2
+

(m− 1)(m− 2)

2

= m2 −m+ 2.

That is, c(C[x, y, z]α) = m2−m+ 2 and one can
easily see that this is the same as the number of
no-broken circuits defined by α.

Conclusions

We have computed the number of decomposition
factors of an A3-module defined by a cental hy-
perplane in space. In the computation, some

combinatorics is observed and it is still open to
describe the combinatorics involved. One may
also study the geometry involved in the support
of such decomposition factors.
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