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ABSTRACT: In this paper is to introduce the notion of weak idempotent rings as a generalization of 

Boolean like rings. We obtain many formal properties of the class of weak idempotent rings and furnish 
certain examples of the class of weak idempotent rings. Furthermore, we obtain the properties of 
completely prime ideal and left and right completely primary ideals of weak idempotent rings. 
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INTRODUCTION 

 
Many ring theoretic generalizations of Boolean 
rings have come into light quite for some time; 
Boolean like rings by Foster (1946), associate rings 
of Sussman (1958) and     and    rings by 
Subrahmanyam (1960) are a few of them. Among 
those generalizations, Boolean like rings arise 
naturally from general ring duality considerations 
and preserve many formal properties of the 
Boolean rings. A Boolean like ring is a 
commutative ring with unity and is of 
characteristic 2 in which                for 
all elements   and   in the ring. Later 
Swaminathan (1982) in his dissertation work made 
an extensive study on Boolean like rings and 
established many of the new properties that are 
true in the class of Boolean rings.   Swaminathan 
(1982) also characterized submaximal ideals of 
Boolean like rings and he has established direct 
product decomposition theorems, characterization 
of injective and projective objects in the category of 
all Boolean like rings. In fact Swaminathan (1982) 
has constructed a general Boolean like ring by 
using the method of synthesis which is an 
improvisation to that of the synthesis adopted by 
Foster (1946) and Harary (1950). 

We consider the fundamental concepts that 
are studied recently, which are wider classes to 
that of the class of Boolean Like rings. An element 
a of a ring R is nil-clean, if          ,  where e2= 
e ∈ R and n is a nilpotent element of R; if further 

       , the element a is called strongly nil-clean. 
A ring R is called nil-clean (resp., strongly nil-
clean) if each of its elements are nil-clean (resp., 

strongly nil-clean), (see Koşan et al. (2016)). 

Calugarean (2015) studied about UU rings. A ring 
R is called a UU ring if all its units are unipotent 
that is, 1 +N(R) = U(R), where N(R) is the set of all 
nilpotent elements of R and U(R) is the set of the 
units of R. A ring R is called periodic if, for every a 
∈ R, there exist distinct positive integers m and n 
such that am = an, (see Cui and Danchev (2020)). 

The square of a nilpotent element need not be 
zero in Nil Clean rings, UU rings and periodic 
rings and  1+e need not be idempotent element for 
any idempotent element e in these rings. For any 
element a in a Nil Clean ring and a UU ring,  a2 

need not be an idempotent element. The above 
said properties do hold in Boolean like rings.  In 
Boolean like rings, the conditions          for 
every   in the ring and being characteristic 2 play 
major roles. Keeping this in view, it is a quite 
natural to ask whether the class of Boolean like 
rings can be extended to a new class, which may 
be a subclass to the class of Nil clean rings, UU 
rings and Periodic rings and  preserve many of the 
decent properties of  Boolean like rings. In that 
direction we are motivated to attempt for a larger 
class of Boolean like rings and the answer is 
affirmative. 

In this work, we introduce the notion of 

Weak Idempotent rings, furnish certain examples 

of weak idempotent rings and also we establish the 
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fundamental properties of Weak Idempotent rings.  

The ideas of completely prime and primary ideals 

in Weak Idempotent Rings with their basic 

properties are also considered. 

The organization of the paper is as follows. In 

the second section, definition and examples of 

Weak Idempotent Rings are given, in the third 

section basic properties of Weak Idempotent Rings 

are discussed and in the fourth section the ideas of 

completely prime and primary ideals in Weak 

Idempotent Rings with their basic properties are 

also established. 

 
WEAK IDEMPOTENT RINGS AND EXAMPLES  

 

In this section, we introduce the concept of 

Weak Idempotent Rings. Throughout this paper 

the ring R stands for Weak idempotent ring. We 

begin with the following definition of a Weak 

Idempotent Ring. 

Definition 1. A ring         is said to be Weak 

idempotent ring if R is a ring of characteristic 2 

and       for each  ∈   

Remark 1. 

1. We call Weak idempotent ring by WIR for 

short. 

2. It is clear that every Boolean ring is a Boolean 

like ring but not conversely. We substantiate 

this in the following example. 

Example 1. The ring          with              

and   and   are defined by the following tables is 

a Boolean like ring, but not a Boolean ring. 

 
 

 

 

Table 1 
 

 
 
 
 
 
 

Table 2 

Observe that          Hence,    is not a 
Boolean ring. 
Lemma 1. Let   be a Weak idempotent ring. Then 
for all  ∈   
1.          or    for any positive integer  . 
2. If     is a nilpotent element, then     . 
3.            , where    is idempotent and 

     is nilpotent. 
Proof. 1 and 3 are clear from the definition and for 
the proof of 2, let     .  
Then                . 
Remark 2. In a WIR R, 0 is the only element that is 
both nilpotent and idempotent. Every element   of 
  is a sum of a nilpotent element and an 
idempotent element, but this representation is not 
unique as in the case of Boolean like rings. This can 
be substantiated in the following example. 
Example 2. Let        be the ring of     upper 
triangular matrices over   with the usual addition 
and multiplication of matrices. 

Let   [
  
  

] ∈       . Then    [
  
  

]. 

Thus,  [
  
  

]  [
  
  

]  [
  
  

]  [
  
  

], which 

shows that the above representation of an element 
as a sum of idempotent and nilpotent is not 
unique. 
Remark 3. If the ring is a commutative WIR, then 
the representation of each element as a sum of an 
idempotent element and a nilpotent element is 
unique and we use the notation    for the 
idempotent element    and    for the nilpotent 
element      of the unique representation, that 
is,        . 
 
Example 3. Let        be the ring of     upper 
triangular matrices over   with the usual addition 
and multiplication of matrices. Then       and 
      for all  ∈       .  

Clearly              is non-commutative ring 

(hence not a Boolean like ring) with unity[
  
  

]. 

Thus        is Weak idempotent ring with unity. 

Furthermore if we let   [
  
  

] and   [
  
  

], 

then               
Example 4. Let     . Define      and     on 

      by                       and 
                    for            ∈  ̅.  

Then          is a Weak idempotent ring with 
     , for any  ∈  , as a left unity. But R has no 
right unity and hence   has no unity.  
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Furthermore, the ring   is a non-commutative 
ring since                               

      and we also have                for 
        and        .  

Thus,         is a non-commutative Weak 
idempotent ring without unity. 
Example 5.. Let       Define      and     on 

      by                       and 
                    for            ∈  ̅.  

Then         is a Weak idempotent ring 
with right unity      , for any  ∈  , and has no 
left unity. 
Example 6. The quaternion ring   over the field    
is a commutative ring with unity satisfies that  
      and       for all a ∈  . Hence Q is a 
commutative WIR with unity. 

The following two examples are examples of 
non-commutative Weak idempotent rings. The 
first one, Example 7, is with unity and the second 
one, Example 8, is without unity. 
Example 7. Let 

 R=[
  
  

]  [
  
  

]  [
  
  

]  [
  
  

]  [
  
  

]   [
  
  

]     

[
  
  

]  [
  
  

]} be a subset of a set of a     

matrices over    with the usual addition and 
multiplication of matrices. Then   is a non-
commutative Weak idempotent ring with unity 
that satisfies               and       for 
all    ∈  . 

Example 8. Let R= {[
  
  

]  [
  
  

]  [
  
  

]  [
  
  

]}  

a subset of the ring of a     matrices over    with 
the usual addition and multiplication of matrices.  

Then   is a non-commutative Weak 
idempotent ring without unity that satisfies 
              and       for all    ∈  . 
 
BASIC PROPERTIES OF WEAK IDEMPOTENT 
RINGS 

The following is a an immediate consequence 
of the definition of a Weak idempotent ring R. 
Theorem 1. Every non-zero and non-unit element 
in a Weak idempotent ring R with unity is a zero 
divisor. 
Proof. Let R be WIR. Then for a nonzero and non-
unit  element  ∈  ,       implies          .  

If         , then   is a zero divisor. 
Otherwise,         that is,          . Since 
  is non-unit,       .  

Hence,   is a zero divisor in R. 

Notation. 
Let R be a WIR. We denote the set of all 
idempotent elements of R by    and the set of all 
nilpotent elements of R by N. 
Theorem 2. The set of all unit elements of a WIR   
with unity is precisely        ∈   .  
Proof. Let R be a WIR and   be a unit element of  . 
Then                  , as       .  

Hence,     is nilpotent and          . 
On the other hand, for any nilpotent element   in 
 ,                  .  

Thus,     is a unit element in R. 
Lemma 2. If R is a local ring with unity, then the 
only idempotent elements of R are 0 and 1. 
Proof. Let R be a local ring and      , where   
is the set of all unit elements in R and   is the 
maximal ideal of R and. 

For every  ∈   such that     , either  ∈   
or  ∈  . If  ∈  , then    . Otherwise,  ∈   
and hence    ∈   and     is an idempotent. so 
      implies that    .  

Hence 0 and 1 are the only idempotents of the 
ring  . 
Remark 4. Let   be a Weak idempotent ring. 
1. If   is a non-commutative, then the set of all 

idempotent elements    need not be a subring 
of  . (See Example 3). 

2. Commutativity is sufficient condition for    to 
be a subring of   and N to be an ideal of R. 

3. If   is an ideal of  , then     is also Weak 
idempotent ring. 

Note. For a ring  , if     and   are Weak 

idempotent rings, then   need not be a Weak 

idempotent ring. For instance, consider     , the 

set of all integers modulo 4, and        . Then 

    and   are Weak idempotent rings but   is not a 

WIR as the characteristic of R is4, not 2. 

Theorem 3. Let R be a local WIR with unity. Then, 

1. the set   of all nilpotent elements of R is the 

unique maximal ideal of R; 

2. R is a commutative ring. 

Proof. Let R be a local WIR with unity. 
1. Let   be the unique maximal ideal of  . Then 

by Lemma 2,         . 
Let    . Then       . This implies 
     

           . Hence   is a unit 
element of R. That is,     and then    . 
Let  ∈  . Then   is a non-unit element of R. 
Thus,  ∈  ,  since   contains all non-unit 
elements of   and hence    . 
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2. As N is an ideal of R, for all    ∈       ∈  . 
This implies                   
    . This implies          since      
and     . 
Therefore,      . 
Now take any two elements    ∈  .  Then 
                            
          =                     
                   since    is in the 
center of the ring.  
Hence, R is a commutative ring. 

Theorem 4. Every non-commutative Weak 

idempotent ring R with unity is not local. 

Proof. Let R be a non-commutative ring with 

unity. Suppose R is a local ring. Then by Theorem 

3,   is an ideal of   and for all    ∈   and    

  .  

Let    ∈  , where          and      

  . Then                   =           

         =                        

since    and    are in the center of the ring (either 

0 or 1). Thus R is commutative and it is a 

contradiction. Hence R is not local. 

Theorem 5. Let   be a commutative Weak 

idempotent ring. Then    is isomorphic to R/N. 

Proof. Define          by         . 

Clearly   is a well-defined ring homomorphism. 

Suppose for   ∈                 Then      

        ∈                     

                   .  

Thus,   is monomorphism. For    ∈

                           , 

where   ∈   . Thus   is an epimorphism and 

hence it is an isomorphism. 

Remark 5. The product of any two nilpotent 

elements of a Boolean like ring is zero. However 

this is not true in the case of Weak idempotent 

rings.  

For instance, consider Example 6.  

The elements     and   j  of Q are nilpotent 

elements, but              . 

Theorem 6. If   is a commutative WIR with unity 

and the product of any two elements of   (the 

nilradical of  ) is zero, then   is a Boolean like 

ring. 

Proof. Let R be a WIR and     ∈  . Then      

and      are both nilpotent elements of R. So, 

                              . 

Hence,   is Boolean like ring. 

Foster (1946) proved that a ring R is Boolean 

like ring if and only if the following are satisfied: 

i. R is a commutative ring with unity; 

ii. R is a ring of characteristic 2; 

iii.  each element of R can be expressed as the 

sum of an idempotent and a nilpotent 

element and  

iv. the product of any two nilpotent elements in 
is zero. 
We have the following equivalent result for a 

commutative WIR with unity. 
Theorem 7. A commutative ring R with unity is a 

Weak idempotent ring if and only if the following 

are satisfied. 

1. It is a ring of characteristic 2; 

2. Each element can be expressed as the sum of an 

idempotent and a nilpotent elements and 

3.      for all  ∈   ( N is the nilradical of  ) 

Proof. Let R be a commutative with unity.  

Suppose R is a Weak idempotent ring. Then the 

three conditions are clear.  

To prove the converse, let  ∈  . Then 

       . Now       and hence      
  

     .  

Therefore,    is a Weak idempotent ring. 

For a commutative Weak idempotent ring R, the 

following theorem is easy to prove. 

Theorem 8. Let R be a commutative weak 

idempotent ring with unity. For any two elements 

  and    of R ,  the following are satisfied. 

1.              and              

2.            and                      

3.         and         , if   is nilpotent. 
 

COMPLETELY PRIME AND PRIMARY IDEALS 
IN WEAK IDEMPOTENT RINGS 

 
In any ring  , an ideal   of R is a prime ideal 

if and only if for two ideals   and B of R,       

implies     or     . An ideal   of R is called 

completely prime if and only if for    ∈  ,   ∈   

implies  ∈   or  ∈  . An ideal which is 

completely prime is prime but the converse is not 
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generally true. These concepts coincides in the case 

of commutative ring. 

Example 9. Let                     and define the 
operations     and     by the following tables, ‘+’ 
in Table 3 and ‘Table 4’. 
 

 
Table 3 

 

 

Table 4 
 

Then         is non-commutative ring with 

unity and the conditions       and       are 

satisfied and the ideals              and    

          are completely prime ideals in R.  

The ideal     is prime, but not completely 

prime ideal of   and we also have that          is 

not a prime ideal. 

Theorem 9. If   is a completely prime ideal of a 

Weak idempotent ring   with unity, then     is 

isomorphic to the 2- element field. 

Proof. Let   be a completely prime ideal of a Weak 

idempotent ring   with unity and let     be 

idempotent element of    .  

Then              implies       ∈  . 

Since   is completely prime ideal, either  ∈   or 

   ∈   that is       or        . Thus, 

  and     are the only idempotent elements of 

   . Suppose    ∈  . Then         . So, 

  ∈  . Since   is completely prime, ∈   . This 

implies       and hence   is the only nilpotent 

element of    . Since every element of     is a 

sum of an idempotent element and a nilpotent 

element of    , we have            . 

 Hence     is isomorphic to the 2- element 
field. 
Example 10. In Example 6, it is given that 
                                       
                                   
         and                            
              Thus         . Clearly   is a 
prime ideal in R and   is a local ring. Furthermore, 
the ideals                         , 
                         and           
               are all primary ideals, but 
they are not prime ideals. 
Definition 2. Let   be an arbitrary ring with unity 
and   be an ideal of a ring  .  Then   is said to be: 
1. left completely primary ideal of   if, for    ∈  , 

  ∈   implies  ∈   or   ∈   for some 
positive integer  ; 

2. right completely primary ideal of   if, for 
   ∈  ,   ∈   implies   ∈   or  ∈   for 
some positive integer     

Theorem 10. An ideal  of a WIR R with unity and 
     is left completely primary ideal if and only if 
    has only two idempotents. 
Proof. Let   be a left completely primary ideal and 
    be a zero divisor. Then              for 
some                  ∈       ∈   for 
some positive integer  .  

Thus,                 . Hence     
is nilpotent.  

Suppose, for  ∈  ,           . This 
implies                            . 

 If        , then     is the zero 
divisor. Hence     is nilpotent. If        , 
then        . Hence,   and     are the only 
idempotents. 
Conversely, suppose   and     are the only 
idempotent elements of R/I. Then     is not a 
nilpotent element. If     , then          is 
nilpotent. This contradicts the assumption. Hence, 
    . 

 Thus By our assumption      and hence 
          . That is,,         . This 
implies     is a unit and hence     is not zero 

+ 0 1 2 3 4 5 6 7 

 0 0 1 2 3 4 5 6 7 

1 1 0 4 7 2 6 5 3 

2 2 4 0 5 1 3 7 6 

3 3 7 5 0 6 2 4 1 

4 4 2 1 6 0 7 3 5 

5 5 6 3 2 7 0 1 4 

6 6 5 7 4 3 1 0 2 

7 7 3 6 1 5 4 2 0 

* 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 

2 0 2 2 0 0 5 3 5 

3 0 3 0 0 3 0 3 3 

4 0 4 0 0 4 0 4 4 

5 0 5 2 3 3 5 0 2 

6 0 6 0 0 6 0 6 6 

7 0 7 2 3 6 5 4 1 
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divisor. Thus, every zero divisor is nilpotent 
element.  

Let   ∈                         

 . If       or      , then  ∈   or  ∈  . If 
      and      , then     is zero divisor. 
Thus,     is nilpotent. That is           
            ∈  .  

Hence, I is a left completely primary ideal of 
R. 
Theorem 11.  An ideal of a WIR R with unity is left 

completely primary if and only if for any 

idempotent element  ∈    either  ∈   or    ∈  . 

Proof. For  ∈    it is clear that             

 . If   ∈  , then         . Thus,     is 

idempotent. If   ∈  , then         . Thus, 

    is a nilpotent element.  

Let   be left completely primary ideal of   and   be 
an idempotent in  . Then               

 ∈  . Since   is left completely primary,  ∈   or 
      ∈   for some positive integer  . 
 Hence,  ∈   or      ∈  . 

Conversely, let   be an ideal of   and for any 
idempotent element  ∈  , either  ∈   or    ∈  . 
Now let     be an idempotent of    . Then   ∈
 . But   ∈   or     ∈   by our assumption. 
Thus,      ∈   or        ∈      ∈   or 
   ∈  . Hence, the only idempotent elements of 
    are   and    . Hence, By Theorem 10,   is left 
completely primary ideal of R. 
Theorem 12. In a WIR with unity, a left completely 

primary ideal   is completely prime if and only if 

the nilradical of   is a subset of  . 

Proof.     Suppose   is a left completely primary 

ideal of   such that the nilradical   of   is a subset 

of  . Let   ∈   and    . Then   ∈   for some 

positive integer  . That is   or    or   ∈  . If   ∈

 , then              ∈  . 

 If   ∈  , then                  

                 ∈  . This implies   ∈  , 

that is,   ∈  . By the above case,  ∈  . Hence,   is 

completely prime. 

    Suppose an ideal   of   is completely 

prime. Then for  ∈        ∈   implies that 

 ∈  . Hence nilradical of   is a subset of I. 

Corollary 1.  An ideal of a WIR   with unity is 
completely prime (and hence maximal) if and only 
if nilradical of   is a subset of   and  ∈    implies 
that  ∈   or    ∈  . 

Proof.     Let R be a WIR with unity and I be an 

ideal of R. Suppose   is a left completely prime 

ideal of R. Since every completely prime ideal is 

left completely primary,   is left completely 

primary. Then, by Theorem 11 and Theorem 12, 

    and  ∈    implies that  ∈   or    ∈  . 

    Suppose that     and  ∈     Then 
 ∈   or    ∈  . 

Thus, by Theorem 11,   is left completely 
primary and hence, by Theorem 12, I is a 
completely prime ideal of R. 
Corollary 2. An ideal   of a WIR   with unity is left 

completely primary if and only if      is a 

completely prime ideal of    provided that    is 

the subring of  . 

Proof.    Let R be a WIR with unity and I be an 

ideal of R. Assume that   is left completely primary 

ideal. 

The nilradical of    is           . By 

Corollary 1,  ∈       ∈   or    ∈   and 

hence,  ∈      or    ∈      since  ∈    and 

   ∈   . 

 Hence,      is left completely primary 

ideal of   . By Corollary 1,      is completely 

prime ideal of   . 

    Assume that       is a completely 
prime ideal of   . Let  ∈      Then   ∈      or 
   ∈     .  

Thus,  ∈   or    ∈   and hence, I is left 
completely primary. 
Note. 

1. The theory of right completely primary ideals is 

analogues to that of left completely primary 

ideals. If the weak idempotent ring is 

commutative, then the notions of left 

completely primary ideal, right completely 

primary ideal and primary ideal coincide. 

2. Primary ring is a commutative ring with unity 

in which     is primary ideal. Equivalently, a 

ring is primary if and only if every zero divisor 

of the ring is nilpotent. In a primary ring, the 

intersection of all primary ideals is 

obviously    . 

Theorem 13.  If a WIR R with unity is local, then it 

is a primary ring. 
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Proof. Let   be a WIR with unity and  ∈  . 

Suppose   is local. Then by Lemma 2,          

and by Theorem 3,   is commutative.  

Let  ∈   be neither idempotent nor nilpotent. 

Then      , where   is non-zero nilpotent 

element. By Theorem 2,   is a unit. 

Let  ∈   be a zero divisor. Then      and 
x is not a unit. Thus,   is a nilpotent element of R. 
Therefore,   is a primary ring. 
Theorem 14. Let   be a commutative WIR with 
unity. If    has no zero divisor, then R is a primary 
ring. 
Proof. Let R be a commutative WIR with unity and 
 ∈   be a zero divisor. Then      for some 
 ∈   and       

Suppose     . Then               
implies            . Since            , we 
have      . That is,    is a zero divisor which is 
a contradiction. Thus      and hence   is a 
nilpotent.  

Therefore,   is a primary ring. 
Remark 6. In the following discussion, we need to 

show that there exists a commutative WIR with 

unity which is not primary ring. We substantiate 

this by the following example. 

Consider Example 4, R is a commutative WIR with 

unity. Define  ‾      with the usual cross 

product. Then  ‾  is a commutative WIR with unity 

but not primary since for       and       in  ‾ , 

                 but       is not nilpotent. 

Theorem 15.  In a commutative WIR R with unity, 

the intersection of all primary ideals is    . 

Proof. Let   be a commutative WIR with unity and 

  be non-zero nilpotent element of  . Now we 

claim that there exists a primary ideal of   that is 

not containing  .  

Let   be the set of all ideals of   which do 

not contain  . Then    is non-empty, since    ∈  . 

By Zorn’s lemma,   ordered by inclusion, has a 

maximal element.  

Let   be a maximal element of  . 

Let   ∈   and    . Clearly,    . Since        

     and hence  ∈     . Then        for 

 ∈   and  ∈  . Hence          ∈  . 

Assume no positive power of   belongs to  , that 

is,     . Hence,  ∈      . Let           

            where  ∈   and  ∈   which 

implies              . Multiplying both 

sides by     , we get             where 

 ∈  . Then                     . Hence , 

             ∈  . But   ∈   and    ∈  . 

Therefore,  ∈   which is a contradiction. Thus, 

  ∈   for some positive integer  . Hence,   is 

primary and also    . 

Thus, the intersection of all primary ideals of 

R  is    . 

Theorem 16.  In a commutative WIR   with unity, 

every primary ideal is prime if and only if   is a 

Boolean ring. 

Proof. Let R be a WIR with unity. 

    Assume that every primary ideal of R is a 

prime ideal. 

Then, the intersection of all prime ideals of R 

is   (nilradical of        =The intersection of all 

primary ideals      (by Theorem 15).  

Hence,   is a Boolean ring. 

    Let   be a Boolean ring and   be an ideal 

of  .  Suppose   is primary ideal of  .  

Let   ∈   and    . Then   ∈  , for some 

positive integer  . Then,     ∈   since   is a 

Boolean ring. Hence, I is a prime ideal of R. 

 
CONCLUSIONS 

 

In this work, we have defined some special type of 

rings, Weak Idempotent Rings (WIRs), provided 

examples of WIRs and studied some basic 

properties of these rings. Completely Prime and 

Primary Ideals in weak idempotent rings were also 

studied in this work. These concepts may motivate 

to study further on the ideal structures of weak 

idempotent rings. 
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