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ABSTRACT: The Dirichlet and Neumann boundary value problems for the linear second-order
scalar elliptic differential equation with variable coefficients in a bounded two-dimensional domain are
considered. The right-hand side the PDE belongs to H~'(Q2) or H~'(£2), when neither classical nor
canonical conormal derivatives of solutions are well defined. The two-operator approach and appro-
priate parametrix (Levi function) are used to reduce each of the problems to two different systems
of two-operator boundary-domain integral equations (BDIEs). Although the theory of BDIEs in 3D
is well developed, the BDIEs in 2D need a special consideration due to their different equivalence
properties. As a result, we need to set conditions on the domain or on the associated Sobolev spaces
to ensure the invertibility of the corresponding parametrix-based integral layer potentials and hence
the unique solvability of BDIEs. The equivalence of the two-operator BDIE systems to the original
problems, BDIE system solvability, solution uniqueness/nonuniqueness and invertibility BDIE system
are analyzed in the appropriate Sobolev spaces. It is shown that the BDIE operators for the Neumann
BVP are not invertible, and appropriate finite-dimensional perturbations are constructed leading to
invertibility of the perturbed operators.

Keywords/phrases: Analysis, Boundary-Domain Integral Equations, Parametrix, Partial
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INTRODUCTION

Partial differential equations (PDEs) with vari-
able coefficients often arise in mathematical
modelling of inhomogeneous media (e.g. func-
tionally graded materials or materials with
damage induced inhomogeneity) in solid me-
chanics, electromagnetics, thermal conductivity,
fluid flows through porous media, and other ar-
eas of physics and engineering. Generally, ex-
plicit fundamental solutions are not available
if the PDE coefficients are not constant, pre-
venting reduction of boundary value problems
(BVPs) for such PDEs to explicit boundary in-
tegral equations (BIEs), which could be effec-
tively solved numerically. Nevertheless, for a
rather wide class of variable-coefficient PDEs it
is possible to use instead an explicit parametrix
(Levi function) associated with the fundamental
solution of the corresponding frozen-coefficient
PDEs, and reduce BVPs for such PDEs to
systems of boundary-domain integral equations
(BDIEs) for further numerical solution of the
latter, see for example Chkadua et al. (2009,

* Author to whom correspondence should be addressed.

2011); Mikhailov (2002, 2005b, 2006). Still this
(one-operator) approach does not work when the
fundamental solution of the frozen-coefficient
PDE is not known explicitly (as e.g. in the
Lameé system of anisotropic elasticity). To over-
come this difficulty, one can apply the so-called
two-operator approach, formulated in Mikhailov
(2005a) for a certain nonlinear problem, that
employs a parametrix of another (second) PDE,
not related with the PDE in question, for re-
ducing the BVP to a BDIE system. Since the
second PDE is rather arbitrary, one can always
choose it in such a way, that its parametrix is
known explicitly. The simplest choice for the
second PDE is the one with an explicit fun-
damental solution. For a function from the
Sobolev space H!'(f2), a classical conormal de-
rivative in the sense of traces may not exist
(Mikhailov, 2015, Appendix A). However, when
this function satisfies a second order PDE with
a right-hand side from H~!(Q), the generalized
conormal derivative can be defined in the weak
sense, associated with the first Green identity
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and an extension of the PDE right-hand side to
H1(Q), see (McLean, 2000, Lemma 4.3) and
(Mikhailov, 2011, Definition 3.1). Since the ex-
tension is not unique, the conormal derivative
appears to be an operator that is not unique,
which is also nonlinear in u unless a linear re-
lation between u and the PDE right-hand side
extension is enforced. This creates some diffi-
culties in formulating the BDIEs. These difficul-
ties are addressed in Mikhailov (2015, 2018) pre-
senting formulation and analysis of direct segre-
gated BDIE systems equivalent to the Dirich-
let and Neumann problems for the divergent-
type PDE with a variable scalar coefficient and
a general right-hand side. This needed a non-
trivial generalization of the third Green iden-
tity and its conormal derivative for such func-
tions, which extends the approach implemented
in Mikhailov (2006); Chkadua et al. (2009, 2010,
2011); Mikhailov (2013) for the PDE right-hand
from Lo(£2). In Ayele Tsegaye (2021b), using the
two-operator approach in settings different from
those in Ayele Tsegaye and Mikhailov (2010,
2011), a generalization of the two-operator third
Green identity and its conormal derivative is de-
rived and the two-operator BDIEs for variable-
coefficient Dirichlet, Neumann and mixed BVPs
are analyzed in 3D.

Nowadays, the theory of BDIEs in 3D is well
developed (Mikhailov, 2002, 2005a; Chkadua
et al., 2009, 2010, 2011), but the BDIEs in 2D
need a special consideration due to their differ-
ent equivalence properties. As a result, we need
to set conditions on the domain or on the asso-
ciated Sobolev spaces to ensure the invertibility
of the corresponding parametrix-based integral
layer potentials and hence the unique solvability
of BDIEs (Dufera Tamirat and Mikhailov, 2015;
Ayele Tsegaye et al., 2017, 2019; Ayele Tsegaye,
2021a; Ayele Tsegaye and Bekele Solomon, 2023;
Ayele Tsegaye and Dagnaw Mulugeta, 2021a).
In this paper, we extend the results in
(Ayele Tsegaye and Yimer Markos, 2023; Ayele
Tsegaye, 2021a), and consider the Dirichlet
and Neumann BVPs for the linear second-order
scalar elliptic differential equation with vari-
able coefficient in a two-dimensional bounded
domain. The PDE right-hand side belongs to
H1(Q) or H(9) when neither classical nor
canonical conormal derivatives of solutions are
well defined. The two-operator approach and
appropriate parametrix (Levi function) are used
to reduce each problem into two different sys-
tems of BDIEs. The properties of the corre-
sponding potential operators are investigated.

The equivalence of the two-operator BDIE sys-
tems to the original problems, BDIE system
solvability, solution uniqueness/nonunigeuness
and invertibility BDIE system are analyzed in
the appropriate Sobolev spaces. It is shown
that the BDIE operators for the Neumann
BVP are not invertible, and appropriate finite-
dimensional perturbations are constructed lead-
ing to invertibility of the perturbed operators.

PRELIMINARIES

Conormal derivatives. Let €2 be a domain in
R? bounded by a smooth curve 0. Consider
the scalar elliptic differential equation, which for
sufficiently smooth function « and = € 2 has the
following strong form,

Au(z) := A(z, 0)u(x)
2 ou(x) -
= alx = f(x), (1
;Zl < (z) ) (@), (1)

8;1:1-
where u is unknown function and f is a given
function in Q. We assume that a € C*(R?) and

0
6xi

0 < amin < a(x) < apax < 0, Vze R2.

In what follows D(Q) = C(Q?), H*(Q) =
H35(Q), H*(092) = H5(09) are the Bessel poten-
tial spaces, where s € R is an arbitrary real num-
ber (McLean, 2000; Lions and Magenes, 1972).
We recall that H® coincides with the Sobolev-
Slobodetski spaces W5 for any nonnegative s.

We denote by H*(£2) the subspace of H*(R2),
H(Q) :={g:ge H*(R?), supp(g) < O}

while H*(€2) denotes the space of restriction on
Q of distributions from H*(R?),

H*(Q) = {rog: g € H(R*)}
where 7, denotes the restriction operator on €.
We will also use the notation g|, := r,g. We de-
note by Hg, the following subspace of H*(R?)
(and F1*(2)),

Hjo:={g:ge H(R?), supp(g) = 00}. (2)
From the trace theorem (Lions and Magenes,
1972; Dautray and Lions, 1990; McLean, 2000)
for u € HY(Q), it follows that ytu € H%(éﬂ),
where vt = 77, is the trace operator on 02 from
Q. Let also vy~ ! : H%(aQ) — H(Q) denote
a (non-unique) continuous right inverse to the
trace operator v, i.e., Yigvaqw = vy tw =
w for any w e H%@Q), and (y"1)* : H1(Q) —

H_%(é’Q) is continuous operator dual to 7_1,
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I €., <(’771)*f7w>6§2 = <f7771w>ﬂ for any
fe HY(Q) and w e H2(09).

For u € H*(Q), we denote by T, the corre-
sponding canonical (strong) conormal derivative
operator on 0f) in the sense of traces,

2
T)u:= Z a(z)ni(x)y* 8153(:3:)
i=1 pule) ! (3)
= a(x)y on(z)’

where n(z) is the outward to € unit normal vec-
tor at the point x € 02. However, the classical
conormal derivative operator is generally, not
well defined if u € H'(2), see (Mikhailov, 2015,
Appendix A). For u € H*(Q), the PDE Au in
(1) is understood in the sense of distributions,

(Au,vyq := —&4(u,v), Yoe D), (4)
where

Ealu,v) := jﬂ a(x)Vu(zx) - Vo(z)dz

is a symmetric bilinear form and the duality
brackets (g, -),, denote the value of a linear func-
tional (distribution) g, extending the usual Lo
inner product. Since the set D(2) is dense in
H(Q), the above formula defines a continuous
operator A : HY(Q) — H~1(Q) = [HY(Q)]*,

(Au,vyq = —Eq(u,v),

Vue HY(Q), Yoe HY(Q). (5)
Let us consider also the operator
A:HY Q) - HY(Q) = [HY(Q)*

such that

(Au, v)q 1= —E(u,v)

- —J a(xr)Vu(z) - Vo(z)dr
Q

= — | ElaVy](z)-VV(z)ds (6)
R2

(V- E[aVu], V(¥ - E[aVu],v)q,
Yue HY(Q), Yve HY(Q),

which is evidently continuous and can be written
as:

Au =V - E[aVu]. (7)
Here V € H'(R?) is such that 7V = v and E
denotes the operator of extension of the func-
tions, defined in €, by zero outside  in R2. For
any u € H'(Q), the functional Au belongs to
H1(Q) and is the extension of the functional
Au € H71(Q), which domain is thus extended
from H'(Q) to the domain H! () for Au.

Inspired by the first Green identity for smooth
functions, we can define the generalized conor-
mal derivative as in (McLean, 2000, Lemma 4.3),
(Mikhailov, 2011, Definition 3.1) and (Kohr
et al., 2015, Lemma 2.2).

Definition 1. Let u € H'(Q) and Au = rqof
in Q for some f € H-'(Q). Then the general-
ized conormal derivative T} (f,u) € H_%(GQ)

1s defined as
<T;r(f7 u)7w>m = <fa '771w>§2 + ga(uvfyilw)
= {f = Au,ytwdg, VYwe H%((?Q),
that is
TH(f,u) i= (v H)*(f = Au). (8)

Due to (McLean, 2000, Lemma 4.3) and
(Mikhailov, 2011, Theorem 3.2), we have the es-
timate

|7, w) < Chlul o)

+ CQHfHﬁ*l(Q)a (9)

and for u € H'(Q) such that Au = rof in Q for
some f e H~1(Q) the first Green identity holds

in the following form:
<ch_(fa u)77+v>an = <f7 U>Q + Ea(u,v)
= {(f — Au,vdq, Yve HY(Q). (10)
As follows from Definition 1, the generalised
conormal derivative is nonlinear with respect to
u for a fixed f, but linear with respect to the
couple (f,u), i.e.,
QITG—,"_(fI7 ul) + OQT;_(JZQ? UQ)
= sz(alfh auy) + TJ(OQJFQ, aau2)
=T, (a1 fi + o fo,c1us + agup)  (11)

for any real numbers a1, as.

Let us also define some subspaces of H*(Q2),
cf. Mikhailov (2011, 2013); Costabel (1988);
Grisvard (1985).

Definition 2. Let s € R and A, : H°(Q) —
D*(Q2) be a linear operator. Fort > —i we in-
troduce the space

H'(Q; Ay) := {g € H5(Q) : there exists
fg € .FNIt(Q) such that Aygl, = fg|9}

endowed with the norm

-3 (29)

1
= 3
lgl=scosa0) = (1980 + 1ol %)
and the inner product

(gah)Hs’t(Q;A*) = (97 h)HS(Q) + (fgv fh)ﬁt(g)
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The distribution f, € HY(Q), t > —1, in the
above definition is an extension of the distri-
bution A.glo € H'(Q), and the extension is
unique (if it does exist) since any distribution
from the space H'(R?) with support in 09 is
identically zero if ¢t > —%, see (McLean, 2000,
Lemma 3.39) and (Mikhailov, 2011, Theorem
2.10). We denote this extension as an opera-
tor A, ie., A, g = fg. The uniqueness implies
that the norm [ g| gs.¢(q.4,) is well defined.

We will mostly use the operators A, B or A
as A, in the above definition. Note that since
Au — aAu = Va - Vu € Ly(Q), for u e HY(Q),
we have HM0(Q; A) = HYO(Q; A).

Definition 3. For u € Hl’_%(Q;A), we de-
fine the canonical conormal derivative T, u €

H_%(aﬁ) as

(TFu,w),, = (Au, vy wdg + Ea(u, v w)

= (Au— Au, v twdg, Ywe H%@Q), i. e.,
Tu:= (v )*(Au — Au). (12)

a

The canonical conormal derivative T,fu is in-
dependent of (non-unique) choice of the oper-

ator y~!, the operator T, : Hl’_%(Q;A) —
H_%(é’ﬂ) is continuous, and the first Green
identity holds in the following form,

<Ta+u,’y+v>m = <flu,v>g + Eq(u,v)

Yo e HY(Q). (13)

The operator T,f : HY t(Q; A) — Hfé((?Q) in
Definition 3 is continuous for ¢ > —%. The
canonical conormal derivative is defined by the
function u and the operator A and does not de-
pend separately on the right-hand side f (i.e.
its behavior on the boundary), unlike the gen-
eralised conormal derivative defined in (8), and
the operator T, is linear. Note that the canon-
ical conormal derivative coincides with classi-
cal conormal derivative T, u = aa—g if the lat-
ter does exist in the trace sense, see (Mikhailov,
2011, Corollary 3.14 and Theorem 3.16).

Let u € Hl’_%(Q;A). Then Definitions 1 and
3 imply that the generalised conormal deriva-
tive for arbitrary extension f € H1(Q) of the
distribution Au can be expressed as

<Ta+ (fv u>v w>aQ = <Ta+u7w>39

M . (14)
+(f = Au, v w)q, Yw € H2(09).

Let us consider the auxiliary linear elliptic par-
tial differential operator B defined by

Bu(z) := B(z, 0z)u(z)

B 20 . ou(x)
_Z,;ﬁxi (b( ) 0x; )’ (15)

where b € C*(2) and b(z) > 0 for x € Q. Since
for u € HY(Q,A), Au — Bu = (a — b)Au +
V(a —b) - Vu € Ly(f2), we have, H9(Q; A) =
HY(Q; B). Let we HY(Q) and v € HY0(Q; B).
Then we write the first Green identity for oper-
ator B in the form

Ep(u,v) —I—f u(x)Bu(z)dz

0
= (T, v,y wpaq, (16)

where

Ep(u,v) = fQ b(x)Vu(zx) - Vu(z)dz.

If, in addition, Au = f in Q, where f € ﬁ’l(ﬂ),
then according to the definition of T (f, ), in
(8), the two-operator second Green identity can
be written as

{frvya - fﬂ u(x)Bv(x)dz
+ [ [olo) 0T ule) - To(o)d
Q

= (T (fu), v 0den
- <Tb+v,'y+u>ag. (17)

Moreover, for u,v € H(Q; A) = HYO(Q; B)
(17) becomes

f [v(2) Au(z) — u(z) Bu(z)]da
Q

+ j [a(x) — b(x)]Vu(x) - Vo(x)dz
Q

= (T, u, v v)an — (T v,7 weq.

Parametrix, remainder and potential type
operators.

Definition 4. A function Py(x,y) of two vari-
ables z,y € Q is a parametriz (Levi function)
for the operator B(x,d,) in R? (Miranda, 1970;
Hellwig, 1977; Pomp, 1998a,b; Mikhailov, 2002)
if

B(x,0:)Py(w,y) = 6(x —y) + Ry(x,y), (18)

where § is the Dirac-delta distribution, while
Ry(z,y) is a remainder possessing at most a
weak singularity at x = y.
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For some positive constant 79 and z,y € R?,
the parametrix and hence the corresponding re-
mainder in 2D can be chosen as in Mikhailov

(2002),
1 lz —yl
27b(y) 1“( ” ) 19)

2 zi—yi  0b(x)

Ro(:) = 2 5o — g oy

Py(z,y) =

(20)

The parametrix Py(x,y) in (19) is the fundamen-
tal solution to the operator B(y, 0z) := b(y)A,
with “frozen" coefficient b(z) = b(y), and

By, 0z)Py(x,y) = 6(z — y). (21)
Let b € C®(R?) and b(x) > 0 ae. in RZ
For some scalar function g the parametrix-based
Newtonian and the remainder volume potential
operators, corresponding to the parametrix (19)
and the remainder (20) are given by

Pyg(y) := JRQ Py(z,y)g(z)dz,y e R?,  (22)
Pogly) = fﬂ Pya.y)a(e)dr, yeQ,  (23)

Reg(y) := L Ry(z,y)g(x)dz, yeQ. (24)

For g € H*(R?), s € R, (22) is understood as
Pyg = %PAg, where the Newtonian potential
operator Pa for Laplacian A is well defined in
terms of the Fourier transform (i.e., as pseudo-
differential operator), on any space H*(R?). For
g € H*(Q), and any s € R, definitions in (23)
and (24) can be understood as

Pog = %TQPAga Prg = %mPag,
) (25)

Reg = —ETQV -Pa(gVb),
while for g € H*(Q),—4 < s < 3, as (25)
with g replaced by Eg, where E : H*(Q) —
PNIS(Q), —% <s< %, is the unique extension op-
erator related with the operator E of extension
by zero, cf. (Mikhailov, 2011, Theorem 16).
For y ¢ 0f), the single layer and the double
layer surface potential operators, corresponding
to the parametrix (19) are defined as

Vig(y) = Jm Py(e.y)g(x)dS,,  (26)

Wig(y) =
- L [Tz n(e). 0 P )lo(e)dSe, (20

where ¢ is some scalar density function. The
integrals are understood in the distributional

sense if ¢ is not integrable, while VA and Wa
are the single layer and double layer potentials
corresponding to the Laplacian A. The corre-
sponding boundary integral (pseudodifferential)
operators of direct surface values to the single
and the double layer potentials,V}, and W, when
y € 0F), are

Via(y) = — LQ Py(z,y)g(x)dSs, (25)

Wha(y) := — Lg Ty(z, n(x), 02) Py(z, y)g ()5,
(20)

where VA and Wa are respectively the direct
values of the single and double layer potentials
corresponding to the Laplacian A.

We can also calculate at y € 0f) the conormal
derivatives, associated with the operator A, of
the single layer potential and of the double layer
potential:

TEVig(y) = @Tf%g(y}, (30)

b(y)

CEg(y) = TEWhg(y) = ‘;Ejj;T;ng(y). (31)

The direct value operators associated with (30)
are:

Warg () := — fﬂ [Ta(y, n(y), ) Po(, y)]g(2)dSi,
’ (32)

Wig(y) = L 1400 5),2) P ) g2 S
(33)

From equations (22)-(33) we can deduce repre-
sentations of the parametrix-based surface po-
tential boundary operators in terms of their

counterparts for b = 1, that is, associated with
the fundamental solution Pa = % In (%) of

the Laplace operator A.

1 1
P.,g = -Parg, Pyg= EPAQ,

? ) (34)
Pug = apag, Prg = ZPAQ-

a 1
—Vag =Vog = ~Vagy,

b b
(35)
a bg 1
EWG(Z> = Wyg = EWA(bg)-
a 1
7 Vag = Vbg = BVag,
(36)

%Wa(%q) = Whg = %WA(bg).



114

Markos F. Yimer and Tsegaye G. Ayele

W abg = %W'bg
. o (37)
_ E{W Ag+ [b% (gﬂVAg}»
L9 = %El—)tg
. — (38)
= 1Lat) + [0 () [ wata f
ﬁbg = TXWA(bg) = TxWa(bg) (39)

= La(bg) on 9.

It is taken into account that b and its derivatives
are continuous in R2 and

La(bg) := LA(bg) = L (bg)
by the Liapunov-Tauber theorem. Hence,
A(Vpg) =0, A(Wpg) =0 in Q,
Vge H*(0Q2), VseR,
A(bPyg) =g in Q,
Vge H*(Q), VseR.
The mapping properties of the operators (22)-
(33) follow from relations (34)-(39) and are
described in detail in (Ayele Tsegaye and

Mikhailov, 2011, Appendix A). Particularly, we
have the following jump relations:

(40)

(41)

Theorem 1. For g1 € H_%(aﬂ), and gy €

H2(09). Then there hold the following relations
on 05,

YEVeg1 = Voau, (42)
1

YEWpgo = ?592 + Whg2, (43)
la

T Vegr = i§5g1 +W w1 (44)

THE TWO-OPERATOR THIRD GREEN
IDENTITY AND INTEGRAL RELATIONS

Applying some limiting procedures (Miranda,
1970) and (Hellwig, 1977, Section 3.8), we ob-
tain the parametrix based third Green identities.

Theorem 2. (i) Ifue HY(Q), then the fol-
lowing third Green identity holds,

u+ Zpu+Ryu+Wyytu = PybAu in Q, (45)

where the operator A is defined in (7),
and for u e C1(Q),

PbAu(y) = <Aua Pb('v y)>Q = _5(1(“7 Pb(ay))

and

Zpu = — JQ [a(z) — b(z)|VePy(z,y) - Vu(z)dz

2
_ b(ly) S Palla—b)du] in Q. (47)
j=1

(ii) If Au = rof in Q, where f € H1(),
then recalling the definition of T (f,u),
in (8), we arrive at the generalised two-
operator third Green identity in the fol-
lowing form,

u+ Zpu + Rpu — VbT;(f, u) + Wiy tu
= Pof in Q, (48)
where it was taken into account that
(T (f,w), Py(w,y)yoa = —VT (f,u) and
o Py(@,y)a = Pof. (49)

Proof. (i) Let first w € D(f2). Let y €
Q, B.(y) < Q be a ball centred at y with suf-
ficiently small radius e, and Q. := Q\B(y).

For the fixed y, evidently, Py(.,y) € D(Q) <
H'Y(4;9,) and has the coinciding classical and
canonical conormal derivatives on 0€2.. Then
from (19) and the first Green identity (16) em-
ployed for Q¢ with v = P,(.,y) we obtain

- J T Py(z,y)y u(x)ds,
0B (y)

- f Tpr($7 y)’y—‘ru(:ﬂ)dsx
o0

+ f u(x)Ry(z,y)dx
Qe

= — JQ b(x)Vu(m) . VJ:Pb(xv y)d.Z,

which we rewrite as

- f T, Py(z,y)y u(r)ds,
0Be(y)

- f T Py(z, )y u(x)ds,
o0

- |, fale) = b)) Vuta) - V. Ao (50)
Qe

+ f u(z)Ry(x, y)dx
Qe

_ _J a(2)Vu(z) - Vo Py, y)de.
Qe

Taking the limit as ¢ — 0, (50) reduces to
the third Green identity (45)—(46) for any u €
D(Q). Taking into account the density of
D(Q) in H'(Q), and the mapping properties of
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the integral potentials, see (Ayele Tsegaye and
Mikhailov, 2011, Appendix A), we obtain that
(45)—(46) hold true also for any u e HY(Q).

(ii) Let {fi} € D(Q) be a sequence converging
to f in H1(Q) as k — o0. Then, according to
(Mikhailov, 2015, Theorem B.1) there exists a
sequence {uy,} € D(Q) converging to u in HI(Q)
such that Auy, = rq fi and T (ug) = (fk, ug)
converge to T (f, u) in H_%(ﬁﬂ). For such uy
by (46) and (8) we have

PbAuk V f PA l’ Y Vuk( )d

— ——lim

b(y) o | (@) Vur(@) Pa e, y)d

€

~ —lim €0, (uy, Py(.y)) = — lim jﬁ FePy(, y)da

+ lim Py(x,y) T, ug(2)dS (z)
0JoB(y)

+lim | Py(x,y)T, up(z)dS(z)
e—0 Jo0
= Pofi + Vol uk(y). (51)
Taking the limits as & — o0 in (51), we obtain
PyAu(y) = Pyof + V3T (f,u), and substitution
o0 (45) gives (48). O

Below we shall state and prove Corollary 3 from
Ayele Tsegaye and Bekele Solomon (2023) for
completeness.

Corollary 3. Using the Gauss divergence the-
orem, we can rewrite Zyu(y) in the form that
does not involve derivatives of u,

Zyuly) = [“(y)— }u<y>+2bu<y>, (52)

b(y)
Zyu(y) == Zéz))WaWU(y) — Wy u(y)
a(y)
- @Rauw) — Rpu(y), (53)

which allows to call Zy integral operator in spite
of its integro-differential representation (47).

Proof. As in the proof of Theorem 2 item (i),
let first u € D(Q). Let y € Q, Bc(y) = Q be a
ball centred at y with sufficiently small radius
e, and Q. := O\B(y). For the fixed y, evi-
dently, Py(.,y) € D(Q) = H"°(A;Q,) and has
the coinciding classical and cannonical conormal
derivatives on 0§ = 09 U 0B((y). Further, let
us denote

Zyuly) =

€

- || 1a)-b@)]¥. Py 9) Vao),

which can be rewritten as

Zruy) = f [V (a(e)—b(2)) Vo Py e, ) Ju(e)de

€

_ J;z V[(a(az) — b(m))u(az)] . Vsz(JZ, y)dx.

Observe that

Li(y,€e) = J [V(a(z) — b(z)) - Vo Py(z,y)|u(z)ds

€

- [ [va) - Von )o@

— [Vb(z) - Vo Py(z,y) |u(z)dz
)

_ o) L [Va(z) - VP, y)]u()dz

)
— [Vb(z) - VaPy(z,y)|u(z)dx

L(y,e) = — L V[(a(z) - b())u(2)] Vo Py(e, y)da

_ f [a(2) — b(a)]u(z) Au Py (2, y)da
[ 1a@) ~ bl ule) V. P - n(a)as,
092

= —@ al\x X (T u\x
=5 [ a@VaPa)  n(o)y u(o)is,

+ | @) VaPy(x,y) -
o0

—M a\xr x sn\x)u\x
i | @V ) s,

+ f b(x)VPy(x,y) - n(z)u(z)dS,
0Bc(y)

= MV[/a’eru(y) — WyyTu(y)

b(y)
- L alx T (o~ ule
b(y) LBG( ) ( )VIPA( 73/) ( )’7 ( )de

1

— xr x ‘nhlx +U X .
50 o TP ) ey (),

Taking the limit as € — 0 we obtain
Zyu(y) = lim Zfu(y) = im [12(s.0) + To(y, 0]

_a(y) a(y) +
= @’Rau(y) — Rpu(y) + @Wa')’ u(y)
a(y)

— Wiyt u(y) + [@ - ]“(y)

which is as in (52) and (53). O

n(z)y u(z)dS,

Note that the operator Z; does not vanish unless
operators A and B are equal. For some functions
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f, ¥, ® let us consider a more general “indirect"
integral relation, associated with (48).

u+ Zpu + Rpu — V0 + Wy ®
=Pf in Q. (54)
Lemma 4. Let u € HY(Q), ¥ e H2(0Q),d e
H%(ﬁQ) and f e H-Y(Q) satisfy (54). Then
Au=rqf in Q, (55)

roVo(¥ = T, (f,u)) = raWy(® — 77 u)
=01in Q, (56)

1
Yru+ T Zpu+ T Ryu — V0 — 2 &+ Wb
— 4" Pyf on 09, (57)

T (fou) + T, Zyu + T Ryu — 7)\1, W U

+L5® = TS (f + ERLF,Pof) on 09, (58)

where

2
2 [(0;0)Pof]. (59)
)

Proof. Subtracting (5
obtain

VoW (y) — Wiy(® — T u)(y)

= PolAu(y) — f1(y), yeQ. (60)
Multiplying equality (60) by b(y), applying the
Laplace operator A and taking into account
equations (40) and (41), we get rqf = ro(Au) =
Awu in €. This means f is an extension of the
distribution Au € H™1(Q) to H~ (), and u
satisfies (55). Then (8) implies

Po[Au — fl(y) = (Au— F, Bo(., )0
= —(TH(f,u), Py(.y)daq (61)
:%T;_(f’u)? ye.

Substituting (61) into (60) leads to (56). Equa-
tion (57) follows from (54) and jump relations
n (42) and (43). To prove (58), let us first re-
mark that for u € H(£2), we have H(; A) =
HY(Q;A) = HY(Q; B) and

BPyf = f+RLf inQ, (62)

due to (55), which implies B(Pyf — u) = RLf
in Q, with R%f given by (59), and thus RS f e
Ly(Q). Then B(Pyf —u) can be canonically ex-
tended (by zero) to

B(Pyf —u) = ERLf e H'(Q) c H'().

rom identity (45), w

Thus there exists a canonical conormal de-

rivative 7,7 (Pyf — u) written as (see, e.g.,

(Mikhailov, 2015, Eq. (4.14)), (Mikhailov, 2018,

Eq. (4.23)).)
TF(Pof —u) = Ty (f + ERLF, Pof)

and hence

T, (Pof ) = ST (Pof — )
a ~ o ~ ~ ~
= [T+ ERUEPf) = T (Fow)] - (64)
= T (f + ERLF, Pof) = T, (f, ).
From (54) it follows that
Pof —u=Zyu+Ryu— VU + W,® in Q.

Substituting this on the left-hand side of (63)
and taking into account (38) and the jump rela-
tion (44), we arrive at (58). O

Remark 5. If f € I;V%(Q) c H™YQ), then
f+ERVfe ﬁ_%(ﬂ) as well, which implies
f+ERLf = APyf
and
T, (f + ERLE, Pof)

=T,/ (BPof, Pof) = T, Pof. (65)
Furthermore, if the hypotheses of Lemma 4 are
satisfied, then (55) implies u € HL_%(Q;A)
and T;f (f,u) = T,F (Au,u) = T,fu. Henceforth

(58), takes the familiar form, cf. (Ayele Tsegaye
and Mikhailov, 2011, equation (3.23)),

T;u+T;zbu+T;Rbu—Q%qf—wgbqurajb@
=T, Ppf on 9.

Remark 6. Let f € H1(Q) and a sequence
{¢;} € H1(Q) converge to f in H-X(Q). By the
continuity of operators, cf. (Mikhailov, 2015,
C.1 and C.2), estimate (9) and relation (65) for
¢;, we obtain that

Ty (f+ERLF Pof) = lim T (6i+ ER 61, Poti)
= lim T Pypi, in H2(09),
1—>00

cf. (Mikhailov, 2015, Theorem B.1).

Lemma 4 and the third Green identity (48) im-
ply, the following assertion.
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Corollary 7. Ifu e HYQ) and f € H1(Q) are
such that Au = rqf in Q, then

1 ~
§7+u+’y+Zbu+'y+Rbu—VbTa+(f,u)—i—Wb'ﬁu

— v*Pyf, on 9, (66)

(1 . 7) TH(fou) + T Zyu

2b
+ T Ryu — W oI (fou) + Ly u

= TH(f+ERLF, Pof) on 0. (67)

Note that if P, is not only the parametrix but
also the fundamental solution of the operator
B, then the remainder operator R; vanishes in
(48) and (66)-(67) (and everywhere in the pa-
per), while the operator Z;, stays unless A = B.
The following statement is proved in (Mikhailov,
2015, Lemma 4.6):

Theorem 8. Let f € H Q). A function
we HY(Q) is a solution of PDE Au = rof in Q
if and only if it is a solution of boundary-domain
integro-differential equation (BDIDE) (48).

Proof. If u € H'(Q) solves the PDE Au = rqf
in €, then it satisfies (48). On the other hand,
if u solves BDIDE (48), then using Lemma 4
for U = T (f,u), ® = ~*u completes the
proof. ([

INVERTIBILITY OF SINGLE LAYER POTENTIAL
OPERATOR

The boundary integral operator, Va
H_%(QQ) — H%(QQ) is a Fredholm operator
of index zero, see, e.g.,(McLean, 2000, Theo-
rem 7.6). Thus the first relation in (36) leads
to the same result for the single layer poten-
tial Vp. For the case of 3D, (Ayele Tsegaye and
Mikhailov, 2011, Lemma 3.2(i)) asserts that for
U* e H™2(0Q), if VU* = 0 in Q, then U* = 0
in €. This fact implies the invertibility of sin-
gle layer potential operator V; mapping from
H_%(aﬁ) to H%(é’ﬂ) But this is not the case
for 2D. It is well-known, see e.g. (Constanda,
2000, Remark 1.42(ii)) and (Steinbach, 2007,
Theorem 6.22) that for some 2D domains the
kernel of the operator Va is nontrivial, thus due
to the first relation in (36), the kernel of opera-
tor V, is nontrivial as well for the same domains.
To ensure the invertibility of the single layer po-
tential operator in 2D, for s € R, let us define
the subspace of H®(0%2), cf. e.g., (Steinbach,
2007, p. 147),

H, (09) = {g € H*(09) : {9, 1)oq = 0}. (68)

The following result is proved in (Dufera Tami-
rat and Mikhailov, 2015, Theorem 4), see also
(Ayele Tsegaye and Bekele Solomon, 2019, The-
orem 1).

_1
Theorem 9. If ) € H,,’ (09) satisfies Vyip =0
on 0X), then v = 0.

Following (McLean, 2000, Theorem 8.15), there
exists a unique real-valued distribution ., €

H 2 (092) called equilibrium density for 092 such
that VAt)eq is constant on 02, and (1, 1eq)o0 =
1. For n = 2 the constant Va1, is not always
positive and one introduces the logarithmic ca-
pacity, Cap,q using the relation

1 T
VAl/}eq 1 (Capo >7

for some positive constant rg as in equation
(19). In particular Vate, = 0 if and only if
ro = Capyq.-

The following statement is proved in (McLean,
2000, Theorem 8.16).

Theorem 10. Let ro be some positive constant.

(i) The operator Va H_%@Q) —
H%(aﬁ) is H_l((?Q) elliptic, 1i.e.,
Va, oo = v, 3 o) for all ¢ €
HiE(GQ), if and only if ro > Cap,,,

(ii)) The operator Va : H_%(aﬂ) —
H%(aQ), has a bounded inverse if and
only if 1o # Cap,,,.

The following theorem ensures the invertibility
of the single layer potential operator V, in 2D.

Theorem 11. Let Q < R? with ro > diam(£).
Then the single layer potential Vy, : Hz (0Q) —
H? (092) is invertible.

Proof. Since Cap,, < diam({2), see, (Yan and
Sloan, 1988, p.553, properties 1 and 3), then
ro > diam(Q2) implies 79 > Cap,,. For the case
a = b the assertion is proved in (Dufera Tamirat
and Mikhailov, 2015, Theorem 5). Due to the
first relation in (36) and Theorem 10(ii) follows
the invertibility of the single layer potential op-
erator V, for the case a # b as well, see also
(Ayele Tsegaye and Bekele Solomon, 2019, The-
orem 2). O

As in Ayele Tsegaye and Bekele Solomon (2023),
we shall restrict ourselves to Theorem 11 while
discussing about the invertibility of single layer
potential V4 in 2D. On the other hand, choos-
ing an appropriate parameter rg, one can get
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the zero kernel for V, not only on the sub-
space H;*l/ 2(69) but also on the entire space
H~12(09Q). The proof to the following result
is due to (Ayele Tsegaye and Bekele Solomon,
2019, Lemma 1) and (Ayele Tsegaye, 2021b,

Lemma 2).

Lemma 12. (i) Let rg > diam(Q2). If U* €
Hfé(ﬁQ) and roVp¥* = 0 in Q, then
U* = 0. )
(it) If ®* € Hz(09) and rqWp®* = 0 in ,
then ®* = 0.

TwO-OPERATOR BDIE SYSTEMS FOR
DIRICHLET PROBLEM

Let Q be a domain in R? bounded by a smooth
curve 0f). We shall derive and investigate the
two-operator BDIE systems for the following
Dirichlet problem: for ¢ € H%(GQ) and [ €
H=Y(Q), find a function w e H*(Q) satisfying

Au = f in Q, (69)
v = o on 0f. (70)

Here equation (69) is understood in the distri-
butional sense (4) and the Dirichlet boundary
condition (70) is understood in the trace sense.
The following assertion is well-known and can
be proved e.g. using variational settings and the
Lax-Milgram lemma:

Theorem 13. The Dirichlet problem (69)-(70)
is uniquely solvable in H'(Q). The solution is
u = (AP)7Y(f,p0)", where the inverse oper-
ator, (AP)~! : HY(Q) x H2(0Q) — HY(Q),
to the left-hand side operator, AP : H'(Q) —
H=YQ) x H2(0Q), of the Dirichlet problem
(69)-(70), is continuous.

BDIE system formulation to the Dirich-
let problem. Following similar procedure as
in Mikhailov (2015), let us reduce the Dirich-
let problem (69)-(70) with f € H~1(Q), for
u € H'(Q), to two different systems of segre-
gated two-operator BDIEs.

Let f € H Q) be an extension of f ¢
HY(Q) (ie., f = rqof), which always exists,
see, (Mikhailov, 2015, Lemma 2.15 and Theorem
2.16). We represent in (48), (66) and (67) the
generalized conormal derivative and the trace of
the function u as

T;(fau):¢7 nyru:SOO
respectively, and will regard the new unknown

function ¢ € H _%(é’Q) as formally segre-
gated of u. Thus we will look for the couple

(u, ) € HY(Q) x H™2(5Q).

BDIE system (D1). To reduce BVP (69)-(70)
to one of BDIE systems we will use equation (48)
in Q and equation (66) on 0€2. Then we arrive
at the system of BDIEs (D1),

u+ Zyu + Ryu — Vip = FPL in Q, (71)

Y 2ty T Ryu—Vyh = FP1 oon 00, (72)
where Fj := be — Wy and

f’Dl
FDL._ 1
: _7_—2Dl

Fy

] . (73)
7" Fy = o

For ¢q € H? (09), we have the inclusions FP! =
Fye HY(Q) if f € H () and due to the map-
ping properties of operators involved in (73), we
have the inclusion FP e H1(Q) x H%((?Q)

Remark 14. Let f € H Q) and ¢y €
H%((?Q) Then FPY = 0 if and only if (f,po) =
0.

Proof. The later equality implies the former.
Conversely, let FP' = 0, that is, Fy = be —
Wypo = 01in Q and v+ Fy — g = 0 on 0. Then
0o = 0on dQ and Pyf = 0 in Q. Multiplying the
later by b, we get Paf = 0 in Q and applying
Laplace operator gives f =0 in R2. O

BDIE system (D2). To obtain a BDIE sys-
tem of the second kind, we will use equation (48)
in Q and equation (67) on 0€2. Then we arrive
at the system of BDIEs (D2),

u + Zpu + Rpu — Vb
=Pof —Wypo in Q, (74)

(1 _ 2%) b+ T Zyu + T Ryu — Wyih
=T, (f + ERLE, Pof) — L]0
on 09, (75)

where

f‘DQ
FPZ .= [ '

FP?
Pof — Wpo
- . (76)
TH(f + ERLF, Pof) — L, 00
Due to the mapping properties of operators in-
volved in (76), we have the inclusion FP? ¢
H'(Q) x H 2 (092). In similar way as in Remark
14, we can prove the following remark.
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Remark 15. Let f € H YQ) and ¢y €
H%(ﬁﬁ) Then FP2 = 0 if and only if (f,po) =
0.

Proof. The later equality implies the former.
Conversely, let FP? = 0, that is, Fy = be —
Wipo = 0in Q and T,F (f + ERLF, Pof) — L]0
on 0. Multiplying the first relation by b, we get
Paf — Wal(bgg) = 0 in Q. Taking into account
that bW (o) = Wal(byp) is harmonic and ap-
plying Laplace operator gives f = 0 in R2, and
hence Wypo = 0 in Q. Then by Lemma 12(ii),
wo = 0 on 0€2. O

BDIE systems equivalence to the Dirich-
let problem.

Theorem 16. Let ¢y € H%(aﬁ),f e H1(Q)

and f € ITI*1(Q) is such that rof = f. Then

(i) If v € HY(Q) solves the BVP (69)-
(70), then the couple (u,v) € H' () x
H™2(Q), where

¢ =T (f,u), on 09, (77)
solves the BDIE systems (D1) and (D2).

(ii) If a couple (u,v) € HY(Q) x H_%(GQ)
solves BDIE system (D1) and ro >
diam(€2), then this solution is unique
and solves BDIEs (D2), while u solves
the Dirichlet problem (69)-(70), and
satisfies (77).

(iii) If a couple (u,) € H'(Q) x H_%(GQ)
solves BDIE system (D2), then this so-
lution is unique and solves BDIEs (D1),
while u solves the Dirichlet problem

(69)-(70), and 1 satisfies (77).

[

Proof. (i) Let u € H*() be a solution to BVP
(69)—(70). Due to Theorem 13 it is unique. Set-
ting 1 by (77) evidently implies, 1) € H~ 2 (9).
From Theorem 8 and relations (66)—(67) follows
that the couple (u,) satisfies the BDIE sys-
tems (D1) and (D2), with the right-hand sides
(73) and (76) respectively, which completes the
proof of item (i).

Let now the couple (u,1) € H'(2) x H_%(GQ)
solve BDIE system (D1) or (D2). Due to Theo-
rem 8, the hypothesis of Lemma 4 are satisfied
implying that u solves PDE (69) in €2, while re-
lations in (55) and (56) also hold.

(ii) Let the couple (u,v) € H(Q) x H_%(&’Q)
solve BDIE system (D1). Taking trace of (71)
on 0X2 and subtracting (72) from it we obtain

vtu = g on 012, (78)

that is, u satisfies the Dirichlet condition (70).
(71) and Lemma 4 with ¥ = ¢, & = ¢
imply that V,¥* — W,®* = 0, in ), where
U* = op — T (f,u) and ®* = ¢y — yTu. Due
to (78), ®* = 0. Then Lemma 12(i) implies
U* = 0, which proves condition (77). Thus u
obtained from the solution of BDIE system (D1)
solves the Dirichlet problem and hence, by item
(i) of the theorem, (u, 1) solve also BDIE system
(D2).

(iii) Let now the couple (u,v) € H(Q) x
oz (092) solve BDIE system (D2). Taking gen-
eralized conormal derivative of (74) and sub-
tracting (75) from it, we get ¥ = T (f,u)
on 0. Then substituting this in (56) gives
Wiy(po — v u) =0 in Q and Lemma 12(ii) then
implies ¢p = v+ u on Q. Due to (73), the BDIE
system (71)-(72) with zero right-hand side can
be considered as obtained for f = 0, o = 0,
where f € H(Q) is an extension of f € H™1(Q),
that is, f = rq f , implying that its solution is
given by a solution of the homogeneous problem
(69)-(70), which is zero by Theorem 13. This
implies uniqueness of the solution of the inhomo-
geneous BDIE system (D1). Similar arguments
work for the BDIE system (D2). O

BDIE system operators invertibility for
the Dirichlet problem. The BDIE systems
(D1) and (D2) can be written as

'UP = FP' and 9UP = FP?,
respectively. Here UP := (u,v)" € HY(Q) x
H™2(09),

I+Z2y,+Ry —VWp
o = . (79)
Y24+ TRy —V
2 ._ 1 + Zb —+ Rb _‘/b
3] -_[T;Zb%—T;Rb (1_%)1_Wclzb ,(80)

while FP! and FP? are given by (73) and
(76) respectively. Due to the mapping prop-
erties of the operators involved in the defini-
tions of the operators ®' and D? as well as
the right-hand sides FP! and FP? (see, e.g.,
(Ayele Tsegaye and Mikhailov, 2011, Appendix
A), we have FP1 e HY(Q) x Hz(0Q), FP? e
H(Q) x H_%(ﬁfl), while the operators
DL HY(Q)x H2(6Q) — H (Q) x H2 (69)
(s1)

— HYQ)x H™2(09)
(82)

02 HY(Q)x H 2 (Q)
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are continuous. Due to Theorem 16(ii)-(iii), op-
erators (81) and (82) are injective.

Lemma 17. For any couple (F1,F2) €
HY(Q) x Hfé((?Q), there exists a unique cou-
ple (fux, @) € H1(Q) x H%(ﬁﬁ) such that
]:1 = be** - Wb(I)* (83)
Fo = T;(f** + ERif**7be**) - E:b(p* (84)
Moreover, (f**,‘b*) = Cyux(F1, F2) with Cyy :

HYQ) x H 2(0Q) — H-Y(Q) x Hz(09Q) a lin-
ear continuous operator given by

f** = A(b]:l) + ")/*(FQ + (’y+}"1)6nb) (85)

1 1 -1
®* = *<—§I+WA) "}/+

b
(Lt man)]) s
=V .- EV(bF).

{—b]—“l +Pa [A(b]—“l)

where A(bF)

Proof. Let us first assume that there exist
(fas, @) € HHQ) x H%(é‘ﬂ) satistying equa-
tions (83)-(84) and find their expression in terms
of F1 and Fs. Let us rewrite (83) as

Fi — Ppfus = —Wp®, in Q. (87)

Multiplying (87) by b and applying Laplacian to
it, we obtain,

AbFy = Pafus) = ADF1) = fon
= —A(Wa(b®y)) =0 inQ, (88)

which means
A(DFL) = rofes  in Q, (89)

and bF) — Pa fax € H'Y9(Q, A) and hence F; —
be** € HLO(Q, B) = HLO(Q,A). The latter
implies that the canonical conormal derivatives
Tb+(f1 — Pofax) and T, (F1 — Ppfes) are well
defined and can be also written in terms of their
generalized conormal derivatives

b ~ _
*T;(Fl - be**) = T+(]:1 - be**)

= T,7(B(F1 — P fas), Fi — Ppfus)
= TbJr(EV ~(bV(F1 — be**))
= T,/ (EA(bF) — Pafus)
— EV - ((Fi — Pofax) VD), Fy
= T;' (—EV - (F1Vb)
and therefore,

T (Fi = Pofuw) = T (- EV - (F1V)

— ER. funr F1 = Pofux) (90)

— Py fs)

— Ppfer)
- ERZf**,Fl - be**)

where (62) and (89) were taken into account.
Applying the conormal derivative operator T,
to both sides of equation (87), substituting their
(90), taking into account (11), we obtain,

T (fex — EV - (F1VD), F1)
- T;_(f** + ERZf**,be**)
= —L®,, on 0Q. (91)
Subtracting (91) from (84), we get,
Fo = T, (fux — EV - (F1VD), Fi)
on 09. (92)
Due to (89), we can represent
f** = A(l7»7r"1) + fl*
= V-EV(bF) — 7 Vs, (93)

where fi, € H a_Ql is defined by (2) and hence,
due to e.g. (Mikhailov, 2011, Theorem 2.10) can

be in turn represented as fi. = —7* W4y, with
1
some W, € H™2(012). Then (89) is satisfied and

fT+ (fex — EA - (F1VD), Fy)
=T, (fus (be) F1)
= (v [fux — EV - (F1Vb) — BF1]
= (Y1) [fax — EV - (F1Vb) = V- EOVF)]
= (v v <bf1> V- E(bVF)
— Y Wy — EV - (F1Vb)]
= (Y Y[V - E(FLVb) — ¥* U,y — EV - (FLVD)]

=V, — (Y F1)nb
for which
T (fax — EA - (F1VD), Fy)
= 2 [V — (P F)20] (99)
because
(v Y [V-E(FIVD)—7* U~ EV-(F1VD)], wan
= ([V-E(F1Vb)—7* U — EV-(F1VD)], 7w
= [V - E(F1Vb),7 "w)ge
— VW — (EV - (FLVD)], 7 g
= ~([E(FVD), V(7 w))ge = 7 Wt
H(FLVD), V(v tw)do——ny T (FIV), vy~ w)a
= (v (F1)Vb), w)on — Vas.  (95)
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Hence (92) reduces to

b

= —T,"F1 — (y* F1)dnb, (96)

and (93) to (85).
Now (87) can be written in the form

Wa(bP,) = Fa in Q, (97)

where
Fa i= —bF1 + Pafus
X b
= —bF1 + Pa| AR + v ( P+

+ wfl)anb)] (98)

is harmonic function in © due to (88). The trace
of Eq. (98) gives

1
—§b<I>* + WaA(b®,) =T Fa on 0. (99)

It is well known that the operator [—%I + WA]
is an isomorphism, see (Steinbach, 2007, Lem-
mas 6.10 and 6.11), this implies

1 1 -1
Dp= (= 5T+Wa) 7 Fa

b 2

1

b
+ 9" (g}-2 + (7+~7:1)5nb)]},

which is Eq. (86). Relations (85), (86) can
be written as (fux, @5) = Cux(F1, Fo), where
Cox : HY(Q) x H™2(0Q) — H-L(Q) x Hz(5Q)
is a linear continuous operator, as required. We
still have to check that the functions fy and
®,, given by (85) and (86), satisfy equations
(83) and (84). Indeed, ¥, given by (86) satisfies
equation (99) and thus yt*Wa(a®,) = vt Fa.
Since both Wa (a®) and Fa are harmonic func-
tions, this implies (97)-(98) and by (85) also
(83). Finally, (85) implies by (94) that (92) is
satisfied, and adding (91) to it leads to (84). Let
us prove that the operator Cy, is unique. Indeed,
let a couple (fux, Ps) € H1(Q) x H%(&‘Q) be a
solution of linear system (83)-(84) with F; = 0
and Fy = 0. Then (89) implies that rq fax = 0
in Q, that is fys € Hy < H1(Q). Hence (92)
reduces to

0 =T, (fex,0)  on Q. (100)

By the first Green identity (10), this gives,

0= <T;_(f**a0)a7+v>09 = <f**7v>97
Yve HY(Q), (101)

- (- %1 + WA)AV{ ~ bF) + Pa|A(DF)

which implies fix = 0 in R2. Finally, (86) gives
@, = 0. Hence any solution of non-homogeneous
linear system (83) — (84) has only one solution,
which implies the uniqueness of the operator
Cose- O

The following assertion is (Mikhailov, 2005b,
Lemma 19) generalized to a wider space in 2D.

Lemma 18. For any couple (F1, F) € H'(Q) x
H%(éﬁ), there exists a unique couple (fus, D) €
HYQ) x H%(GQ) such that
]}1 = be** - qu)* (102)
]}2 = '7+ (be** - qu)*) (103)
Moreover, (f**, o) = CN**(]:],]:"Q) with Cay
HYQ) x H2(0Q) — H™Y(Q) x H™2(Q) a lin-

ear continuous operator is given by

f** = A(b]}l) + ’}/*(Tb+./%1 + fg)&nb) (104)

—

1 _ ~ .
Oy = 5 (—5l+Wa) " (~bFatn  Pa[AGF)
+ 5 (T, Fi + F2)dnb)])  (105)
where A(bFy) =V - EV(bFy).
Proof. Let us first assume that there exist
(fas, @s) € HH(Q) x H%((?Q) satisfying equa-
tions (102)-(103) and find their expression in
terms of F; and F3. Let us re write (102) as
FL = Pofox = —Wp®, in Q. (106)
Multiplying (106) by b and applying Laplacian
to it, we obtain,
A(bﬁl - PAf**) = A(b]:—l) - f**
= —A(Wa(b®4)) =0 inQ, (107)
which means
A(F) = rofse in Q, (108)
and bFy — Pafux € HYWO(Q,A), while ) —
Pofesx € HYO(Q,B) = HYO(Q, A). The latter
imply that the canonical conormal derivatives
TbJr (F1 — be**)fmd ng (F1 — be*j‘) are ~Well
defined and T; (fl—be**) = gTb+(F1—be**).
Due to (108) and using fix = —7* V., with
some V., € Hfé(aﬁ) as in (96), we can rep-
resent
f** = A(b]}l) + fl*
=V -EV(bF) — 7" Uy, (109)
where fi, € H>,. Then (108) is satisfied. Re-
placing Fy by T, (]}1, u) in Lemma 17, relation
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(96) yields,

(’}/Jr]:-l)(?nb
= T, F1 — Fadnb (110)

and (109) reduces to (104). Now (106) can be
written in the form

Wa(b®s) = Qa  in Q, (111)

b
a

where
OA = —b./fl + PAf** = _bﬁl + PA[A(bﬁl)
+ 5 (T Fr+ (7T F)aRb)]  (112)

is harmonic function in € due to (107). The
trace of equation (112) gives

1
—§b<1>* + Wa(b®,) =4TQOa on 0. (113)

By similar argument as in Lemma 17, the op-
1 1

erator —11 + Wa : H2(0Q) — H 2(dQ) is an

1somorphlsm this implies

D=1 (— ST+ Wa) 770s
1
b 2

+ 7 (L Fu+ (v F)ond)]}
which is Eq. (105). Relations (104), (105) can
be written as (f**,i)*) = (?**(.7:"1,.7}2), where
Cow + HH(Q) x H™2(3Q) — H~Y(Q) x H2(09)
is a linear continuous operator, as required. We
still have to check that the functions f wx and Py,
given by (104) and (105), satisfy equations (102)
and (103). Indeed, ®, given by (105) satisfies
equation (113) and thus y*Wa(a®) = yTOAa.
Since both Wa (a®,) and Qa are harmonic func-
tions, this implies (111)-(112) and by (104) also
(102) while (103) follows from Egs.(104) and
(111).
Let us prove that the operator Cys is unique. In-
deed, let a couple (fus, @x) € H~1(Q) x H2(09)
be a solution of linear system (102)-(103) with
Fi = 0 and F» = 0. Then (108) implies that
mf** = 0 in , that is f** € H(}_Q1 c IENI_I(Q).
Hence (92) reduces to

= T (f4+,0)  on 0Q. (114)

By the first Green identity (10), this gives re-
lation (101), which implies fux = 0 in R2. Fi-
nally, (105) gives @, = 0. Hence any solution of
nonhomogeneous linear system (102) —(103) has
only one solution, which implies the uniqueness
of the operator é** O

1 -1 . L
— (= 5T+ Wa) yH{-bF + PA[AGF)+

Theorem 19. Let rg > diam(2). The operators
(81) and (82) are continuous and continuously
invertible.

Proof. The continuity of operators (81) and (82)
is proved above. To prove the invertibility of
operator (81), let us consider the BDIE system
(D1) with arbitrary right-hand side

FPU_ (FDY FONT ¢ gL(Q) x Hz(0Q).

Take F; = FE' and ®, = 4+ FL — FBU i
Lemma 18, to obtain the representation of F D 1
as:

Fa'=F Fi' =2t Fi -

where the couple

(fior ®s) = Con(F1, Fo) € HY(Q) x H?(09)
(115)
is unique and the operator

Cos - HY(Q) x H2(0Q) — HY(Q) x Hz(Q)
(116)
is linear and continuous. If ro > diam(2), then
taking into account (Mikhailov, 2015, Remark
5.3) and applying Theorem 13 with f = rof =
rofe, ®u = o, we obtain that BDIE system
(D1) is uniquely solvable and its solution is:
Uy = (AP) Yraf,00)T, Uz = v UL — o,
where the inverse operator, (AP)~!: H=1(Q) x
H%((?Q) — HY(Q), to the left-hand side opera-
tor, AP : HY(Q) — H-1(Q) x H2(0Q), of the
Dirichlet problem (69)—(70), is continuous. Rep-
resentation (115) and continuity of the opera-
tor (116) imply invertibility of (81). To prove
the invertibility of operator (82), let us consider
the BDIE system (D2) with arbitrary right-hand
side
FP? = (FR2,FDA)T e HY(Q) x H™2(29).

Take F; = FH?% and F» = T,F (Fi,u) = FB? in
Lemma 17 to represent FP? as

]:*1 =5 }—*Q_T;(flau):fé
and the couple
(foss ®s) = Con (F1, Fo) € H1(Q) x HZ(0Q)
is unique and the operator

Cow - HY(Q) x H2(0Q) — H1(Q) x H2(09Q)

(117)
is linear and continuous. Taking into ac-
count (Mikhailov, 2015, Remark 5.3) and ap-
plying Theorem 13 with f = fur, $x =
o, we obtain that BDIE system (D2) is
uniquely solvable and its solution is: U; =
(AP) M (raf,0)", Us = T (rof Ur), where
the inverse operator, (AP)7! H1(Q) x



SINET: Ethiop. J. Sci., 46(2), 2023

123

H%(ﬁﬁ) — HY(Q), to the left-hand side oper-
ator, AP : HY(Q) — H~1(Q) x H%((?Q), of the
Dirichlet problem (69)—(70), is continuous. Rep-

resentation (115) and continuity of the operator
(117) imply invertibility of (82). O

TwoO-OPERATOR BDIE SYSTEMS FOR
NEUMANN PROBLEM

Let Q be a domain in R? bounded by a smooth
curve J€2. We shall derive and investigate the
two-operator BDIE systems for the following
Neumann problem: for ¥y € H_%(ﬁQ) and
f e HY(Q), find a function v € H*(Q) satis-
fying
Au=rqf in Q, (118)
T, (f,u) = o on 0€. (119)

Here Eq. (118) is understood in the distribu-
tional sense (4) and the Neumann boundary con-
dition (119) in the weak sense (10). The follow-
ing assertion is well-known and can be proved
e.g. using variational settings and the Lax-
Milgram lemma.

Theorem 20. (i) The homogeneous Neu-
mann problem (118)-(119) admits only
linearly independent solution u® = 1 in
H'(Q).

(i) The nonhomogeneous Neumann problem
(118)-(119) is solvable if and only if the

following solvability condition is satis-

fied.
(foua — (o, v uDaq = 0 (120)

BDIE system formulation for the Neu-
mann problem. We explore different possibil-
ities of reducing the Neumann problem (118)—
(119) with f € H1(Q), for u € HY(Q), to
two different segregated boundary-domain inte-
gral equations (BDIE) systems. Correspond-
ing formulations for the Neumann problem for
ue HYWO(Q,A) with f € Ly(Q2) in 2D were in-
troduced and analysed in Ayele Tsegaye et al.
(2017). Let us represent in (48), (66) and
(67) the generalised conormal derivative and the
trace of the function w as

T, (f,u) =40, YTu=¢,

and will regard the new unknown function ¢ €
H %(8(2) as formally segregated of w. Thus
we will look for the couple (u,¢) € HY(Q) x
Hz2(09).

BDIE system (N1). To reduce BVP (118)-
(119) to a BDIE system in this section we will
use equation (48) in © and equation (67) on €.

Then we arrive at the following system, (N1), of
two boundary-domain integral equations for the
couple of unknowns,(u, ),

u+ Zyu+Ryu+ Wy = FNL in Q, (121)

T Zyu + T Ryu + Lo = F3'%, on 09,
(122)

where

]:'Nl
.FN]' - 1
: ]:2Nl

Pof + Vitho (123)

TH(f + ERYE, Pof)—

—0 + 5500 + Wipto
Due to the mapping properties of operators
involved in (123) we have FN! e HY(Q) x
H2(3Q) and FY := P, f + Vitho € HL(Q).

Remark 21. Let f € ﬁ’l(Q), o € H_%(ﬁ(l)
and ro > diam(Q2). Then FN1 = 0 if and only if
(f7¢0) = 0.

Proof. The later equality implies the former.
Conversely, let .Z-"Nl =0, that is, Pof+Vitho = 0
in Q and T,/ (f + ERLS, Pof) — o + s5¢0 +
W. o = 0 on Q. Multiplying the first relation
by b gives Paf+Vato = 0 in Q. Further, taking
into account that bVy1pg = Vatg is harmonic and
applying Laplace operator we get f = 0 in R2
and hence V319 = 0 in €. Then due to Lemma
12(i), we get 1o = 0 on 0€2. O

BDIE system (N2). To obtain a segregated
BDIE system of the second kind, we will use
equation (48) in  and equation (66) on 0f.
Then we arrive at the following system, (D2), of
boundary-domain integral equation systems,

u + Zpu + Ryu + Wy
= Pof + Vibo, in Q, (124)

1
5(,0 + ’y+Zbu + 7+Rbu + Wy

= Pyf + Vytho, on 00, (125)

where
Fi? Pof + Vitho

FN? = [ = ) (126)
73’ Y Pof + Voo

Due to the mapping properties of operators in-

volved in (126), we have the inclusion .7-"1N 2 =

Pof + Voo € HY(Q) and FN2 € HY(Q) x

H2(69).
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Remark 22. Let f € ﬁ’l(ﬂ), Yo € H_%(ﬁﬁ)
and ro > diam(Q2). Then FN? = 0 if and only if
(fa wO) = 0.

Proof. The later equality implies the former.
Conversely, let FN2 = 0, that is, P, f + Vb = 0
in Q and Yt Py f + Vytho = 0 on 9. Multiplying
the first relation by b gives Pa f4+Vatho = 0 in .
Further, taking into account that bVyyg = Vathg
is harmonic and applying Laplace operator we
get f = 0 in R? and hence Vg = 0 in Q. Then
due to Lemma 12(i), we get 1o =0 on 0Q2. O

BDIE systems equivalence to the Neu-
mann problem.

Theorem 23. Let 1y € H_%(QQ) and f €
H1(Q).

(i) If a function v € H(Q) solves the
BVP (118)-(119), then the couple (u, ¢),
where

¢=7"u (127)
solves the BDIE systems (N1) and (N2).

(ii) If a couple (u,p) € H' () x H%(ﬁﬁ)
solves the BDIE system (N1), then the
u solves BDIE system (N2) and u solves
the Neumann problem (118)-(119) and ¢
satisfies (127).

(iii) If a couple (u,p) € H' () x H%((?Q)
solves the BDIE system (N2) and ro >
diam(£2), then the u solves BDIE system
(N1) and Neumann problem (118)-(119)
and ¢ satisfies (127).

(iv) The homogeneous BDIE systems (N1)
and (N2) have unique linearly inde-
pendent solution spanned by Uy =
(10, )T = (1,1)7 in HY(Q) x Hz (69).
Condition (120) is necessary and suffi-
cient for solvability of the nonhomoge-
neous BDIE systems (N1) and, if ro >
diam(Q2), also of the system (N2), in
HY(Q) x Hz(5Q).

Proof. (i) Let u € H'(Q) be a solution to the
Neumann BVP (118)-(119). It immediately fol-
lows from Theorem 48 and relations (66)—(67)
that the couple (u,¢) with ¢ = ~yTu satisfies
the BDIE systems (N1) and (N2), which proves
item (i).

(ii) Let now a couple (u, ) € H' () x H%(GQ)
solve BDIE system (N1) or (N2). Due to the
first equations in the BDIE systems, the hy-
potheses of Lemma 4 are satisfied implying that
u is a solution of equation (118) in 2, and equa-
tions (55)-(58) hold for ¥ = ¢y and ® = ¢.

If a couple (u,¢) € HY(Q) x H%(ﬁﬁ) solve the
system (N1) then subtracting (58) from (122)
gives T (f,u) = 1o on dQ. Thus Neumann
(119) is satisfied. Further, from (56) we derive
Wy(yTu — ) = 0 in Q, where yTu = ¢ on 0Q
by Lemma 12 completing the proof of item (ii).
(iii) Let now couple (u,¢) € HY(Q) x H%(éﬁ)
solve BDIE system (N2). Further, taking the
trace of (124) on 0N and comparing the results
with (125), we easily derive that v u = ¢ on
09). Lemma 4 for equation (124) implies that u
is a solution of equation (118), while equations
(55)-(58) hold for ¥ = 99 and & = ¢. Further,

from (56) we derive

Vo(o —Tu(f,u)) =0 in €,
whence Ta(f, u) = 1o on 0N due to Lemma 12
(i) and wu solves Neumann problem (118)-(119)
which completes the proof of item (iii).
(iv) Theorem 20 along with items (i) and (ii)
imply the claims of item (iv) for BDIE system
(N2) and (N1). O

Properties of BDIE system operators for
the Neumann problem. BDIE systems (N1)
and (N2) can be written respectively, as

Ryl =FN o wuN = FN?, 0 (128)
where U = (u, )T € HY(Q) x H2 (0p), while
FNL and FN2 are given by Eqs. (123) and

(126) respectively. Due to the mapping prop-
erties of potentials in (123) and (126), FN! e

HY(Q) x H2(09) and FN2 e HY(Q) x H2 (69).
9‘{1 o I+ Zy+ Ry Wy
’ T;‘Zb + T;_'Rb ﬁ:{b ’
M2 . I+ Z,+Ry Wy
’ ’y+Zb + ’)/+Rb %I +Wy |
Due to the mapping properties of potentials in

(123) and (126), the right hand sides of BDIE
systems (N1)and (N2) are such that FN! e

HY(Q)x H™2(0Q) and FN2 e HY(Q) x H2 (09).
Theorem 24. The operators
R HY(Q) x H2(6Q) — HY(Q) x H™2(Q),
(129)
M2 HY(Q) x Hz(0Q) — HY(Q) x H2(69),
(130)
are continuous. They have one-dimensional null

spaces, ker Rt = ker R?, in H*(Q) x H%(ﬁﬂ),
spanned over the element (u°, %) = (1,1).

Proof. The mapping properties of the poten-
tials imply continuity of the operators (129) and
(130). The claims that ker %! and ker 32 are
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one-dimensional and the couple (u°, ¢%) = (1,1)
belong to ker R! = ker M? directly follows from
Theorem 23(iii). O

To describe in more details the range of oper-
ators (129) and (130), i.e., to give more infor-
mation about the co-kernels of these operators,
we will need several auxiliary assertions. First
of all, let us remark that for any v € HS_%(ﬁQ),
s < %, the single layer potential can be defined
as follows:

Vou(y) == —vB(5 ), vpoa = —(Bo(, ), Y 0)rs
= -Pyy*u(y), yeR*0Q. (131)

where v* HS_%((?Q) — H‘§§2, s < %, is

the operator adjoined to the trace operator - :
H?75(R3) — H%_S(GQ), and the space Hjg is
defined by (2).

Lemma 25. Let f € H2(Q), s >
ro > diam(Q). If

roPyf =0 in €, (132)
then f: 0 in R2.

1
5 and

Proof. Multiplying (132) by b, taking into ac-
count the first relation in (34) and applying the
Laplace operator, we obtain rqf = 0, which
means f € H5§_22 Ifs > %, then f = 0
by (Mikhailov, 2011, Theorem 2.10). If 3 <
s < %, then by the same theorem there ex-

ists v € HS_%(é’Q) such that f = ~4*v. This
gives Pyf = Pyyv*v = —Vjv in R2. Then (132)
reduces to Vv = 0 in €2, which by Lemma
12(i) (for s = 1, which can be generalized to
3 <s<3) implies v = 0 on éQ and thus f = 0
in R2. (]

Theorem 26. Let% < 5 < % and rg >

diam(2). The operator

Py : H72(Q) —» H*(Q) (133)
and its inverse
(Py)~' s H*(Q) — H2(Q) (134)

are continuous and
(Py) g = [AB(I-rqVaV3'v )= V31" |.
(bg) in RZ%, Vge H*(Q). (135)
Proof. The continuity of equation (133) follows
from (Chkadua et al., 2009, Theorem 3.8). By
Lemma 25 operator (133) is injective. Let us

prove its surjectivity. To this end, for arbitrary
g € H*(Q) let us consider the following equation

with respect to f € I;TS*Q(Q),
Paf=g in Q. (136)

Let g1 € H*(Q2) be the (unique) solution of the
following Dirichlet problem:
Agi=0inQ, 7 g1 =19"g,

which by (Ayele Tsegaye and Bekele Solomon,
2019, Theorem 2) the single layer potential V&l
exists and due to Costabel (1988) or (Mikhailov,
2011, Lemma 2.6) can be particularly presented
as g1 = VaVai'7tg. Let go := g — g1. Then
go € H*(Q) and v gp = 0 and thus gy can be
uniquely extended to Egq € Hs (Q), where Eis
the operator of extension by zero outside (2 .
Thus, by (131) equation (136) takes the form

roPAlf +7*Valv gl =90 in Q. (137)

Any solution f e H $=2(Q) of the corresponding
equation on R?

PAlf +7v*Vilytgl = Egy in R, (138)

solves (137). If f solves (138), then acting with
the Laplace operator on (138) we obtain

f=Qg:=AEg —vVi'r'yg
= AE(g —rVaVy'7"g)

—¥*Vx'ytg in R% (139)
On the other hand, substituting f given by (139)
to (138) and taking into account that PAAh =
h for any h € PNIS(Q), s € R, we obtain that Qg
is indeed a solution of equation (138) and thus
(137). By Lemma 25 the solution of (138) is
unique, which means that the operator Q is in-
verse to the operator (133), i.e., Q = (roP) "
Since A is a continuous operator from H (1)
to H5~2(Q), equation (85) implies that operator
(TQP)I;I = Q : H5(Q) — H*2(Q) is continu-
ous. The relations P, = 1P and b(z) > ¢ > 0

then imply the invertibility of the operator (133)
and ansatz (135). O

Theorem 27. The co-kernel of the operator
(129) is spanned over the functional

g = (7)o, 1) " (140)

in H-H(Q) x H%(aQ), that is, g*'(F1,F2) =
((yFF1)Onb + Fo, vt ul)sq, where u® = 1.

Proof. The proof follows from the proof of
(Mikhailov, 2015, Theorem 6.7) and Lemma
17. Indeed, let us consider the first equation
in (128), i.e. the equation KU = (Fi, F2)',
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representing the BDIE system (N1)
u+ Zyu + Ryu + Wy = F1  in Q, (141)
T Zpu+ T Ryu+ Lo =F> on o, (142)
with arbitrary right hand side (Fi,F)’ e
HY(Q)x H™2(09), for (u, @) € HY(Q)x H2 (69).
By Lemma 17 the right-hand side of the system

has the form (83)-(84), that is, system (141)-
(142) reduces to

u+ Zyu + Ryu + Wy(p + i)

— Pyfex in Q, (143)
T Zyu + T Ry + L], (0 + )
= T, (fox + ERL fun, Pofux) on 09, (144)
where the couple (fys, ®4) € H1(Q) x H%(ﬁﬁ)
is given by (83)-(84). Up to the notations (143)-
(144) is the same as in (123) with ¢y = 0.
Then, Theorems 23(iii) and 26 imply that the
BDIE system (143)-(144) and hence (141)-(142)
is solvable if and only if
<JE**7UO>Q = <(Ab]:1) + ’Y*(-FZ"‘
(T F)2ub), 1%
= (V- EV(bF1) + v*(Faot
+ (7*]:1)0nb), uO>R2
= (V- EV(bFi, Vu')pe
+{(F2+ (77 F1)0nb), v u)on
= ((F2 + (Y" F1)anb), v u’Deq = 0,

where we took into account that Vu" = 0 in R2.
Thus the functional g*! defined by (140) gener-
ates the necessary and sufficient solvability con-
dition for the first equation in (128). Hence g*!
is basis of the co-kernel of R!. O

Theorem 28. Let 19 > diam(Q2). Then the co-
kernel of operator (130) is spanned over

*2 b’Y *(% WIA)VAl uo >
= 146
g < —b(% — W’Q )Vﬁ 17 u? ( )

in H=1(Q) x H™2(09), that is,

(145)

g (F1, Fa) = <—b7+* (%+W'A)Vglv+uo,f1>9
+ < — b(% — WA)V&17+UO,]~'2>

where u® = 1.

o0

Proof. The proof follows from the proof of
(Mikhailov, 2015, Theorem 6.8), (Ayele Tsegaye
and Bekele Solomon, 2019, Theorem 2) and
Lemma 17. Indeed, let us consider the first

equation in (128), i.e. the equation R'UY =
(F1,F2) ", representing the BDIE system (N1)

u+ Zyu + Ryu + Wyp = F1 in Q, (147)
1
5(,0 + ’y+Zbu + 7+Rbu + Wy

=F2 on 0f, (148)

with arbitrary (Fi, F2)T € HY(Q) x H_%(OQ),
for (u,p) € HY(Q) x H%(ﬁﬂ)

Introducing the new variable |, ¢’ = ¢ — (Fo —
v*F1), BDIE system (147)-(148) takes the form

u+ Zpu+ Ryu + Wyp = F in Q, (149)

1
itp' + 97 Zpu 4+ v Ryt + Wy

=F, on 09, (150)
where

]:{ =F — Wb(}—g - ’Y+.7:1) € HI(Q)
Let us recall that P, = rqPy : H2(Q) —
H#*(Q?) and then by Theorem 26, the operator
Pyl = (Py)t 2 H(Q) — H*"2(Q) is contin-
uous for 3 < s < 3, while V! exists (Ayele
Tsegaye and Bekele Solomon, 2019, Theorem 2).
Hence we always represent F1 = Py f, with
f* = [AE(I — TQVAV£17+)—
YV I0F) e HTH(Q).
For 7| = Pyfs, the right hand side of BDIE
system (149)-(150) is the same as in (126) with

f = f« and ¥y = 0. Then Theorems 23(iii)
implies that the BDIE system (149)-(150) and
hence (147)-(148) is solvable if and only if

(faeyudg =
= (AE(I-rqVaVy 'y ") =y TV 1 (0F)), u)pe
= (B(I = rqVaV'y D) (0F)), Aulygo
—((YPVRIA ) (0FD), u e
— (O (OF), Valrtuen =
G F) + (6F2)] — Walb(F — 7 F),
N AR

1
= (—by* (5 n W’A)v;lwuo,fm

1
+ <—b(5 + W’A>V§y+u°,ﬂ>ag —0. (151)
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Thus the functional ¢g*? defined by (146) gener-
ates the necessary and sufficient solvability con-
dition of the equation R2U = (Fy, F2)". Hence
g*? is basis of the cokernel of 932. O

Perturbed segregated BDIE systems for
Neumann problem. Theorem 23 implies,
that even when the solvability condition (120)
is satisfied, the solutions of both BDIE sys-
tems, (N1) and (N2), are not unique. By The-
orem 24, in turn, the BDIE left hand side op-
erators, SR! and P2, have non-zero kernels and
thus are not invertible. To find a solution (u, )
from uniquely solvable BDIE system with con-
tinuously invertible left hand side operators, let
us consider, following Mikhailov (1999), some
BDIE systems obtained form (N1) and (N2)
by finite-dimensional operator perturbations (cf.
Ayele Tsegaye (2021b) for the three-dimensional
case). Below we use the notations U = (u, )"
and [0Q] := § dS.
(%9

0.0.1. Perturbation of BDIE system (N1). Let
us introduce the perturbed counterparts of the

BDIE system (N1),
RuN = FN, (152)

where

Rl .= R+ R and 9§1UN(y) = O(UMG (y)
1 b~ (y) )
I ds ,
D fwm #le) ( 0

0Ny ._ L T ()
Py o [ etons gt (7
For the functional g*! given by (140) in The-
orem 27, g*1(GY) = |0Q| , while ¢°U°) = 1.
Hence (Mikhailov, 2015, Theorem D.1 in Ap-
pendix) and (Ayele Tsegaye et al., 2017) imply
the following assertion.

that is,

Theorem 29. Let ro > diam(€), then

(i) The operator R! : HY(Q) x H%(aQ) —
HY(Q) x H 2(09) is continuous and
continuously invertible.

(ii) If condition g*'(FN') = 0 or condi-
tion (120) for FN' in form (129) is sat-
isfied, then the unique solution of per-
turbed BDIDE system (152) gives a solu-
tion of original BDIE system (N1) such
that

1
ytudS = —

uN
U = 29 Joo

‘am o wdS = 0.

).

Perturbation of BDIE system (N2). Let us in-
troduce the perturbed counterparts of the BDIE
system (N2)

RuN = FV?, (153)

where

R2 .= RZ4MR2  and E)OQQUN( )i=g QUMG3(y )

o [y 2 (0 )
that is,

1
0(7/N
g UY) = f p(x)ds,
) 29 Joe (z)

P G Cas T 1) )

70 = ({10

given by (146) in The-
orem 28, since the operator Vx! : . H2 (0Q) —
H _%((79) is positive definite (with additional
condition rg > diam(Q2)) and u’(z) = 1, there
exists a positive constant C' such that

*2(g2) _

For the functional g*?

1 _ _

(= byt (5 + W'A)VAI’WUO, b 1u0>Q+

1 _
< - b(g - W/A)VA17+“OVY ( 1“0)>aﬂ

1

g A -

+ (5 - W )VA17+uO,fy u0>ag
= -Vl v e
<—Ch*ly 0
< —Clv*u 0”2%(69) = —CloQf* < 0.

Due to (154) and ¢°(U°) = 1, (Mikhailov, 2015,
Theorem D.1) and (Ayele Tsegaye et al., 2017,
Theorem 7) imply the following assertion.

Theorem 30. Let ro > diam(€), then

(i) The operator R% : HY(Q) x H%(ﬁﬁ) —
H'(Q) x H%(QQ) is continuous and con-
tinuously invertible.

(ii) If condition g**(F?) = 0 or condition
(120) for FN?2 in form (130) is satis-
fied, then the unique solution of per-
turbed BDIDE system (153) gives a solu-
tion of original BDIE system (N2) such
that

1
ytudS = —

L{N
U = 29 Joo

|6Q\ o pdS = 0.
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