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ABSTRACT: In this paper we study further properties of BH-lattices which is a subclass of BH-
monoids. We furnish certain examples of BH- monoids which are not BH- lattice. We give a 
characterization of BH-lattices in terms of bounded BH-lattices and commutative l-groups. Also 
we prove that every BH-lattice is a direct product of Heyting algebra and commutative l-group 
under certain condition. Further we obtain the decomposition theorem in terms of Boolean 
algebra and a commutative l-group. 
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INTRODUCTION 

 
It is Ward and Dilworth [16] initiated the study 
of residuated lattices and as a result a study on 
lattice ordered Semigroups with residuation as 
an operation have been introduced by K.L.N 
Swamy [10] under the name DRl-Semigroups. Two 
algebras Brouwerian and Heyting are 
generalizations to Boolean algebra (lattice) and 
dual to each other. There is a mismatch in the 
literature regarding the nomenclature of these 
two algebras. Brouwerian algebra defined in [7] 
by Nordhaus, EA and Leolapidus is called as 
Heyting algebra by Birkhoff G [1]. To avoid 
this mismatch, we recall the two definitions in 
the preliminaries and also to clear the confusion 
between the two algebras Swamy [9] introduced 
the notion of Brouwer-Heyting monoids (for 
short BH-monoids) as a general class containing 
both Brouwerian algebra, its dual Heyting 
algebra. He also observed that DRl-semigroups 
and dual DRl-semigroups are examples of BH-
monoids. Further he obtained decomposition 
theorems for both BH-Monoids as well as for 
BH-lattices. 
 This paper investigates further properties of 
BH-lattices and decomposition theorems on BH-
lattices. It is divided into 3 sections. The first 
section is preliminaries in which we recall all the 
existing literature on BH-monoids and BH-

lattices. In section two, we obtain further 
properties on BH-lattices which we use in the 
sequel. The last section is devoted for 
decomposition theorems. In this paper we 
prove every BH-lattice can be represented as a 
direct product of Heyting algebra and a 
commutative l-group with certain conditions. 

The following abbreviations are used in this 
paper. Po-group means partially ordered group, 
l-group means lattice-ordered groups, BH means 
Brouwer-Heyting, DRl means Dually residuated 
lattice ordered. 
 
Preliminaries 

In this section, we recall certain definitions and 
results concerning Heyting algebra [3, 6] and 
Brouwer-Heyting lattices [9] which will be used 
in the sequel. 

 
Definition 1.1. A bounded lattice (L, ∨, ∧) in which to 
each a, b there is a least x such that x ∨ a ≥ b is called a 
Brouwerian algebra. The least element is denoted by 
2− b. 
 
Definition 1.2. A bounded lattice (L, ∨, ∧) is called a 
Heyting algebra if for any given elements a and b in L, 
there is a greatest x such that x ∧ a ≤ b. 
 
Remark 1.1. The greatest element x is denoted by 
a→ b. Clearly a → b is unique. 
 Lemma 1.1. Every Boolean algebra is a Heyting 
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algebra, with a → b given by a′ ∨ b.  
 
Theorem 1.1. Let L be a Heyting algebra and x, y, z 
∈ L. Then the following hold 
1. y ≤ x → y 
2. 1 = x → 1 
3. x ≤ y ⇔ x → y = 1. 
4. x ∧ (x → y) = x ∧ y 
5. y ∧ (x → y) = y and ((x ∧ y) → x) ∧ z = z 
6. y = 1 → y 
7. If x ≤ y, then (z → x) ≤ (z → y) 
 
Theorem 1.2.  Let L be a Heyting algebra and x, y, z 
∈ L. Then the following hold 
1. If x ≤ y, then (y → z) ≤ (x → z) 
2. x → (y → z) = (x ∧ y) → z = (x → y) → (x→ z) 
3. (x → y) ∧ (x → z) = x → (y ∧ z) 
4. (x → y) ∧ z = ((z ∧ x) → (z ∧ y)) ∧ z 
5. L is a bounded distributive lattice. 

 
Note: An equivalent definition of 1.2 is: 
 
Definition 1.3. A non empty set L with three binary 
operations ∧ , ∨ and → and two distinguished 
elements 0 and 1 is a Heyting Algebra if the following 
conditions hold: (H1) (L, ∨, ∧, 0, 1) is a lattice with 0,1 
(H2) x ∧ (x → y) = x ∧ y 
(H3) x ∧ (y → z) = x ∧ [(x ∧ y) → (x ∧ z)]  
(H4) (x ∧ y) → x = 1. 
 
 
Definition 1.4. A system (G, ◦, e, ρ) is called a 
partially ordered group(po-group) if (G, ◦, e) is a group, 
(G, ρ) is a poset and for a, b, x, y ∈ G, xρy ⇒ (a ◦ x ◦ b)ρ(a 
◦ y ◦ b). And it is called a commutative po-group, if ◦ 
is commutative. 
 
Definition 1.5. An l-group is a po-group where (G, ρ) 
is a lattice. 
 
Example 1.1. The additive groups Z - integers, Q -
rationals, R - reals are the simplest examples of l-
groups. 
 

Definition 1.6. A system (G, ◦, e, ρ, →) is a Brouwer-
Heyting (for short BH) monoid if 
1 (G.◦, e) is a commutative semi group with identity 
′′e′′ 
2 (G, ρ) is a partially ordered set and → is binary 
operation on G such that for all x, a, b in                 
G, (x ◦ b)ρa ⇔ xρ(a → b). 
 
The following are examples of Brouwer-Heyting 

monoids. 
 
Example 1.2.  Let (G, ◦, e, ρ) is a commutative po-
group. Define a → b = a ◦ b−1 
 
Example 1.3. (B, ∨, ∧, 0, 1) is a Boolean algebra. Let ◦ 
= ∧, ρ =≤ defined by aρb if 
a ∧ b = a, e = 1, a → b = a ∨ b′. 
 

Example 1.4. Let (G, ∨, ∧, 1) be a Heyting algebra. Let 
o = ∧, e = 1, ρ is the lattice order , a → b is the largest x 
such that b ∧ x ≤ a. That is, the new arrow operation is 
defined in terms of the arrow operation in the 
Heyting algebra by a →N b = b → a. 
 
Example 1.5. Let (L, ∨, ∧, 0) be Brouwerian algebra. 
If we take ρ = (the dual of ≤ 
) ≥, a → b = a − b is the smallest x such that x ∨ b ≥ 
a , o = ∨ and the least 0 as identity element. Thus 
(L, ∨, ∧, 0, −) is a BH monoid where ρ is the dual 
ordering of the lattice (L, ∨, ∧) 
 

Example 1.6.  Let (G, +, ≤, −, 0) be a DRl-monoid. 
We have x + b ≥ a ⇔ a − b ≤ x 
(By the definition of DRl- monoid). Thus the dual 
of DRl-monoid is a BH monoid . 
 
Note: Here after for the sake of convenience, we 
use ≤ instead of ρ. 
 
Theorem 1.3.  In BH monoid (L, o, e, ≤, →) the 
following hold for x, y, z ∈ L 
1. y ≤ z ⇒ x ◦ y ≤ x ◦ z 
2. x ≤ (x ◦ y) → y. 
3. (x → y) ◦ y ≤ x 
4. z → (x ◦ y) = (z → y) → x = (z → x) → y. 
5. e → e = e 
6. x → e = x 
7. e ≤ x → x 
8. x ≤ y ⇒ x → z ≤ y → z 
9. x ≤ y ⇒ z → y ≤ z → x 
10. y ≤ x ⇔ e ≤ x → y 
11. (x → y) ◦ (y → z) ≤ x → z 
12. If x ∨ y exists, then (z ◦ x) ∨(z ◦ y) exists for any z and 
z ◦(x ∨ y) = (z ◦ x) ∨(z ◦ y) 
13. If x ∨ y exists, then (z → x) ∧ (z → y) exist and z 
→ (x ∨ y) = (z → x) ∧ (z → y) 
14. If x ∧ y exists, then (x → z) ∧(y → z) exists and (x 
∧ y) → z = (x → z) ∧(y → z). 
 
Definition 1.7. A BH monoid (L, ◦, e, ≤, →) is a BH-
lattice if 

1. (L, ≤) is a lattice with glb and lub denoted ∧ 
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and ∨ respectively 

2. x ◦ (y ∧ z) = (x ◦ y) ∧ (x ◦ z), ∀x, y, z ∈ L 

3. ((y → x) ∧ e) ◦ x = x ∧ y, ∀x, y ∈ L. 
 
Theorem 1.4. A lattice (L, ∨, ∧, o, e, →), 
where (L, ◦, e) is a commutative monoid and → be a 
binary operation on L,is a BH-lattice if and only if 
1. (y → x) ◦ x ≤ y 
2. (x ∧ z) → y ≤ x → y 
3. x ≤ (x ◦ y) → y, ∀x, y ∈ L 
4. x ◦ (y ∧ z) = (x ◦ y) ∧ (x ◦ z), ∀x, y, z ∈ L 
5. ((y → x) ∧ e) ◦ x = x ∧ y, ∀x, y ∈ L 
Since ∧ is commutative, it follows that               
((y → x) ∧ e) ◦ x = ((x → y) ∧ e) ◦ y, ∀x, y ∈ L. 
 
Remark 1.2. Theorem 1.4 shows that BH-lattices can 
be defined by means of identities alone. 
 
Theorem 1.5. Let (L, ∨, ∧, o, e, →) be a BH-lattice and 
a, b, x ∈ L, then the following hold. 
 
1. x → x = e . 
2. L is distributive. 
3. (x ∨ y) ◦ (x ∧ y) = x ◦ y 
4. x = x ◦ e = (x ∨ e) ◦ (x ∧ e). 
5. If e ≤ x, then x is invertible. 
6. e ∨ x is invertible. 
7. If x is invertible, then e → x is inverse of x. 
8. If y is invertible, then x → y = x ◦ (e → y) 
9. If x and y are invertible, then xoy is invertible and 
(e → x)o(e → y) is the inverse of xoy 
10. e → x is invertible. 
11. If G is the set of all invertible elements, then G 
is an l-group. 
 
Theorem 1.6. (Decomposition Theorem for BH 
monoids and BH-lattices) 
 
1. BH monoid L is direct product of po- group and a BH 
monoid with greatest element if and only if e → x is 
invertible and x → x = e, ∀x ∈ L,. 
2. BH-lattice L is direct product of a commutative 
l-group and a BH-lattice with greatest element. 
 
Further Properties of BH-lattices 

We begin with the following 
 
Example 2.1. Boolean algebra, Heyting algebra given in 
example 1.3 and 1.4 above and l-groups are BH-lattices. 
Heyting algebra is an example of bounded BH-lattice 
while the unbounded l-groups are examples of 
unbounded BH-lattices. 
 

Now we have the following examples which are 
BH-monoids but not BH-lattices. 
 
Example 2.2. The commutative po-group (G, ◦, e, ρ) 
given in the example 1.2 above is not a BH-lattice. 
 
Example 2.3. Consider the lattice given in Fig 1. 
Clearly it is a Brouwerian algebra and hence a BH-
monoid. Since [(c → b) ∧ e]ob  = c ∧ b, it is not a 
BH-lattice. Thus 

 
Figure 1. Example of Brouwerian algebra. 

 
Brouwerian algebra is not a BH-lattice. 
 
Example 2.4. Consider the set A - the multiplicative 
semigroup of the set of non negative integers ordered 
by the divisibility relation. Then A is a DRl 
semigroup with least element 1 and greatest element 0, 
for x, y ∈ A, x → y = ⌊ x ⌋, where ⌊.⌋ is the floor  

                                   
function, x ∧ y = GCF (x, y) and x ∨ y = LCM (x, y). 
Then for the BH-monoid induced from the above DRl-
monoid, [(3 → 2) ∧ e]o2 = (1 ∧ 1).2 = 1.2 = 2≠3 ∧ 2 = 
6. Hence it is not a BH-lattice. Hence DRl-monoid is 
not a BH-lattice. 
 
Note: Here after L stands for a BH-lattice (L, ∨, ∧, 
o, e, →). 
 
Theorem 2.1. In BH lattice L, for x, y ∈ L, if x and y 
are invertible, then x → y is invertible and y → x is 
the inverse of x → y. 
 
Proof. Let in BH lattice L, x, y ∈ L are invertible. 
From theorem 2.9, x → y = xo(e → y) and y → x 
= yo(e → x). Hence (x → y)o(y → x) = [xo(e 
→ y)]o[yo(e → x)] = xo[[(e → y)oy]o(e → x)] 
(associativity) = xo[eo(e → x)] = e. Hence the 
result holds. 
 
Theorem 2.2. For x, y, z ∈ L, the following properties 
holds. 
1. x ≤ y → (y → x) 
2. z ≤ (xoz)→ (x ∧ y) or equivalently (x ∧ y) ≤ (xoz)→z 
3. x ∧ y ≤ [(xoy) → y] ∧ [(xoy) → x] 
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Proof. Proof is a consequence of the definition 
BH-monoid and 1 of theorem 1.3. 
 
Remark 2.1. For a BH-lattice L and a, b ∈ L, b → a = 
max{x ∈ L : aox ≤ b} 
 
Theorem 2.3. Let x, y, z ∈ L. Then the following 
properties holds. 
1. x ≤ ((x ∨ y)oz) → z, x ≤ ((x ∨ y)ox) → y 
2. x → y ≤ (z → y) → (z → x) 
3. x → y ≤ (x → z) → (y → z) 
 
Proof. 
 
1. By 1 of theorem 1.3, xoz ≤ (x ∨ y)oz, xoy ≤ (x ∨ 
y)ox ⇒ x ≤ (x ∨ y)oz → z, x ≤ 
(x ∨ y)ox → y. 
 
2. By 4 of theorem 1.3, we have z → (xoy) = (z 
→ x) → y = (z → y) → x. And by 1 of theorem 
2.2 above we have x ≤ z → (z → x) ⇒ x → y ≤ [z → 
(z → x)] → y (by 8 of theorem 1.3). Thus we 
have (z → y) → (z → x) = z → (yo(z → x)) = (z → 
(z → x)) → y. Hence x → y ≤ (z → y) → (z → x). 
3. By 4 and 9 of theorem 1.3) we have (y → z)oz 
≤ y ⇒ x → y ≤ x → [(y → z)oz] 
= (x → z) → (y → z). 
 
Corollary 2.1. Let x, y ∈ L. Then x → y ≤ e→ (y → x) 
 
Proof. Replace z by x in 3 of theorem 2.3 
 
Notation: For x ∈ L, we shall denote e → x by the 
symbol x−. 
 
Theorem 2.4. For all x, y ∈ L the following properties 
hold. 
1. (xoy)− = x− → y = y− → x 
2. x ≤ y ⇒ y− ≤ x− 
3. x ≤ x−− and x− = x−−− 
4. (x ∨ y)− = x− ∧ y− and x− ∨ y− ≤ (x ∧ y)− 
5. x → y ≤ y− → x− 
6. x−− → y−− = y− → x− 
 
Proof. (1) and (2) are clear from theorem 1.3. 
By 2 of theorem 2.2 it follows that x ≤ e → (e → 
x) = x−−. Hence x ≤ x−−. Now replacing x− in the 
place of x in the above inequality we have x− ≤ 
x−−−. But by 2 in the inequality x ≤ x−−, we obtain 
that x−−− = e → (x−−) ≤ (e → x) = x−. So x−−− = 
x−. By 9 and 13 of theorem 1.3, e → (x ∨ y) = (e 
→ x) ∧ (e → y) = x− ∧ y−. Since x ∧ y ≤ x, y, it 

follows that x− ≤ e → (x ∧ y) = (x ∧ y)− and similarly  
y− ≤ (x ∧ y)−. Hence x− ∨ y− ≤ (x ∧ y)−. (5) follows 
from 2 of theorem 2.3. By 7, 8 and 10 of theorem 
1.5, x−− → y−− = x−−o(e → y−−) = x−−oy−−− = x−−oy− = 
y−o(e → x−) = y− → x−. 
 
Theorem 2.5. Let x, y ∈ L, then the following 
properties hold. 
1. x ∧ y → x ≤ e 
2. e ≤ x → (x ∧ y) 
 
Proof. Follows from 8 and 9 of theorem 1.3 and 1 
of theorem 1.5. 
 
Theorem 2.6. For x, y ∈ L, x → (y → x) = x ⇒ x → 
(x → y) = y → (y → x) 
 
Proof. Let x, y ∈ L. Then x → (x → y) = (x → (y 
→ x)) → (x → y) = (x → (x → y)) → (y → x) (by 
4 of theorem 1.3). Since from theorem 2.2, y ≤ x 
→ (x → y) it follow that y → (y → x) ≤ (x → 
(x → y)) → (y → x) = x → (x → y).  Hence y 
→ (y → x) ≤ x → (x → y). Analogously x→(x → y) 
≤ y → (y → x). 
 
Theorem 2.7. Let a, b, x, y ∈ L such that a ≤ b and x ≤ 
y, then the following properties hold. 
1. aox ≤ boy 
2. (a → x) ∨ (b → y) ≤ b → x 
3. a → y ≤ (a → x) ∧ (b → y) 
4. a → y ≤ b → x 
 
Proof. Suppose a ≤ b and x ≤ y. By 1 in 
theorem 1.3 a ≤ b implies aox ≤ box and x ≤ y 
implies box ≤ boy .  Hence aox ≤ boy.  By 8 
and 9 in theorem 1.3, a ≤ b ⇒ a → x ≤ b → x 
and x ≤ y ⇒ b → y ≤ b → x . Hence (a → x) ∨ (b 
→ y) ≤ b → x. And a ≤ b ⇒ a → y ≤ b → y and x 
≤ y ⇒ a → y ≤ a → x. Hence a → y ≤ (a → x) ∧ (b 
→ y). (4) follows from 2 and 3. 
 
Theorem 2.8. Let x, y, z, s, t ∈ L. Then the following 
properties hold. 
1. x → y ≤ xoz → yoz 
2. (x → y)o(s → t) ≤ (xos) → (yot) 
 
Proof. From 2, 4 and 8 of theorem 1.3, x → y ≤ 
[(xoz) → z] → y = xoz → yoz. From 
(1) we have x → y ≤ xos → yos and s → t ≤ yos → 
toy. Now by theorem 2.7 and 11 of theorem 1.3, 
we have (x → y)o(s → t) ≤ (xos → yos)o(yos → yot) ≤ 
xos → yot. Hence (2) holds. 
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Theorem 2.9. Let x, y ∈ L. (x ∧ y) → (x ∨ y) = (x → 
y) ∧ (y → x) 
 
Proof. By 13 and 14 of theorem 1.3, x ∧ y → x ∨ y = 
[(x ∧ y) → x] ∧ [(x ∧ y) → y] 
= [(x → x)∧(y → x)]∧[(x → y)∧(y → y)] = e∧(y → 
x)∧(x → y) (i) 
And also by 1, 3 and 12 of of theorem 1.3, (x ∨ 
y)o{(x → y) ∧ (y → x)} = [xo{(x → 
y) ∧ (y → x)}] ∨ [yo{(x → y) ∧ (y → x)}] ≤ {xo(y → x)} ∨ 
{yo(x → y)} ≤ x ∨ y. That 
is (x ∨ y)o{(x → y) ∧ (y → x)} ≤ (x ∨ y) ⇒ (x → y) ∧ (y 
→ x) ≤ (x ∨ y) → (x ∨ y) = e 
 
⇒ (x → y)∧(y → x)∧e = (x → y)∧(y → x) (ii) 
Hence from (i) and (ii) we have x ∧ y → x ∨ y = (x 
→ y) ∧ (y → x) 
 
Theorem 2.10.  Let x, y ∈ L. y ≤ x ⇒ (y → x)ox = y 
 
Proof. By 8 of theorem 1.3 and 3 in the definition 
of BH-lattices, y ≤ x ⇒ (y → x) ≤ e 
⇒ (y → x) ∧ e = (y → x) ⇒ ((y → x) ∧ e)ox = (y → 
x)ox ⇒ x ∧ y = (y → x)ox ⇒ 
y = (y → x)ox. 
 
Theorem 2.11.  Let x, y ∈ L. ((x → y) ∧ e)o(x ∨ y) = x 
Proof. By 13 of theorem 1.3 and theorem 2.10, x 
= (x → (x ∨ y))o(x ∨ y) = ((x → 

y) ∧ e)o(x ∨ y). 
 
Theorem 2.12. Let x, y ∈ L. [(x → y) ∧ (y → x)]o(x ∨ 
y) = x ∧ y 
 
Proof. Follows from theorem 2.9 and theorem 
2.10. 
 
Theorem 2.13.  Let x, y, z ∈ L. x ≤ y ≤ z ⇒ (x → 
y)o(y → z) = x → z 
 
Proof. Let x ≤ y ≤ z. By 4 of theorem 1.3 and 
theorem 2.10 we have (y → z)oz = y 
⇒ x → y = x → {(y → z)oz} = (x → z) → (b → c). 
Hence (x → y)o(y → z) = ((x → z) → (y → z))o(y 
→ z). And by 8 of theorem 1.3 we have x → z ≤ y 
→ z. Hence by theorem 2.10 (x → y)o(y → z) = 
((x → z) → (y → z))o(y → z) = x → z. 
 
Theorem 2.14. For x, y, z ∈ L the following properties 
hold. 
1. (x → y)oz ≤ x → (y → z) , 
2. (x → z)oy ≤ (xoy) → z 
3. (e → x)o(e → y) ≤ e → (xoy) 

 
Proof. By 3, 4 and 9 of theorem 1.3, we have (y 
→ z)oz ≤ y.  ⇒ x → y ≤ x → 
(y → z)oz = (x → (y → z)) → z ⇒ (x → y)oz ≤ x 
→ (y → z). By 2, 4 and 8 of 
 
theorem 1.3, x ≤ (xoy) → y. ⇒ x → z ≤ ((xoy) 
→ y) → z = ((xoy) → z) → y 
⇒ (x → z)oy ≤ (xoy) → z. Finally from (1) and 
9 of theorem 1.3 we have (e → 

x) o(e → y) ≤ e → [x → (e → y)] ≤ e → (xoy). 
 
Theorem 2.15. For x, y ∈ L, (xoy)−− ≤ (x−oy−)− = 
x−−oy−− 
 
Proof. From theorem 2.14, (e → x)o(e → y) ≤ e → 
xoy. Now by 9 of theorem 1.3 and theorem 2.4 
we have (xoy)−− ≤ e → [(e → x)o(e → y)] = (e → (e 
→ x)) → (e → y) = x−− → y− = (x−oy−)− . Now by 8 
and 10 of theorem 1.5, x−− → y− = x−−o(e → y−) = 
x−−oy−− 
 
Theorem 2.16. For x, y, z ∈ L the following properties 
hold. 
1. x ∧ y = e = x ∧ z ⇒ x ∧ (yoz) = e 
2. x ∨ y = e = x ∨ z ⇒ x ∨ (yoz) = e 
 
Proof. Let x, y, z ∈ L. Let x ∧ y = e = x ∧ z. ⇒ e ≤ x, y, z. 
Hence e ≤ x ∧ y ∧ z and by theorem 2.7, e ≤ yoz. ⇒ e 
≤ x∧(yoz). Now by 1 of theorem 1.3, x = xoe ≤ 
xo(x∧y ∧z) 
⇒ x ∧ (yoz) ≤ xo(x ∧ y ∧ z) ∧ (yoz) = (xox) ∧ (xoz) ∧ (yox) ∧ 
(yoz) = (x ∧ y)o(x ∧ z) = 
eoe = e i.e, x ∧ (yoz) ≤ e. So it follows that x ∧ (yoz) 
= e 
Let x ∨ y = e = x ∨ z. ⇒ x, y, z ≤ e. Hence x ∨ y ∨ z ≤ e 
and with theorem 2.7, yoz ≤ e. 
⇒ x ∨ (yoz) ≤ e. By 1 of theorem 1.3 and 12 of 
theorem 1.3, xo(x ∨ y ∨ z) ≤ x = xoe 
⇒ xo(x ∨ y ∨ z) ∨ (yoz) = (xox) ∨ (xoz) ∨ (yox) ∨ (yoz) = (x 
∨ y)o(x ∨ z) = eoe = e and 
xo(x∨y∨z)∨(yoz) ≤ x∨(yoz). i.e, e ≤ x∨(yoz). Hence it 
follows that x∨(yoz) = e 
 
Notation: For any x and y in L, we shall write x ∗ 
y = (x → y) ∧ (y → x). 
 
Theorem 2.17. For any x, y, z ∈ L, the following 
properties hold. 
1. x ∗ y ≤ e with equality iff x = y. 
2. x ∗ y = y ∗ x 
3. (x ∨ y) ∗ (x ∧ y) = x ∗ y 
4.  (x ∗ y)o(y ∗ z) ≤ x ∗ z 
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5. x ∗ y ≤ (x → y) ∗ e 
6. x ≤ e ⇒ x ∗ e = x 
 
Proof. Using 8 of theorem 1.3 and theorem 2.9, x ∗ 
y = (x → y) ∧ (y → x) = (x ∧ y) → (x ∨ y) ≤ e. If x = 
y, then by 1 of theorem 1.5, x ∗ y = e. 
Conversely if x ∗ y = e, then x ∗ y = (x ∧ y) → (x ∨ 
y) = e ⇒ e ≤ (x ∧ y) → (x ∨ y). ⇒ (x ∨ y) ≤ (x ∧ y) 
⇒ x ∨ y = x ∧ y and consequently it follows that x = 
y. Hence (1) holds. Evidently (2) is trivial. Since by 
theorem 2.9, (x ∨ y)∗(x ∧ y) = [(x ∨ y)∧(x ∧ y)] → [(x ∨ 
y)∨(x ∧ y)] = (x ∧ y) → (x ∨ y) = x ∗ y. Hence (3) 
holds. Again (x → y) ∧ (y → x) ≤ x → y, y → x and 
(y → z) ∧ (z → y) ≤ y → z, z → y. (x ∗ y)o(y ∗ z) = [(x 
→ y) ∧ (y → x)]o[(y → z) ∧ (z → y)] ≤ (x → y)o(y → 
z) (by theorem 2.7) ≤ x → z (by 11 of theorem 1.3). 
That is (x ∗ y)o(y ∗ z) ≤ x → z. By a similar 
argument (x ∗ y)o(y ∗ z) ≤ z → x. So it follows that 
(x ∗ y)o(y ∗ z) ≤ (x → z) ∧ (z → x) = x ∗ z. Hence (4) 
holds. By theorem 
2.3 we have y → x ≤ (x → x) → (x → y) = e → (x 
→ y) ⇒ x ∗ y = (x → y) ∧ (y → x) ≤ (x → y) ∧ (e → (x 
→ y)) = (x → y) ∗ e. So x ∗ y ≤ (x → y) ∗ e. Finally 
let x ≤ e ⇒ e → e = e ≤ e → x (by 9 of theorem 1.3). 
⇒ x = e ∧ x ≤ x ∧ (e → x) = x ∗ e ≤ x. Hence x ∗ e = x 
 
Definition 2.1. For n ∈ N and x ∈ L, define xn = 
xoxo...ox (n times). 
 
Theorem 2.18. If there exists an element x ∈ L such 
that e < x, then the set L is an infinite and not bounded 
above. 
Proof. Let e < x and x ≠ e. Consider the 

sequence {x2
n 

}n∈N, where N is the set of non-
negative integers. With 1 of theorem 1.3, x ≤ x2. 
If x2 = x, then by 2 of theorem 1.3, x ≤ x2 → x = x 
→ x = e. i.e; x ≤ e. Since e < x, it follows that 
x = e which is a contradiction. So x2 ≠ x. If x2 
= e, then x = x → e = x → x2 = (x → x) → x = 
e → x. Since e < x, by 9 of theorem 1.3, e → x ≤ 
e → e = e. This implies that x = e → x ≤ e. 
Hence x = e. In both cases there is a 
contradiction. So e < x < x2. This implies that x2 
≤ x4. If x2 = x4, then by 2 of theorem 1.3, x2 ≤ 
[x2ox2] → x2 = e. i.e; x2 ≤ e. Hence x2 = e which is a 
contradiction. Hence e < x < x2 < x4. Suppose 

that e < x < x2 < x4 < ... < x2
n 

for some n ∈ N. 

This implies that x2
n 

≤ x2
n

ox2
n 

. If x2
n 

= x2
n

ox2
n

, 

then by 2 of theorem 1.3, x2
n 

≤ [x2
n

ox2
n 

] → x2
n 

= 

e. i.e; x2
n 

≤ e. Hence x2
n 

= e which is a 
contradiction. Hence by the principle of 

mathematical induction, the chain e < x < x2 < x4 

< ... < x2
n

... does not terminate at some point. So, 

the sequence of elements x2
n 

are all distinct. 
Hence the set L is infinite and unbounded above. 
 
Corollary 2.2.  If L is bounded above by the element 
t, then t = e. 
 
Theorem 2.19. For x, y ∈ L the following properties 
hold. 
1. x ≤ e and y ≤ e ⇔ xoy ≤ x ∧ y 
2. e ≤ x and e ≤ y ⇒ x ∧ y ≤ xoy 
3. e ≤ x and y ≤ e ⇒ y ≤ xoy ≤ x 
 
Proof. Follows from 1 of theorem 1.3. 
 
Theorem 2.20. For x ∈ L and any n ∈ N, xn ≤ e ⇔ x ≤ 
e. 
 
Proof. Let xn ≤ e. Repeatedly applying the 
associative and distributive properties of o over 
the operation ∨, we have (x∨e)n = xn∨xn−1∨...∨x∨e = 
(xn∨e)∨(xn−1∨...∨x∨e) = xn−1∨...∨x∨e (as xn ≤ e) = 
(x∨e)n−1. That is (x∨e)o(x∨e)n−1 = (x∨e)n−1 ⇒ (x∨e) ≤ 
[(x ∨ e)o(x ∨ e)n−1] → (x ∨ e)n−1 = (x ∨ e)n−1 → (x ∨ e)n−1 
= e ⇒ x ∨ e = e ⇒ x ≤ e. Hence x ≤ e (by 2 of 
theorem 1.3). 
The converse follows from theorem 2.7 by 
induction. 
 

Corollary 2.3. For x ∈ L, x ∗ e = x ⇔ x ≤ e. Proof. 
Follows from theorem 2.17 and theorem 2.20. 
 
Corollary 2.4. Let x, y ∈ L and y is invertible 
element. Then for any n ∈ N, xn ≤ 
yn ⇔ x ≤ y. 
 
Proof. Let xn ≤ yn. Then (xo(e → y))n = xno(e → 
y)n ≤ yno(e → y)n = (yo(e → y))n = e. Thus by 
theorem 2.20, xo(e → y) ≤ e and hence x ≤ y. The 
converse follows from 1 of theorem 2.7. 
 
Theorem 2.21. For x ∈ L and any n ∈ N, xn = e ⇔ x 
= e. 
Proof. From theorem 2.20, x ≤ e. Observe that 
x = x → e = x → xn = x → (xoxn−1) = (x → x) 
→ xn−1 = e → xn−1 = xn → xn−1 (by 4 of theorem 
1.3). Since x ≤ e, x ∧ e = x. So by the 
distributive property of o over ∧ repeatedly, 
we have xn = (x ∧ e)n = xn ∧ xn−1 ∧ ... ∧ x ∧ e = xn−1 ∧ 
... ∧ x ∧ e = (x ∧ e)n−1 = xn−1. Hence x = xn → xn−1 = 
e. The converse is trivial. 
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Corollary 2.5. In an l-group, every element other 
than the identity element has an infinite order. 
 
Definition 2.2. An element l ∈ L is called unity if and 
only if xo(l → x) = lol, ∀x ∈ L. 
 
Lemma 2.1. In L with unity l, the following 
properties hold. 
1. lol = l 
2. l ≤ e 
3. e = e → l = (e → l) → l 
 
Proof. Let x = e in definition 2.2. Then it is 
immediate that lol = l. Thus by 2 and 4 of 
theorem 1.3 it follows that l ≤ (lol) → l = e.  
Let t = e → l.  Then t = e → (lol) = (e → l) → l 
= t → l i.e t = t → l. By 4 of theorem 1.3, e = t 
→ t = (t → l) → t = t → (lot) = (t → t) → l = e → l 
= t. Thus e → l = e. 
 
Theorem 2.22. Unity element is unique, if it exists 
in L. 
 

Proof. Let l and l
′ 

be unities. This implies e 
→ l = e = e → l′ and l ≤ e ⇒ l → l′ ≤ e → l′ = 
e. Now by 3 in the definition of BH-lattices 
and definition of unity, l ∧ l′ = [(l → l′) ∧ e]ol′ = 
(l → l′)ol′ = l. By a similar argument l′ ∧ l = l′. 
Hence l = l′. 
 
Corollary 2.6. If BH-lattice L has unity, then L is 
an l-group if and only if l = e. 
 
Theorem 2.23. If L with unity contains a least 
element α, then α = l 
 
Proof. Since α is least element of L, α ≤ e ⇒ (αoα) ≤ 
eoα = α (by 1 of theorem 1.3). This implies αoα = 
α (as α is least). Thus l = (l → α)oα = (l → 
α)oαoα = loα ≤ eoα = α (since l ≤ e and by 1 of 
theorem 1.3). Since α is least, α = l. 
 
Theorem 2.24. If L with unity l, contains an 
element x such that x < l, then the set L is an 
infinite set and unbounded below. 
 
Proof. Let x < l and x  = l. Since by lemma 2.1 l ≤ e, 
it follows that x < l ≤ e ⇒ x2 ≤ lox ≤ x (by 1 of 
theorem 1.3). If x2 = x, then x = x2 ≤ lox ≤ x ⇒ x = 
lox . Then the above argument together with l 
and 4 of theorem 1.3, e = e → l = (x → x) → l = x 
→ (xol) = x → [xo(l → x)]ox = x → xo(l → x) = x 

→ l. ⇒ e ≤ x → l ⇒ l < x which is a contradiction. 
Thus x2≠x 
If x2 = l, then x → l = x → x2 = (x → x) → x = e → 
x. Since x ≤ e, by 9 of theorem 1.3, e ≤ e → x. So 
e ≤ e → x = x → l ⇒ l < x which is a 
contradiction. Hence x2≠l. In both cases there 
is a contradiction, hence x2 < x < l. ⇒ x2ox2 ≤ 
x2. If x2 = x4, then l = x2o[x4 → l] = x2o(x2 → l) = 
xol. Hence by the same argument as above l < x, 
which is a contradiction. Hence x4 < x2 < l ≤ e. In 

the similar fashion, the sequence of elements x2
n 

are all distinct. Hence the set L is infinite and 
unbounded 
below. 
 
Corollary 2.7. If L with unity is bounded below by 
the element t, then t = l. 
 
Theorem 2.25.  Let L be a BH-lattice with unity l. 
Then Ll = {x ∈ L : x → l = e} is a BH-lattice with 
least and greatest element.  And Ll is subset of 
the BH-lattice Le = {x ∈ L : e → x = e}. 
 
Proof. By lemma 2.1, lol = l and e → l = e. 
Hence both l and e belong to Ll. For x ∈ Ll, e 
→ x = (x → l) → x = (x → x) → l = e → l = e. 
Hence e is the greatest element and l is the 
least element in Ll. 
 
Let x, y ∈ Ll. Then x ≤ e and y ≤ e. This implies 
that xoy ≤ e. Hence (xoy) → l ≤ e → l = e. 
Furthermore by theorem 2.14 and 8 of theorem 
1.3, (x → l)oy ≤ (xoy) → l. This implies y ≤ (xoy) 
→ l. Hence e = y → l ≤ {(xoy) → l} → l = (xoy) 
→ l. Thus (xoy) → l = e. By 14 of theorem 
1.3, (x ∧ y) → l = (x → l) ∧ (y → l). Hence Ll is 
closed under both o and ∧. Since x, y ≤ x ∨ y ≤ 
e, by 8 of theorem 1.3, e = (x → l) ∧ (y → l) ≤ (x ∨ 
y) → l ≤ e → l = e. Hence x ∨ y ∈ Ll. Moreover (x 
→ y) → l = (x → l) → y = e → y = (y → l) → y = 
(y → y) → l = e → l = e. So x → y ∈ Ll. Hence Ll 
is a BH-lattice with l as least element and e as 
greatest element. Clearly Ll ⊆ Le. Finally by the 
proof of theorem 4.2 of [9], Le is a BH-lattice with 
greatest element. 
 
Theorem 2.26. (L, o) is a group iff ∀x, y, z ∈ L, x → y 
= x → z ⇒ y = z. 
Proof. Let (L, o) be a group and let for any x, y, z 
∈ L, x → y = x → z. Hence by 9 of theorem 1.5 
it follows that (x → y)−1 = y → x = z → x = (x 
→ z)−1. ⇒ (y → x) → (e → x) = (z → x) → (e → x). 
Using 4 of theorem 1.3 and 8 of theorem 1.5, this 
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implies that (y → (xo(e → x)) = (z → (xo(e → x)). 
So y = y → e = z → e = z. 
Conversely let x, y, z ∈ L, x → y = x → z ⇒ y = z. 
Then e → {yo(e → y)} = (e → 
y) → (e → y) = e = e → e. So that yo(e → y) = e. 
Hence y is invertible element. Hence (L, o) is a 
group. 
 
Theorem 2.27. L is an l-group if (L, o) is a group 
and further a → b is the solution of the equation box = 
a. 
 
Proof. If (L, o) is a group, then by the definition 
of BH-lattice and 1 of theorem 1.3 L = (L, o, ≤, →) 
is an l-group. Again by 7 and 8 theorem 1.5, bo(a 
→ b) = bo[ao(e → b)] = a. Hence a → b is the 
solution of the equation box = a. 
 
Theorem 2.28. BH-lattice L bounded below is a Heyting 
Algebra if xoy = x∧y, ∀x, y ∈ L.  
Also, in L, if (L, ≤, →) is a Heyting Algebra then, xoy 
= x ∧ y, ∀x, y ∈ L. 
 
Proof. The first part of the theorem is trivial. For 
the second part let (L, ≤, →) be a Heyting Algebra. 
For a, b ∈ L, a → b is the largest x such that x ∧ b 
≤ a. a ∧ b ≤ a ⇒ a ≤ a → b ⇒ a ∧ b ≤ (a → b) ∧ b 
= a ∧ b (by 4 of theorem 1.1, as L is Heyting 
algebra). Hence a ∧ (a → a) = a ∧ a ⇒ a ∧ e = a ⇒ a 
≤ e. Hence e is the largest element of the lattice. 
Hence by 1 of theorem 1.3, aob ≤ a, b ⇒ aob ≤ a ∧ 
b. ⇒ aob = (aob) ∧ (a ∧ b) = (a ∧ b) ∧ [aob → a ∧ b] (by 4 
of theorem 1.1 in a Heyting Algebr (L, ≤, →)) = a 
∧ b (by 3 of theorem 1.1). 
 
Theorem 2.29. Let L be with unity l, if (L, ∨, ∧) is a 
Boolean algebra, then o = ∧ and x′ = l → x. 
 
Proof. By theorem 2.23 and corollary 2.2, l is the 
least element and e is the greatest element of the 
Boolean algebra. Let x ∈ L. Then there exists an 
element x′ ∈ L such that x ∨ x′ = e and x ∧ x′ = l. 
Hence by theorem 2.28, o = ∧ and xox′ = x ∧ x′ = l. 
Hence x ∧ (l → x) = xo(l → x) = l and xox′ = l 
⇒ x′ ≤ l → x. ⇒ e = x ∨ x′ ≤ x ∨(l → x) ⇒ x ∨(l → 
x) = e. So l → x is the complement of x in the 
Boolean algebra. Hence by uniqueness of 
complement x′ = l → x 
 
Decomposition Theorems of BH-lattices 

Lemma 3.1. Let L be a BH-lattice and for x, y, z ∈ L, 
x → (zoz) ≤ (x → z)o(e → z) 
holds. Then the following are equivalent. 

1. H = {x ∈ L : xox → x = e} 
2. H′ = {x ∈ L : xox = x} 
3. B = {x ∈ L : e → x = e} 
 
Proof. Let x → (zoz) ≤ (x → z)o(e → z). Since by 
theorem 2.8, (x → z)o(e → z) ≤ 
(xoe) → (zoz), it follows that (xoe) → (zoz) = (x → 
z)o(e → z). 
Let x ∈ H ⇒ xox → x = e ⇒ x ≤ xox. As x ≤ 
xox → x = e, it follows that xox ≤ x(by 1 and 2 
of theorem 1.3). So that xox = x. Thus H is the set 
of all idempotent elements with respect to the 
operation o. Also if xox = x, then clearly xox 
→ x = x → x = e. Let x ∈ H ⇒ (xox) → x = e. 
Thus by 4 of theorem 1.3, 
e → x = {(xox) → x} → x = (xox) → (xox) = e. 
Hence x ∈ B. Furthermore let 
y ∈ B ⇒ e → y = e. Then by 1 and 3 of theorem 
1.3, y = yo(e → y) ≤ e ⇒ y2 ≤ y. And e = y2 → y2 = 
(y2 → y)o(e → y) = y2 → y ⇒ y ≤ y2. Hence y2 = y. 
 
Theorem 3.1. A BH-lattice L is direct product of 
Heyting algebra and a commutative l-group if 
1. x → (zoz) ≤ (x → z)o(e → z) 
 
2. there exists an idempotent element 0 ∈ L such 
that 0 ≤ x, for any idempotent element x ∈ L. 
 
Furthermore if L is the direct product of a Heyting 
algebra and a commutative l-group, then condition 
(1) holds. 
 
Proof. Let the conditions (1) and (2) hold. 
Since by theorem 2.8, (x → z)o(e → z) ≤ (xoe) → 
(zoz), it follows that (xoe) → (zoz) = (x → z)o(e → 
z). (α) Consider the set H = {a ∈ L : (aoa) → a = e}. By lemma 3.1, the proof of H is a 
 
BH-lattice with greatest element e is in similar 
line to the proof 2 of theorem 1.6 [9]. Further for 
x, y ∈ H, as xoy ≤ x and xoy ≤ y it follows that xoy ≤ 
x ∧ y. By theorem 2.7, x ∧ y ≤ x, y implies that x ∧ y 
= (x ∧ y)o(x ∧ y) ≤ xoy. Hence x ∧ y = xoy. Thus 
by theorem 2.28 H is a Heyting algebra. 
Moreover, as 0, e ∈ H, H is non-trivial. 
Now consider the set G = {a ∈ L : (aoa) → a 
= a}.  Since e ∈ G, G  = ∅.  Let a ∈ G. Then ao(e 
→ a) = {(aoa) → a}o(e → a) = (aoa) → (aoa) = e 
(by (α) above). Hence a is an invirtible element. 
Let a ∈ L be an invirtible element. Then ao(e → 
a) = e = (aoaoe) → (aoa) = [(aoa) → a]o(e → a)(by 
(α) above and 7 of theorem 1.5)⇒ a = (aoa) → a. 
Hence G is the set of all invertible elements of 
L. By 11 of theorem 1.5, G is a commutative l-
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group. As e ∈ G and using 10 of theorem 1.5, e 
→ x ∈ G, ∀x ∈ L, G is non-trivial. 
Hence L is the direct product of G and H, by a 
proof in a comparable strip to the proof 2 of 
theorem 1.6 [9]. 
Furthermore if L is the direct product of a 
Heyting algebra and a commutative l-group, 
then trivially condition (1) holds. 
 
Theorem 3.2. BH-lattice L is direct product 
of a BH-lattice with least and greatest elements and a 
commutative l-group if and only if 
1. (xoy) → (zoz) ≤ (x → z)o(y → z) 
2. There exists an element l such that      xo(l → x) 
= lol  
 
Proof. Let the conditions given in (1) and (2) 
hold. Then by lemma 2.1, lol = l and e → l = e, 
And from (1) by 2 of theorem 2.8 it follows that 
(xoy) → (zoz) = (x → z)o(y → z). Consider G = {x 
∈ L : x → l = x} and Ll = {x ∈ L : x → l = e}. 
Then by theorem 2.25, Ll is a BH-lattice with least 
element l and greatest element e. Since both e 
and l are in L1, it is non-trivial. 
Fore x, y ∈ G, (xoy) → l = (xoy) → (lol) = (x → 
l)o(y → l) and (x ∧ y) → l = (x → l) ∧ (y → l). 
Hence G is closed under o and ∧. Furthermore 
(x → y) → l = (x → l) → y = x → y and 
consequently x → y ∈ G. And xo(e → x) = (x → 
l)o{(l → l) → x} = (x → l)o{(l → x) → l} = {xo(l → 
x)} → (lol) = l → l = e. Hence x is invertible 
element. Thus G is a ∧ semi lattice and hence G 
is a commutative l-group. By lemma 2.1, e ∈ G 
and using 10 of theorem 1.5, e → x ∈ G, ∀x ∈ L. So 
G is non-trivial. 
Now for a ∈ L, let t = a → l and s = a → t . Then 
t → l = (a → l) → l = a → (lol) = a → l = t 
and s → l = (a → (a → l)) → l = (a → l) → (a 
→ l) = e. Thus t ∈ G and s ∈ Ll. Since l ≤ e by 
9 of theorem 1.3, a = a → e ≤ a → l. Thus by 
theorem 2.10, tos = (a → l)o(a → (a → l)) = a. 
Now let a = t′os′, where t′ ∈ G and s′ ∈ Ll. Then 
a → l = (t′os′) → lol = (t′ → l)o(s′ → l) = eo(t′ → l) 
= t′. Hence t = t′ and consequently tos = t′os′ = 
tos′ ⇒ (e → t)o(tos) = (e → t)o(tos′) ⇒ s = s′. 
Clearly {e} = G ∩ B. Thus L is the direct product 
of B and G. 
Conversely, if L is the direct product of BH-
lattice with least and greatest element B and 
commutative l-group G, then trivially 
conditions (1) and (2) in the theorem hold. 
 
Corollary 3.1. For a BH-lattice L with unity and 

bounded below the following are equivalent 
1. (xoy) → (zoz) ≤ (x → z)o(y → z), ∀x, y, z ∈ L. 
2. x → (zoz) ≤ (x → z)o(e → z), ∀x, z ∈ L. 
3. L is the direct product of Heyting algebra and a 
commutative l-group. 
 
Theorem 3.3. BH-lattice L is direct product of a 
Boolean algebra and a commutative l-group if and only 
if 
1. x → (yoy) ≤ (x → y)o(e → y) for all x, y ∈ L 
2. there exists an element l in L such that               
(l → x)ox = lol and l → (l → x) = x for all x ∈ L. 
 
Proof. Suppose that the condition in (1) and (2) 
hold. Let G be the set of all invertible elements 
of L and H be the set of all idempotent elements 
of L. By lemme 3.1 and the same argument as in 
the proof of theorem 3.1, H is a BH-lattice with 
greatest element e, o = ∧ and L is direct product 
of G and H. 
 
For any x ∈ H, by 9 of theorem 1.3) x ≤ e ⇒ e ≤ e 
→ x ≤ e ⇒ e = e → x. Hence 
as l ∈ H, it follows that e = e → (l → x). So by the 
condition given in 2 and 4 of theorem 1.3, l → (l 
→ x) = x ⇒ [l → (l → x)] → l = x → l ⇒ e = e 
→ (l → x) = [l → (l → x)] → l = x → l ⇒ l ≤ x. 
Hence H is bounded below by the element l. 
Thus by theorem 2.28, H is a Heyting algebra. 
Now for x ∈ H, x ∧ (l → x) = [l → (l → x)] ∧ (l → 
x) = [l → (l → x)]o(l → x) = l. 
Moreover, l = [l → {x ∨ (l → x)}]o[x ∨ (l → x)] 
= [[l → {x ∨ (l → x)}] ∧ x] ∨ 
[[l → {x ∨ (l → x)}] ∧ (l → x)].  This implies [l 
→ {x ∨ (l → x)}] ∧ x = l and 
[l → {x ∨ (l → x)}] ∧ (l → x)] = l.  Hence l 
→ {x ∨ (l → x)} ≤ l → x and l → {x ∨ (l → x)} 
≤ l → (l → x) = x. Hence l → {x ∨ (l → x)} ≤ (l → 
x) ∧ x = l. Hence l → {x ∨(l → x)} = l. Hence e = l 
→ l = l → [l → {x ∨(l → x)}] = x ∨(l → x). Hence 
H is a Boolean algebra. Thus L is the direct 
product of Boolean algebra and a 
commutative l-group. 

Conversely if L is the direct product of a 
Boolean algebra H and a commutative l-group G, 
then trivially condition (1) and (2) hold. 
 
Definition 3.1. A BH-lattice L is called idempotent if 
x2 = x, ∀x ∈ L. 
 
Theorem 3.4. An idempotent BH-lattice L with 
unity l is a direct product of Boolean algebra and 
commutative l-group iff l → (l → x) = x, ∀x ∈ L. 
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Proof. Suppose that l → (l → x) = x, ∀x ∈ L. Let 
H = {x ∈ L : e → x = e} and G be the set of all 
invertible elements of L. The proof of H is a BH-
lattice with greatest element e is analogous to the 
proof 2 of theorem 1.6[9] and further L is the 
direct product of H and G can be obtained. 
Furthermore for x, y ∈ L, xoy ≤ x and xoy ≤ y. 
Hence xoy ≤ x ∧ y. By theorem 2.7, x ∧ y = (x ∧ y)o(x 
∧ y) ≤ xoy. Thus xoy = x ∧ y. Finally by the same 
argument as in the proof of theorem 3.3, x′ = l → 
x, ∀x ∈ H. Thus H is a Boolean algebra. 
Conversely if L is the direct product of Boolean 
algebra and commutative l-group, then the 
condition l → (l → x) = x, ∀x ∈ L is trivial. 
 
Open problem 

1. Which group of BH-lattice can be 
decomposeble in to irreducible non-trivial sub 
algebras of BH-lattices? 
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