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ABSTRACT: The Dirichlet and Neumann boundary value problems for the linear second-order
scalar elliptic differential equation with variable coefficients in a bounded two-dimensional domain are
considered. The right-hand side the PDE belongs to H´1

pΩq or rH´1
pΩq, when neither classical nor

canonical conormal derivatives of solutions are well defined. The two-operator approach and appro-
priate parametrix (Levi function) are used to reduce each of the problems to two different systems
of two-operator boundary-domain integral equations (BDIEs). Although the theory of BDIEs in 3D
is well developed, the BDIEs in 2D need a special consideration due to their different equivalence
properties. As a result, we need to set conditions on the domain or on the associated Sobolev spaces
to ensure the invertibility of the corresponding parametrix-based integral layer potentials and hence
the unique solvability of BDIEs. The equivalence of the two-operator BDIE systems to the original
problems, BDIE system solvability, solution uniqueness/nonuniqueness and invertibility BDIE system
are analyzed in the appropriate Sobolev spaces. It is shown that the BDIE operators for the Neumann
BVP are not invertible, and appropriate finite-dimensional perturbations are constructed leading to
invertibility of the perturbed operators.

Keywords/phrases: Analysis, Boundary-Domain Integral Equations, Parametrix, Partial
Differential Equations, Variable Coefficients.

Introduction

Partial differential equations (PDEs) with vari-
able coefficients often arise in mathematical
modelling of inhomogeneous media (e.g. func-
tionally graded materials or materials with
damage induced inhomogeneity) in solid me-
chanics, electromagnetics, thermal conductivity,
fluid flows through porous media, and other ar-
eas of physics and engineering. Generally, ex-
plicit fundamental solutions are not available
if the PDE coefficients are not constant, pre-
venting reduction of boundary value problems
(BVPs) for such PDEs to explicit boundary in-
tegral equations (BIEs), which could be effec-
tively solved numerically. Nevertheless, for a
rather wide class of variable-coefficient PDEs it
is possible to use instead an explicit parametrix
(Levi function) associated with the fundamental
solution of the corresponding frozen-coefficient
PDEs, and reduce BVPs for such PDEs to
systems of boundary-domain integral equations
(BDIEs) for further numerical solution of the
latter, see for example Chkadua et al. (2009,

2011); Mikhailov (2002, 2005b, 2006). Still this
(one-operator) approach does not work when the
fundamental solution of the frozen-coefficient
PDE is not known explicitly (as e.g. in the
Lamé system of anisotropic elasticity). To over-
come this difficulty, one can apply the so-called
two-operator approach, formulated in Mikhailov
(2005a) for a certain nonlinear problem, that
employs a parametrix of another (second) PDE,
not related with the PDE in question, for re-
ducing the BVP to a BDIE system. Since the
second PDE is rather arbitrary, one can always
choose it in such a way, that its parametrix is
known explicitly. The simplest choice for the
second PDE is the one with an explicit fun-
damental solution. For a function from the
Sobolev space H1pΩq, a classical conormal de-
rivative in the sense of traces may not exist
(Mikhailov, 2015, Appendix A). However, when
this function satisfies a second order PDE with
a right-hand side from H´1pΩq, the generalized
conormal derivative can be defined in the weak
sense, associated with the first Green identity

˚Author to whom correspondence should be addressed.
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and an extension of the PDE right-hand side to
rH´1pΩq, see (McLean, 2000, Lemma 4.3) and
(Mikhailov, 2011, Definition 3.1). Since the ex-
tension is not unique, the conormal derivative
appears to be an operator that is not unique,
which is also nonlinear in u unless a linear re-
lation between u and the PDE right-hand side
extension is enforced. This creates some diffi-
culties in formulating the BDIEs. These difficul-
ties are addressed in Mikhailov (2015, 2018) pre-
senting formulation and analysis of direct segre-
gated BDIE systems equivalent to the Dirich-
let and Neumann problems for the divergent-
type PDE with a variable scalar coefficient and
a general right-hand side. This needed a non-
trivial generalization of the third Green iden-
tity and its conormal derivative for such func-
tions, which extends the approach implemented
in Mikhailov (2006); Chkadua et al. (2009, 2010,
2011); Mikhailov (2013) for the PDE right-hand
from L2pΩq. In Ayele Tsegaye (2021b), using the
two-operator approach in settings different from
those in Ayele Tsegaye and Mikhailov (2010,
2011), a generalization of the two-operator third
Green identity and its conormal derivative is de-
rived and the two-operator BDIEs for variable-
coefficient Dirichlet, Neumann and mixed BVPs
are analyzed in 3D.
Nowadays, the theory of BDIEs in 3D is well
developed (Mikhailov, 2002, 2005a; Chkadua
et al., 2009, 2010, 2011), but the BDIEs in 2D
need a special consideration due to their differ-
ent equivalence properties. As a result, we need
to set conditions on the domain or on the asso-
ciated Sobolev spaces to ensure the invertibility
of the corresponding parametrix-based integral
layer potentials and hence the unique solvability
of BDIEs (Dufera Tamirat and Mikhailov, 2015;
Ayele Tsegaye et al., 2017, 2019; Ayele Tsegaye,
2021a; Ayele Tsegaye and Bekele Solomon, 2023;
Ayele Tsegaye and Dagnaw Mulugeta, 2021a).
In this paper, we extend the results in
(Ayele Tsegaye and Yimer Markos, 2023; Ayele
Tsegaye, 2021a), and consider the Dirichlet
and Neumann BVPs for the linear second-order
scalar elliptic differential equation with vari-
able coefficient in a two-dimensional bounded
domain. The PDE right-hand side belongs to
H´1pΩq or rH´1pΩq when neither classical nor
canonical conormal derivatives of solutions are
well defined. The two-operator approach and
appropriate parametrix (Levi function) are used
to reduce each problem into two different sys-
tems of BDIEs. The properties of the corre-
sponding potential operators are investigated.

The equivalence of the two-operator BDIE sys-
tems to the original problems, BDIE system
solvability, solution uniqueness/nonuniqeuness
and invertibility BDIE system are analyzed in
the appropriate Sobolev spaces. It is shown
that the BDIE operators for the Neumann
BVP are not invertible, and appropriate finite-
dimensional perturbations are constructed lead-
ing to invertibility of the perturbed operators.

Preliminaries

Conormal derivatives. Let Ω be a domain in
R2 bounded by a smooth curve BΩ. Consider
the scalar elliptic differential equation, which for
sufficiently smooth function u and x P Ω has the
following strong form,

Aupxq :“ Apx, Bxqupxq

“

2
ÿ

i“1

B

Bxi

ˆ

apxq
Bupxq

Bxi

˙

“ f̃pxq, (1)

where u is unknown function and f̃ is a given
function in Ω. We assume that a P C8pR2) and

0 ă amin ď apxq ď amax ă 8, @x P R2.

In what follows DpΩq “ C8
0 pΩq, HspΩq “

Hs
2pΩq, HspBΩq “ Hs

2pBΩq are the Bessel poten-
tial spaces, where s P R is an arbitrary real num-
ber (McLean, 2000; Lions and Magenes, 1972).
We recall that Hs coincides with the Sobolev-
Slobodetski spaces W s

2 for any nonnegative s.
We denote by rHspΩq the subspace of HspR2q,

rHspΩq :“ tg : g P HspR2q, supppgq Ă Ωu

while HspΩq denotes the space of restriction on
Ω of distributions from HspR2q,

HspΩq “ trΩg : g P HspR2qu

where rΩ denotes the restriction operator on Ω.
We will also use the notation g|Ω :“ rΩg. We de-
note by Hs

BΩ the following subspace of HspR2q

(and rHspΩq),

Hs
BΩ :“ tg : g P HspR2q, supppgq Ă BΩu. (2)

From the trace theorem (Lions and Magenes,
1972; Dautray and Lions, 1990; McLean, 2000)
for u P H1pΩq, it follows that γ`u P H

1
2 pBΩq,

where γ` “ γ`
BΩ is the trace operator on BΩ from

Ω. Let also γ´1 : H
1
2 pBΩq Ñ H1pΩq denote

a (non-unique) continuous right inverse to the
trace operator γ`, i.e., γ`

BΩγ
´1
BΩw “ γ`γ´1w “

w for any w P H
1
2 pBΩq, and pγ´1q˚ : rH´1pΩq Ñ

H´ 1
2 pBΩq is continuous operator dual to γ´1,
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i. e., xpγ´1q˚f̃ , wyBΩ :“ xf̃ , γ´1wyΩ for any
f̃ P rH´1pΩq and w P H

1
2 pBΩq.

For u P H2pΩq, we denote by T`
a the corre-

sponding canonical (strong) conormal derivative
operator on BΩ in the sense of traces,

T`
a u : “

2
ÿ

i“1

apxqnipxqγ` Bupxq

Bxi

“ apxqγ` Bupxq

Bnpxq
,

(3)

where npxq is the outward to Ω unit normal vec-
tor at the point x P BΩ. However, the classical
conormal derivative operator is generally, not
well defined if u P H1pΩq, see (Mikhailov, 2015,
Appendix A). For u P H1pΩq, the PDE Au in
(1) is understood in the sense of distributions,

xAu, vyΩ :“ ´Eapu, vq, @v P DpΩq, (4)

where

Eapu, vq :“

ż

Ω
apxq∇upxq ¨ ∇vpxqdx

is a symmetric bilinear form and the duality
brackets xg, ¨yΩ denote the value of a linear func-
tional (distribution) g, extending the usual L2

inner product. Since the set DpΩq is dense in
rH1pΩq, the above formula defines a continuous
operator A : H1pΩq Ñ H´1pΩq “ r rH1pΩqs˚,

xAu, vyΩ :“ ´Eapu, vq,

@u P H1pΩq, @v P rH1pΩq. (5)

Let us consider also the operator

Ǎ : H1pΩq Ñ rH´1pΩq “ rH1pΩqs˚

such that

xǍu, vyΩ :“ ´Eapu, vq

“ ´

ż

Ω
apxq∇upxq ¨ ∇vpxqdx

“ ´

ż

R2

E̊ra∇uspxq ¨ ∇V pxqdx

“ x∇ ¨ E̊ra∇us, V yR2x∇ ¨ E̊ra∇us, vyΩ,

@u P H1pΩq, @v P H1pΩq,

(6)

which is evidently continuous and can be written
as:

Ǎu “ ∇ ¨ E̊ra∇us. (7)
Here V P H1pR2q is such that rΩV “ v and E̊
denotes the operator of extension of the func-
tions, defined in Ω, by zero outside Ω in R2. For
any u P H1pΩq, the functional Ǎu belongs to
rH´1pΩq and is the extension of the functional
Au P H´1pΩq, which domain is thus extended
from rH1pΩq to the domain H1pΩq for Ǎu.

Inspired by the first Green identity for smooth
functions, we can define the generalized conor-
mal derivative as in (McLean, 2000, Lemma 4.3),
(Mikhailov, 2011, Definition 3.1) and (Kohr
et al., 2015, Lemma 2.2).

Definition 1. Let u P H1pΩq and Au “ rΩf̃

in Ω for some f̃ P rH´1pΩq. Then the general-
ized conormal derivative T`

a pf̃ , uq P H´ 1
2 pBΩq

is defined as

xT`
a pf̃ , uq, wy

BΩ
:“ xf̃ , γ´1wyΩ ` Eapu, γ´1wq

“ xf̃ ´ Ǎu, γ´1wyΩ, @w P H
1
2 pBΩq,

that is

T`pf̃ , uq :“ pγ´1q˚pf̃ ´ Ǎuq. (8)

Due to (McLean, 2000, Lemma 4.3) and
(Mikhailov, 2011, Theorem 3.2), we have the es-
timate

}T`
a pf̃ , uq}

H´ 1
2 pBΩq

ď C1}u}H1pΩq

` C2}f̃}
rH´1pΩq

, (9)

and for u P H1pΩq such that Au “ rΩf̃ in Ω for
some f̃ P rH´1pΩq the first Green identity holds
in the following form:

xT`
a pf̃ , uq, γ`vy

BΩ
:“ xf̃ , vyΩ ` Eapu, vq

“ xf̃ ´ Ǎu, vyΩ, @v P H1pΩq. (10)

As follows from Definition 1, the generalised
conormal derivative is nonlinear with respect to
u for a fixed f̃ , but linear with respect to the
couple pf̃ , uq, i.e.,

α1T
`
a pf̃1, u1q ` α2T

`
a pf̃2, u2q

“ T`
a pα1f̃1, α1u1q ` T`

a pα2f̃2, α2u2q

“ T`
a pα1f̃1 ` α2f̃2, α1u1 ` α2u2q (11)

for any real numbers α1, α2.
Let us also define some subspaces of HspΩq,
cf. Mikhailov (2011, 2013); Costabel (1988);
Grisvard (1985).

Definition 2. Let s P R and A˚ : HspΩq Ñ

D˚pΩq be a linear operator. For t ě ´1
2 we in-

troduce the space

Hs,tpΩ;A˚q :“ tg P HspΩq : there exists

f̃g P rHtpΩq such that A˚g|Ω “ f̃g|Ωu

endowed with the norm

}g}Hs,tpΩ;A˚q :“
´

}g}2HspΩq ` }f̃g}2
rHtpΩq

¯
1
2

and the inner product

pg, hqHs,tpΩ;A˚q “ pg, hqHspΩq ` pf̃g, f̃hq
rHtpΩq

.
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The distribution f̃g P rHtpΩq, t ě ´1
2 , in the

above definition is an extension of the distri-
bution A˚g|Ω P HtpΩq, and the extension is
unique (if it does exist) since any distribution
from the space HtpR2q with support in BΩ is
identically zero if t ě ´1

2 , see (McLean, 2000,
Lemma 3.39) and (Mikhailov, 2011, Theorem
2.10). We denote this extension as an opera-
tor Ã˚, i.e., Ã˚g “ f̃g. The uniqueness implies
that the norm }g}Hs,tpΩ;A˚q is well defined.
We will mostly use the operators A,B or ∆
as A˚ in the above definition. Note that since
Au ´ a∆u “ ∇a ¨ ∇u P L2pΩq, for u P H1pΩq,
we have H1,0pΩ;Aq “ H1,0pΩ;∆q.

Definition 3. For u P H1,´ 1
2 pΩ;Aq, we de-

fine the canonical conormal derivative T`
a u P

H´ 1
2 pBΩq as

xT`
a u,wy

BΩ
:“ xÃu, γ´1wyΩ ` Eapu, γ´1wq

“ xÃu´ Ǎu, γ´1wyΩ, @w P H
1
2 pBΩq, i. e.,

T`
a u :“ pγ´1q˚pÃu´ Ǎuq. (12)

The canonical conormal derivative T`
a u is in-

dependent of (non-unique) choice of the oper-
ator γ´1, the operator T`

a : H1,´ 1
2 pΩ;Aq Ñ

H´ 1
2 pBΩq is continuous, and the first Green

identity holds in the following form,

xT`
a u, γ

`vy
BΩ

:“ xÃu, vyΩ ` Eapu, vq ,

@v P H1pΩq.
(13)

The operator T`
a : H1, tpΩ;Aq Ñ H´ 1

2 pBΩq in
Definition 3 is continuous for t ě ´1

2 . The
canonical conormal derivative is defined by the
function u and the operator A and does not de-
pend separately on the right-hand side f̃ (i.e.
its behavior on the boundary), unlike the gen-
eralised conormal derivative defined in (8), and
the operator T`

a is linear. Note that the canon-
ical conormal derivative coincides with classi-
cal conormal derivative T`

a u “ a Bu
Bn if the lat-

ter does exist in the trace sense, see (Mikhailov,
2011, Corollary 3.14 and Theorem 3.16).
Let u P H1,´ 1

2 pΩ;Aq. Then Definitions 1 and
3 imply that the generalised conormal deriva-
tive for arbitrary extension f̃ P rH´1pΩq of the
distribution Au can be expressed as

xT`
a pf̃ , uq, wy

BΩ
:“ xT`

a u,wyBΩ

`xf̃ ´ Ǎu, γ´1wyΩ, @w P H
1
2 pBΩq.

(14)

Let us consider the auxiliary linear elliptic par-
tial differential operator B defined by

Bupxq :“ Bpx, Bxqupxq

“

2
ÿ

i“1

B

Bxi

´

bpxq
Bupxq

Bxi

¯

, (15)

where b P C8pΩq and bpxq ą 0 for x P Ω. Since
for u P H1,0pΩ,∆q, Au ´ Bu “ pa ´ bq∆u `

∇pa ´ bq ¨ ∇u P L2pΩq, we have, H1,0pΩ;Aq “

H1,0pΩ;Bq. Let u P H1pΩq and v P H1,0pΩ;Bq.
Then we write the first Green identity for oper-
ator B in the form

Ebpu, vq `

ż

Ω
upxqBvpxqdx

“ xT`
b v, γ

`uyBΩ, (16)

where

Ebpu, vq “

ż

Ω
bpxq∇upxq ¨ ∇vpxqdx.

If, in addition, Au “ f̃ in Ω, where f̃ P rH´1pΩq,

then according to the definition of T`
a pf̃ , uq, in

(8), the two-operator second Green identity can
be written as

xf̃ , vyΩ ´

ż

Ω
upxqBvpxqdx

`

ż

Ω
rapxq ´ bpxqs∇upxq ¨ ∇vpxqdx

“ xT`
a pf̃ , uq, γ`vyBΩ

´ xT`
b v, γ

`uyBΩ. (17)

Moreover, for u, v P H1,0pΩ;Aq “ H1,0pΩ;Bq

(17) becomes
ż

Ω
rvpxqAupxq ´ upxqBvpxqsdx

`

ż

Ω
rapxq ´ bpxqs∇upxq ¨ ∇vpxqdx

“ xT`
a u, γ

`vyBΩ ´ xT`
b v, γ

`uyBΩ.

Parametrix, remainder and potential type
operators.

Definition 4. A function Pbpx, yq of two vari-
ables x, y P Ω is a parametrix (Levi function)
for the operator Bpx, Bxq in R2 (Miranda, 1970;
Hellwig, 1977; Pomp, 1998a,b; Mikhailov, 2002)
if

Bpx, BxqPbpx, yq “ δpx´ yq `Rbpx, yq, (18)

where δ is the Dirac-delta distribution, while
Rbpx, yq is a remainder possessing at most a
weak singularity at x “ y.
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For some positive constant r0 and x, y P R2,
the parametrix and hence the corresponding re-
mainder in 2D can be chosen as in Mikhailov
(2002),

Pbpx, yq “
1

2πbpyq
ln

ˆ

|x´ y|

r0

˙

, (19)

Rbpx, yq “

2
ÿ

i“1

xi ´ yi
2πbpyq|x´ y|2

Bbpxq

Bxi
. (20)

The parametrix Pbpx, yq in (19) is the fundamen-
tal solution to the operator Bpy, Bxq :“ bpyq∆x

with “frozen" coefficient bpxq “ bpyq, and

Bpy, BxqPbpx, yq “ δpx´ yq. (21)

Let b P C8pR2q and bpxq ą 0 a.e. in R2.
For some scalar function g the parametrix-based
Newtonian and the remainder volume potential
operators, corresponding to the parametrix (19)
and the remainder (20) are given by

Pbgpyq :“

ż

R2

Pbpx, yqgpxqdx, y P R2, (22)

Pbgpyq :“

ż

Ω
Pbpx, yqgpxqdx, y P Ω, (23)

Rbgpyq :“

ż

Ω
Rbpx, yqgpxqdx, y P Ω. (24)

For g P HspR2q, s P R, (22) is understood as
Pbg “ 1

bP∆g, where the Newtonian potential
operator P∆ for Laplacian ∆ is well defined in
terms of the Fourier transform (i.e., as pseudo-
differential operator), on any space HspR2q. For
g P rHspΩq, and any s P R, definitions in (23)
and (24) can be understood as

Pbg “
1

b
rΩP∆g, Pbg “

a

b
rΩPag,

Rbg “ ´
1

b
rΩ∇ ¨ P∆pg∇bq,

(25)

while for g P HspΩq,´1
2 ă s ă 1

2 , as (25)
with g replaced by rEg, where rE : HspΩq Ñ

rHspΩq,´1
2 ă s ă 1

2 , is the unique extension op-
erator related with the operator E̊ of extension
by zero, cf. (Mikhailov, 2011, Theorem 16).
For y R BΩ, the single layer and the double
layer surface potential operators, corresponding
to the parametrix (19) are defined as

Vbgpyq :“ ´

ż

BΩ
Pbpx, yqgpxqdSx, (26)

Wbgpyq :“

´

ż

BΩ
rTbpx, npxq, BxqPbpx, yqsgpxqdSx, (27)

where g is some scalar density function. The
integrals are understood in the distributional

sense if g is not integrable, while V∆ and W∆

are the single layer and double layer potentials
corresponding to the Laplacian ∆. The corre-
sponding boundary integral (pseudodifferential)
operators of direct surface values to the single
and the double layer potentials,Vb and Wb when
y P BΩ, are

Vbgpyq :“ ´

ż

BΩ
Pbpx, yqgpxqdSx, (28)

Wbgpyq :“ ´

ż

BΩ
Tbpx, npxq, BxqPbpx, yqgpxqdSx,

(29)

where V∆ and W∆ are respectively the direct
values of the single and double layer potentials
corresponding to the Laplacian ∆.
We can also calculate at y P BΩ the conormal
derivatives, associated with the operator A, of
the single layer potential and of the double layer
potential:

T˘
a Vbgpyq “

apyq

bpyq
T˘
b Vbgpyq, (30)

L˘
abgpyq :“ T˘

a Wbgpyq “
apyq

bpyq
T˘
b Wbgpyq. (31)

The direct value operators associated with (30)
are:

W 1
abgpyq :“ ´

ż

BΩ
rTapy, npyq, ByqPbpx, yqsgpxqdSx,

(32)

W 1
bgpyq :“ ´

ż

BΩ
rTbpy, npyq, ByqPbpx, yqsgpxqdSx.

(33)

From equations (22)-(33) we can deduce repre-
sentations of the parametrix-based surface po-
tential boundary operators in terms of their
counterparts for b “ 1, that is, associated with
the fundamental solution P∆ “ 1

2π ln
´

|x´y|

r0

¯

of
the Laplace operator ∆.

Pag “
1

a
P∆g, Pbg “

1

b
P∆g,

Pag “
1

a
P∆g, Pbg “

1

b
P∆g.

(34)

a

b
Vag “ Vbg “

1

b
V∆g,

a

b
Wa

´bg

a

¯

“ Wbg “
1

b
W∆

`

bg
˘

.

(35)

a

b
Vag “ Vbg “

1

b
V∆g,

a

b
Wa

´bg

a

¯

“ Wbg “
1

b
W∆

`

bg
˘

.

(36)
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W 1
abg “

a

b
W 1

bg

“
a

b

!

W 1
∆g `

”

b
B

Bn

´1

b

¯ı

V∆g
)

,
(37)

L˘
abg “

a

b
L˘
b g

“
a

b

!

L∆pbgq `

”

b
B

Bn

´1

b

¯ı

γ˘W∆pbgq

)

,
(38)

L̂bg :“ T`
∆W∆pbgq “ T´

∆W∆pbgq

“ L̂∆pbgq on BΩ.
(39)

It is taken into account that b and its derivatives
are continuous in R2 and

L∆pbgq :“ L`
∆pbgq “ L´

∆pbgq

by the Liapunov-Tauber theorem. Hence,
∆pbVbgq “ 0, ∆pbWbgq “ 0 in Ω,

@g P HspBΩq, @s P R,
(40)

∆pbPbgq “ g in Ω,

@g P rHspΩq, @s P R.
(41)

The mapping properties of the operators (22)-
(33) follow from relations (34)-(39) and are
described in detail in (Ayele Tsegaye and
Mikhailov, 2011, Appendix A). Particularly, we
have the following jump relations:

Theorem 1. For g1 P H´ 1
2 pBΩq, and g2 P

H
1
2 pBΩq. Then there hold the following relations

on BΩ,

γ˘Vbg1 “ Vbg1, (42)

γ˘Wbg2 “ ¯
1

2
g2 ` Wbg2, (43)

T˘
a Vbg1 “ ˘

1

2

a

b
g1 ` W 1

abg1. (44)

The two-operator third Green
identity and integral relations

Applying some limiting procedures (Miranda,
1970) and (Hellwig, 1977, Section 3.8), we ob-
tain the parametrix based third Green identities.

Theorem 2. (i) If u P H1pΩq, then the fol-
lowing third Green identity holds,

u`Zbu`Rbu`Wbγ
`u “ PbǍu in Ω, (45)

where the operator Ǎ is defined in (7),
and for u P C1pΩq,

PbǍupyq :“ xǍu, Pbp., yqyΩ “ ´Eapu, Pbp., yqq

“ ´

ż

Ω
apxq∇upxq ¨ ∇xPbpx, yqdx (46)

and

Zbu “ ´

ż

Ω
rapxq ´ bpxqs∇xPbpx, yq ¨ ∇upxqdx

“
1

bpyq

2
ÿ

j“1

BjP∆ rpa´ bqBjus in Ω. (47)

(ii) If Au “ rΩf̃ in Ω, where f̃ P rH´1pΩq,
then recalling the definition of T`

a pf̃ , uq,
in (8), we arrive at the generalised two-
operator third Green identity in the fol-
lowing form,

u` Zbu` Rbu´ VbT
`
a pf̃ , uq `Wbγ

`u

“ Pbf̃ in Ω, (48)

where it was taken into account that

xT`
a pf̃ , uq, Pbpx, yqyBΩ “ ´VbT

`
a pf̃ , uq and

xf̃ , Pbpx, yqyΩ “ Pbf̃ . (49)

Proof. (i) Let first u P DpΩq. Let y P

Ω, Bϵpyq Ă Ω be a ball centred at y with suf-
ficiently small radius ϵ, and Ωϵ :“ ΩzBϵpyq.
For the fixed y, evidently, Pbp., yq P DpΩϵq Ă

H1,0pA; Ωϵq and has the coinciding classical and
canonical conormal derivatives on BΩϵ. Then
from (19) and the first Green identity (16) em-
ployed for Ωϵ with v “ Pbp., yq we obtain

´

ż

BBϵpyq

T`
x Pbpx, yqγ`upxqdsx

´

ż

BΩ
TxPbpx, yqγ`upxqdsx

`

ż

Ωϵ

upxqRbpx, yqdx

“ ´

ż

Ωϵ

bpxq∇upxq ¨ ∇xPbpx, yqdx,

which we rewrite as

´

ż

BBϵpyq

T`
x Pbpx, yqγ`upxqdsx

´

ż

BΩ
TxPbpx, yqγ`upxqdsx

´

ż

Ωϵ

rapxq ´ bpxqs∇upxq ¨ ∇xPbpx, yqdx

`

ż

Ωϵ

upxqRbpx, yqdx

“ ´

ż

Ωϵ

apxq∇upxq ¨ ∇xPbpx, yqdx.

(50)

Taking the limit as ϵ Ñ 0, (50) reduces to
the third Green identity (45)–(46) for any u P

DpΩq. Taking into account the density of
DpΩq in H1pΩq, and the mapping properties of
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the integral potentials, see (Ayele Tsegaye and
Mikhailov, 2011, Appendix A), we obtain that
(45)–(46) hold true also for any u P H1pΩq.
(ii) Let tf̃ku P DpΩq be a sequence converging
to f̃ in rH´1pΩq as k Ñ 8. Then, according to
(Mikhailov, 2015, Theorem B.1) there exists a
sequence tuku P DpΩq converging to u in H1pΩq

such that Auk “ rΩf̃k and T`
a pukq “ T`

a pf̃k, ukq

converge to T`
a pf̃ , uq in H´ 1

2 pBΩq. For such uk
by (46) and (8), we have

PbǍukpyq “
1

bpyq
∇y¨

ż

Ω
apxqP∆px, yq∇ukpxqdx

“ ´
1

bpyq
lim
ϵÑ0

ż

Ωϵ

apxq∇ukpxqP∆px, yqdx

“ ´ lim
ϵÑ0

EΩϵpuk, Pbp., yqq “ ´ lim
ϵÑ0

ż

Ωϵ

f̃kPbpx, yqdx

` lim
ϵÑ0

ż

BBϵpyq

Pbpx, yqT`
a ukpxqdSpxq

` lim
ϵÑ0

ż

BΩ
Pbpx, yqT`

a ukpxqdSpxq

“ Pbf̃k ` VbT
`
a ukpyq. (51)

Taking the limits as k Ñ 8 in (51), we obtain
PbǍupyq “ Pbf̃ ` VbT

`
a pf̃ , uq, and substitution

to (45) gives (48). □

Below we shall state and prove Corollary 3 from
Ayele Tsegaye and Bekele Solomon (2023) for
completeness.

Corollary 3. Using the Gauss divergence the-
orem, we can rewrite Zbupyq in the form that
does not involve derivatives of u,

Zbupyq :“

„

apyq

bpyq
´ 1

ȷ

upyq ` pZbupyq, (52)

pZbupyq :“
apyq

bpyq
Waγ

`upyq ´Wbγ
`upyq

`
apyq

bpyq
Raupyq ´ Rbupyq, (53)

which allows to call Zb integral operator in spite
of its integro-differential representation (47).

Proof. As in the proof of Theorem 2 item (i),
let first u P DpΩq. Let y P Ω, Bϵpyq Ă Ω be a
ball centred at y with sufficiently small radius
ϵ, and Ωϵ :“ ΩzBϵpyq. For the fixed y, evi-
dently, Pbp., yq P DpΩϵq Ă H1,0pA; Ωϵq and has
the coinciding classical and cannonical conormal
derivatives on BΩϵ “ BΩ Y BBϵpyq. Further, let
us denote

Zϵ
bupyq “ ´

ż

Ωϵ

rapxq´bpxqs∇xPbpx, yq¨∇upxqdx,

which can be rewritten as

Zϵ
bupyq “

ż

Ωϵ

“

∇
`

apxq´bpxq
˘

¨∇xPbpx, yq
‰

upxqdx

´

ż

Ωε

∇
“`

apxq ´ bpxq
˘

upxq
‰

¨ ∇xPbpx, yqdx.

Observe that

I1py, ϵq “

ż

Ωϵ

“

∇
`

apxq ´ bpxq
˘

¨ ∇xPbpx, yq
‰

upxqdx

“

ż

Ωε

“

∇apxq ¨ ∇xPbpx, yq
‰

upxqdx

´

ż

Ωϵ

“

∇bpxq ¨ ∇xPbpx, yq
‰

upxqdx

“
apyq

bpyq

ż

Ωϵ

“

∇apxq ¨ ∇xPapx, yq
‰

upxqdx

´

ż

Ωε

“

∇bpxq ¨ ∇xPbpx, yq
‰

upxqdx

and

I2py, ϵq “ ´

ż

Ωϵ

∇
“`

apxq ´ bpxq
˘

upxq
‰

∇xPbpx, yqdx

“

ż

Ωε

rapxq ´ bpxqsupxq∆xPbpx, yqdx

´

ż

BΩϵ

rapxq ´ bpxqsγ`upxq∇xPbpx, yq ¨ npxqdSx

“ ´
apyq

bpyq

ż

BΩ
apxq∇xPapx, yq ¨ npxqγ`upxqdSx

`

ż

BΩ
bpxq∇xPbpx, yq ¨ npxqγ`upxqdSx

´
apyq

bpyq

ż

BBpy,ϵq
apxq∇xPapx, yq ¨ npxqupxqdSx

`

ż

BBϵpyq

bpxq∇xPbpx, yq ¨ npxqupxqdSx

“
apyq

bpyq
Waγ

`upyq ´Wbγ
`upyq

´
1

bpyq

ż

BBϵpyq

apxq∇xP∆px, yq ¨ npxqγ`upxqdSx

`
1

bpyq

ż

BBϵpyq

bpxq∇xP∆px, yq ¨ npxqγ`upxqdSx.

Taking the limit as ϵ Ñ 0 we obtain

Zbupyq “ lim
ϵÑ0

Zϵ
bupyq “ lim

ϵÑ0
rI1py, ϵq ` I2py, ϵqs

“
apyq

bpyq
Raupyq ´ Rbupyq `

apyq

bpyq
Waγ

`upyq

´Wbγ
`upyq `

”apyq

bpyq
´ 1

ı

upyq

which is as in (52) and (53). □

Note that the operator Zb does not vanish unless
operatorsA andB are equal. For some functions
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f̃ , Ψ, Φ let us consider a more general “indirect"
integral relation, associated with (48).

u` Zbu` Rbu´ VbΨ `WbΦ

“ Pbf̃ in Ω. (54)

Lemma 4. Let u P H1pΩq,Ψ P H´ 1
2 pBΩq,Φ P

H
1
2 pBΩq and f̃ P rH´1pΩq satisfy (54). Then

Au “ rΩf̃ in Ω, (55)

rΩVbpΨ ´ T`
a pf̃ , uqq ´ rΩWbpΦ ´ γ`uq

“ 0 in Ω, (56)

γ`u` γ`Zbu` γ`Rbu´ VbΨ ´
1

2
Φ ` WbΦ

“ γ`Pbf̃ on BΩ, (57)

T`
a pf̃ , uq ` T`

a Zbu` T`
a Rbu´

a

2b
Ψ ´ W 1

abΨ

` L`
abΦ “ T`

a pf̃ ` E̊Rb
˚f̃ ,Pbf̃q on BΩ, (58)

where

Rb
˚f̃pyq :“ ´

2
ÿ

j“1

BjrpBjbqPbf̃ s. (59)

Proof. Subtracting (54) from identity (45), we
obtain

VbΨpyq ´WbpΦ ´ γ`uqpyq

“ PbrǍupyq ´ f̃ spyq, y P Ω. (60)

Multiplying equality (60) by bpyq, applying the
Laplace operator ∆ and taking into account
equations (40) and (41), we get rΩf̃ “ rΩpǍuq “

Au in Ω. This means f̃ is an extension of the
distribution Au P H´1pΩq to rH´1pΩq, and u
satisfies (55). Then (8) implies

PbrǍu´ f̃ spyq “ xǍu´ f̃ , Pbp., yqyΩ

“ ´xT`
a pf̃ , uq, Pbp.yqyBΩ

“ VbT
`
a pf̃ , uq, y P Ω.

(61)

Substituting (61) into (60) leads to (56). Equa-
tion (57) follows from (54) and jump relations
in (42) and (43). To prove (58), let us first re-
mark that for u P H1pΩq, we have H1pΩ;Aq “

H1pΩ;∆q “ H1pΩ;Bq and

BPbf̃ “ f̃ ` Rb
˚f̃ in Ω, (62)

due to (55), which implies BpPbf̃ ´ uq “ Rb
˚f̃

in Ω, with Rb
˚f̃ given by (59), and thus Rb

˚f̃ P

L2pΩq. Then BpPbf̃ ´uq can be canonically ex-
tended (by zero) to

rBpPbf̃ ´ uq “ E̊Rb
˚f̃ P rH0pΩq Ă rH´1pΩq.

Thus there exists a canonical conormal de-
rivative T`

b pPbf̃ ´ uq written as (see, e.g.,
(Mikhailov, 2015, Eq. (4.14)), (Mikhailov, 2018,
Eq. (4.23)).)

T`
b pPbf̃ ´ uq “ T`

b pf̃ ` E̊Rb
˚f̃ ,Pbf̃q

´ T`
b pf̃ , uq, (63)

and hence

T`
a

`

Pbf̃ ´ u
˘

“
a

b
T`
b

`

Pbf̃ ´ u
˘

“
a

b

“

T`
b pf̃ ` E̊Rb

˚f̃ ,Pbf̃q ´ T`
b pf̃ , uq

‰

“ T`
a

`

f̃ ` E̊Rb
˚f̃ ,Pbf̃

˘

´ T`
a pf̃ , uq.

(64)

From (54) it follows that

Pbf̃ ´ u “ Zbu` Rbu´ VbΨ `WbΦ in Ω.

Substituting this on the left-hand side of (63)
and taking into account (38) and the jump rela-
tion (44), we arrive at (58). □

Remark 5. If f̃ P rH´ 1
2 pΩq Ă rH´1pΩq, then

f̃ ` E̊Rb
˚f̃ P rH´ 1

2 pΩq as well, which implies

f̃ ` E̊Rb
˚f̃ “ ÃPbf̃

and

T`
a pf̃ ` E̊Rb

˚f̃ ,Pbf̃q

“ T`
a pB̃Pbf̃ ,Pbf̃q “ T`

a Pbf̃ . (65)

Furthermore, if the hypotheses of Lemma 4 are
satisfied, then (55) implies u P H1,´ 1

2 pΩ;Aq

and T`
a pf̃ , uq “ T`

a pÃu, uq “ T`
a u. Henceforth

(58), takes the familiar form, cf. (Ayele Tsegaye
and Mikhailov, 2011, equation (3.23)),

T`
a u`T`

a Zbu`T`
a Rbu´

a

2b
Ψ´W 1

abΨ`L`
abΦ

“ T`
a Pbf̃ on BΩ.

Remark 6. Let f̃ P rH´1pΩq and a sequence
tϕiu P rH´1pΩq converge to f̃ in rH´1pΩq. By the
continuity of operators, cf. (Mikhailov, 2015,
C.1 and C.2), estimate (9) and relation (65) for
ϕi, we obtain that

T`
a pf̃`E̊Rb

˚f̃ ,Pbf̃q “ lim
iÑ8

T`
a pϕi`E̊Rb

˚ϕi,Pbϕiq

“ lim
iÑ8

T`
a Pbϕi, in H´ 1

2 pBΩq,

cf. (Mikhailov, 2015, Theorem B.1).

Lemma 4 and the third Green identity (48) im-
ply, the following assertion.
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Corollary 7. If u P H1pΩq and f̃ P rH´1pΩq are
such that Au “ rΩf̃ in Ω, then

1

2
γ`u`γ`Zbu`γ`Rbu´VbT

`
a pf̃ , uq`Wbγ

`u

“ γ`Pbf̃ , on BΩ, (66)

´

1 ´
a

2b

¯

T`
a pf̃ , uq ` T`

a Zbu

` T`
a Rbu´ W 1

abT
`
a pf̃ , uq ` L`

abγ
`u

“ T`
a pf̃ ` E̊Rb

˚f̃ ,Pbf̃q on BΩ. (67)

Note that if Pb is not only the parametrix but
also the fundamental solution of the operator
B, then the remainder operator Rb vanishes in
(48) and (66)-(67) (and everywhere in the pa-
per), while the operator Zb stays unless A “ B.
The following statement is proved in (Mikhailov,
2015, Lemma 4.6):

Theorem 8. Let f̃ P rH´1pΩq. A function
u P H1pΩq is a solution of PDE Au “ rΩf̃ in Ω
if and only if it is a solution of boundary-domain
integro-differential equation (BDIDE) (48).

Proof. If u P H1pΩq solves the PDE Au “ rΩf̃
in Ω, then it satisfies (48). On the other hand,
if u solves BDIDE (48), then using Lemma 4
for Ψ “ T`

a pf̃ , uq, Φ “ γ`u completes the
proof. □

Invertibility of single layer potential
operator

The boundary integral operator, V∆ :

H´ 1
2 pBΩq Ñ H

1
2 pBΩq is a Fredholm operator

of index zero, see, e.g.,(McLean, 2000, Theo-
rem 7.6). Thus the first relation in (36) leads
to the same result for the single layer poten-
tial Vb. For the case of 3D, (Ayele Tsegaye and
Mikhailov, 2011, Lemma 3.2(i)) asserts that for
Ψ˚ P H´ 1

2 pBΩq, if VbΨ˚ “ 0 in Ω, then Ψ˚ “ 0
in Ω. This fact implies the invertibility of sin-
gle layer potential operator Vb mapping from
H´ 1

2 pBΩq to H
1
2 pBΩq. But this is not the case

for 2D. It is well-known, see e.g. (Constanda,
2000, Remark 1.42(ii)) and (Steinbach, 2007,
Theorem 6.22) that for some 2D domains the
kernel of the operator V∆ is nontrivial, thus due
to the first relation in (36), the kernel of opera-
tor Vb is nontrivial as well for the same domains.
To ensure the invertibility of the single layer po-
tential operator in 2D, for s P R, let us define
the subspace of HspBΩq, cf. e.g., (Steinbach,
2007, p. 147),

Hs
˚˚pBΩq :“ tg P HspBΩq : xg, 1yBΩ “ 0u. (68)

The following result is proved in (Dufera Tami-
rat and Mikhailov, 2015, Theorem 4), see also
(Ayele Tsegaye and Bekele Solomon, 2019, The-
orem 1).

Theorem 9. If ψ P H
´ 1

2
˚˚ pBΩq satisfies Vbψ “ 0

on BΩ, then ψ “ 0.

Following (McLean, 2000, Theorem 8.15), there
exists a unique real-valued distribution ψeq P

H´ 1
2 pBΩq called equilibrium density for BΩ such

that V∆ψeq is constant on BΩ, and p1, ψeqqBΩ “

1. For n “ 2 the constant V∆ψeq is not always
positive and one introduces the logarithmic ca-
pacity, CapBΩ using the relation

V∆ψeq “
1

2π
ln

ˆ

r0
CapBΩ

˙

,

for some positive constant r0 as in equation
(19). In particular V∆ψeq “ 0 if and only if
r0 “ CapBΩ.
The following statement is proved in (McLean,
2000, Theorem 8.16).

Theorem 10. Let r0 be some positive constant.

(i) The operator V∆ : H´ 1
2 pBΩq Ñ

H
1
2 pBΩq, is H´ 1

2 pBΩq- elliptic, i.e.,
xV∆ψ,ψyBΩ ě c}ψ}

H´ 1
2 pBΩq

for all ψ P

H´ 1
2 pBΩq, if and only if r0 ą Cap

BΩ
.

(ii) The operator V∆ : H´ 1
2 pBΩq Ñ

H
1
2 pBΩq, has a bounded inverse if and

only if r0 ‰ Cap
BΩ
.

The following theorem ensures the invertibility
of the single layer potential operator Vb in 2D.

Theorem 11. Let Ω Ă R2 with r0 ą diampΩq.
Then the single layer potential Vb : H

´ 1
2 pBΩq Ñ

H
1
2 pBΩq is invertible.

Proof. Since Cap
BΩ

ď diampΩq, see, (Yan and
Sloan, 1988, p.553, properties 1 and 3), then
r0 ą diampΩq implies r0 ą Cap

BΩ
. For the case

a “ b the assertion is proved in (Dufera Tamirat
and Mikhailov, 2015, Theorem 5). Due to the
first relation in (36) and Theorem 10(ii) follows
the invertibility of the single layer potential op-
erator Vb for the case a ‰ b as well, see also
(Ayele Tsegaye and Bekele Solomon, 2019, The-
orem 2). □

As in Ayele Tsegaye and Bekele Solomon (2023),
we shall restrict ourselves to Theorem 11 while
discussing about the invertibility of single layer
potential Vb in 2D. On the other hand, choos-
ing an appropriate parameter r0, one can get
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the zero kernel for Vb not only on the sub-
space H

´1{2
˚˚ pBΩq but also on the entire space

H´1{2pBΩq. The proof to the following result
is due to (Ayele Tsegaye and Bekele Solomon,
2019, Lemma 1) and (Ayele Tsegaye, 2021b,
Lemma 2).

Lemma 12. (i) Let r0 ą diampΩq. If Ψ˚ P

H´ 1
2 pBΩq and rΩVbΨ

˚ “ 0 in Ω, then
Ψ˚ “ 0.

(ii) If Φ˚ P H
1
2 pBΩq and rΩWbΦ

˚ “ 0 in Ω,
then Φ˚ “ 0.

Two-operator BDIE systems for
Dirichlet problem

Let Ω be a domain in R2 bounded by a smooth
curve BΩ. We shall derive and investigate the
two-operator BDIE systems for the following
Dirichlet problem: for φ0 P H

1
2 pBΩq and f P

H´1pΩq, find a function u P H1pΩq satisfying

Au “ f in Ω, (69)

γ`u “ φ0 on BΩ. (70)

Here equation (69) is understood in the distri-
butional sense (4) and the Dirichlet boundary
condition (70) is understood in the trace sense.
The following assertion is well-known and can
be proved e.g. using variational settings and the
Lax-Milgram lemma:

Theorem 13. The Dirichlet problem (69)-(70)
is uniquely solvable in H1pΩq. The solution is
u “ pADq´1pf, φ0qJ, where the inverse oper-
ator, pADq´1 : H´1pΩq ˆ H

1
2 pBΩq Ñ H1pΩq,

to the left-hand side operator, AD : H1pΩq Ñ

H´1pΩq ˆ H
1
2 pBΩq, of the Dirichlet problem

(69)-(70), is continuous.

BDIE system formulation to the Dirich-
let problem. Following similar procedure as
in Mikhailov (2015), let us reduce the Dirich-
let problem (69)-(70) with f P H´1pΩq, for
u P H1pΩq, to two different systems of segre-
gated two-operator BDIEs.
Let f̃ P rH´1pΩq be an extension of f P

H´1pΩq (i.e., f “ rΩf̃q, which always exists,
see, (Mikhailov, 2015, Lemma 2.15 and Theorem
2.16). We represent in (48), (66) and (67) the
generalized conormal derivative and the trace of
the function u as

T`
a pf̃ , uq “ ψ, γ`u “ φ0

respectively, and will regard the new unknown
function ψ P H´ 1

2 pBΩq as formally segre-
gated of u. Thus we will look for the couple

pu, ψq P H1pΩq ˆH´ 1
2 pBΩq.

BDIE system (D1). To reduce BVP (69)-(70)
to one of BDIE systems we will use equation (48)
in Ω and equation (66) on BΩ. Then we arrive
at the system of BDIEs (D1),

u ` Zbu ` Rbu ´ Vbψ “ FD1
1 in Ω, (71)

γ`Zbu`γ`Rbu´Vbψ “ FD1
2 on BΩ, (72)

where F0 :“ Pbf̃ ´Wbφ0 and

FD1 :“

«

FD1
1

FD1
2

ff

“

«

F0

γ`F0 ´ φ0

ff

. (73)

For φ0 P H
1
2 pBΩq, we have the inclusions FD1

1 “

F0 P H1pΩq if f̃ P rH´1pΩq and due to the map-
ping properties of operators involved in (73), we
have the inclusion FD1 P H1pΩq ˆH

1
2 pBΩq.

Remark 14. Let f̃ P rH´1pΩq and φ0 P

H
1
2 pBΩq. Then FD1 “ 0 if and only if pf̃ , φ0q “

0.

Proof. The later equality implies the former.
Conversely, let FD1 “ 0, that is, F0 “ Pbf̃ ´

Wbφ0 “ 0 in Ω and γ`F0 ´φ0 “ 0 on BΩ. Then
φ0 “ 0 on BΩ and Pbf̃ “ 0 in Ω. Multiplying the
later by b, we get P∆f̃ “ 0 in Ω and applying
Laplace operator gives f̃ “ 0 in R2. □

BDIE system (D2). To obtain a BDIE sys-
tem of the second kind, we will use equation (48)
in Ω and equation (67) on BΩ. Then we arrive
at the system of BDIEs (D2),

u` Zbu` Rbu´ Vbψ

“ Pbf̃ ´Wbφ0 in Ω, (74)

´

1 ´
a

2b

¯

ψ ` T`
a Zbu` T`

a Rbu´ W 1
abψ

“ T`
a pf̃ ` E̊Rb

˚f̃ ,Pbf̃q ´ L`
abφ0

on BΩ, (75)

where

FD2 :“

«

FD2
1

FD2
2

ff

“

»

–

Pbf̃ ´Wbφ0

T`
a pf̃ ` E̊Rb

˚f̃ ,Pbf̃q ´ L`
abφ0

fi

fl . (76)

Due to the mapping properties of operators in-
volved in (76), we have the inclusion FD2 P

H1pΩqˆH´ 1
2 pBΩq. In similar way as in Remark

14, we can prove the following remark.
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Remark 15. Let f̃ P rH´1pΩq and φ0 P

H
1
2 pBΩq. Then FD2 “ 0 if and only if pf̃ , φ0q “

0.

Proof. The later equality implies the former.
Conversely, let FD2 “ 0, that is, F0 “ Pbf̃ ´

Wbφ0 “ 0 in Ω and T`
a pf̃` E̊Rb

˚f̃ ,Pbf̃q´L`
abφ0

on BΩ. Multiplying the first relation by b, we get
P∆f̃ ´ W∆pbφ0q “ 0 in Ω. Taking into account
that bWbpφ0q “ W∆pbφ0q is harmonic and ap-
plying Laplace operator gives f̃ “ 0 in R2, and
hence Wbφ0 “ 0 in Ω. Then by Lemma 12(ii),
φ0 “ 0 on BΩ. □

BDIE systems equivalence to the Dirich-
let problem.

Theorem 16. Let φ0 P H
1
2 pBΩq, f P H´1pΩq

and f̃ P rH´1pΩq is such that rΩf̃ “ f . Then

(i) If u P H1pΩq solves the BVP (69)-
(70), then the couple pu, ψq P H1pΩq ˆ

H´ 1
2 pΩq, where

ψ “ T`
a pf̃ , uq, on BΩ, (77)

solves the BDIE systems (D1) and (D2).
(ii) If a couple pu, ψq P H1pΩq ˆ H´ 1

2 pBΩq

solves BDIE system (D1) and r0 ą

diampΩq, then this solution is unique
and solves BDIEs (D2), while u solves
the Dirichlet problem (69)-(70), and ψ
satisfies (77).

(iii) If a couple pu, ψq P H1pΩq ˆ H´ 1
2 pBΩq

solves BDIE system (D2), then this so-
lution is unique and solves BDIEs (D1),
while u solves the Dirichlet problem
(69)-(70), and ψ satisfies (77).

Proof. (i) Let u P H1pΩq be a solution to BVP
(69)–(70). Due to Theorem 13 it is unique. Set-
ting ψ by (77) evidently implies, ψ P H´ 1

2 pBΩq.
From Theorem 8 and relations (66)–(67) follows
that the couple pu, ψq satisfies the BDIE sys-
tems (D1) and (D2), with the right-hand sides
(73) and (76) respectively, which completes the
proof of item (i).
Let now the couple pu, ψq P H1pΩq ˆ H´ 1

2 pBΩq

solve BDIE system (D1) or (D2). Due to Theo-
rem 8, the hypothesis of Lemma 4 are satisfied
implying that u solves PDE (69) in Ω, while re-
lations in (55) and (56) also hold.
(ii) Let the couple pu, ψq P H1pΩq ˆ H´ 1

2 pBΩq

solve BDIE system (D1). Taking trace of (71)
on BΩ and subtracting (72) from it we obtain

γ`u “ φ0 on BΩ, (78)

that is, u satisfies the Dirichlet condition (70).
(71) and Lemma 4 with Ψ “ ψ, Φ “ φ0

imply that VbΨ
˚ ´ WbΦ

˚ “ 0, in Ω, where
Ψ˚ “ ψ ´ T`

a pf̃ , uq and Φ˚ “ φ0 ´ γ`u. Due
to (78), Φ˚ “ 0. Then Lemma 12(i) implies
Ψ˚ “ 0, which proves condition (77). Thus u
obtained from the solution of BDIE system (D1)
solves the Dirichlet problem and hence, by item
(i) of the theorem, pu, ψq solve also BDIE system
(D2).
(iii) Let now the couple pu, ψq P H1pΩq ˆ

H´ 1
2 pBΩq solve BDIE system (D2). Taking gen-

eralized conormal derivative of (74) and sub-
tracting (75) from it, we get ψ “ T`

a pf̃ , uq

on BΩ. Then substituting this in (56) gives
Wbpφ0 ´ γ`uq “ 0 in Ω and Lemma 12(ii) then
implies φ0 “ γ`u on BΩ. Due to (73), the BDIE
system (71)-(72) with zero right-hand side can
be considered as obtained for f̃ “ 0, φ0 “ 0,

where f̃ P rHpΩq is an extension of f P H´1pΩq,

that is, f “ rΩf̃ , implying that its solution is
given by a solution of the homogeneous problem
(69)-(70), which is zero by Theorem 13. This
implies uniqueness of the solution of the inhomo-
geneous BDIE system (D1). Similar arguments
work for the BDIE system (D2). □

BDIE system operators invertibility for
the Dirichlet problem. The BDIE systems
(D1) and (D2) can be written as

D1UD “ FD1 and D2UD “ FD2,

respectively. Here UD :“ pu, ψqJ P H1pΩq ˆ

H´ 1
2 pBΩq,

D1 :“

«

I ` Zb ` Rb ´Vb

γ`Zb ` γ`Rb ´Vb

ff

, (79)

D2 :“

„

I ` Zb ` Rb ´Vb
T`
a Zb ` T`

a Rb

`

1 ´ a
2b

˘

I ´ W 1
ab

ȷ

,(80)

while FD1 and FD2 are given by (73) and
(76) respectively. Due to the mapping prop-
erties of the operators involved in the defini-
tions of the operators D1 and D2 as well as
the right-hand sides FD1 and FD2 (see, e.g.,
(Ayele Tsegaye and Mikhailov, 2011, Appendix
A), we have FD1 P H1pΩq ˆ H

1
2 pBΩq, FD2 P

H1pΩq ˆH´ 1
2 pBΩq, while the operators

D1 : H1pΩqˆH´ 1
2 pBΩq Ñ H1pΩqˆH

1
2 pBΩq

(81)

D2 : H1pΩqˆH´ 1
2 pBΩq Ñ H1pΩqˆH´ 1

2 pBΩq

(82)



120 Markos F. Yimer and Tsegaye G. Ayele

are continuous. Due to Theorem 16(ii)-(iii), op-
erators (81) and (82) are injective.

Lemma 17. For any couple pF1,F2q P

H1pΩq ˆ H´ 1
2 pBΩq, there exists a unique cou-

ple pf̃˚˚,Φ˚q P rH´1pΩq ˆH
1
2 pBΩq such that

F1 “ Pbf̃˚˚ ´WbΦ˚ (83)

F2 “ T`
a pf̃˚˚ ` E̊Rb

˚f̃˚˚,Pbf̃˚˚q ´ L`
abΦ˚ (84)

Moreover, pf̃˚˚,Φ˚q “ C˚˚pF1,F2q with C˚˚ :

H1pΩq ˆH´ 1
2 pBΩq Ñ rH´1pΩq ˆH

1
2 pBΩq a lin-

ear continuous operator given by

f̃˚˚ “ ∆̌pbF1q ` γ˚pF2 ` pγ`F1qBnbq (85)

Φ˚ “
1

b

´

´
1

2
I`W∆

¯´1
γ`

!

´bF1`P∆

”

∆̌pbF1q

` γ˚
´ b

a
F2 ` pγ`F1qBnb

¯ı)

(86)

where ∆̌pbF1q “ ∇ ¨ Ě∇pbF1q.

Proof. Let us first assume that there exist
pf̃˚˚,Φ˚q P rH´1pΩq ˆ H

1
2 pBΩq satisfying equa-

tions (83)-(84) and find their expression in terms
of F1 and F2. Let us rewrite (83) as

F1 ´ Pbf̃˚˚ “ ´WbΦ˚ in Ω. (87)

Multiplying (87) by b and applying Laplacian to
it, we obtain,

∆pbF1 ´ P∆f̃˚˚q “ ∆pbF1q ´ f̃˚˚

“ ´∆pW∆pbΦ˚qq “ 0 in Ω, (88)

which means

∆pbF1q “ rΩf̃˚˚ in Ω, (89)

and bF1 ´ P∆f̃˚˚ P H1,0pΩ,∆q and hence F1 ´

Pbf̃˚˚ P H1,0pΩ, Bq “ H1,0pΩ, Aq. The latter
implies that the canonical conormal derivatives
T`
b pF1 ´ Pbf̃˚˚q and T`

a pF1 ´ Pbf̃˚˚q are well
defined and can be also written in terms of their
generalized conormal derivatives

b

a
T`
a pF1 ´ Pbf̃˚˚q “ T`

b pF1 ´ Pbf̃˚˚q

“ T`
b pB̃pF1 ´ Pbf̃˚˚q,F1 ´ Pbf̃˚˚q

“ T`
b pE̊∇ ¨ pb∇pF1 ´ Pbf̃˚˚qq,F1 ´ Pbf̃˚˚q

“ T`
b pE̊∆pbF1 ´ P∆f̃˚˚q

´ E̊∇ ¨ ppF1 ´ Pbf̃˚˚q∇bq,F1 ´ Pbf̃˚˚q

“ T`
b p´E̊∇ ¨ pF1∇bq ´ E̊Rb

˚f̃˚˚,F1 ´ Pbf̃˚˚q

and therefore,

T`
a pF1 ´ Pbf̃˚˚q “ T`

a p´E̊∇ ¨ pF1∇bq

´ E̊Rb
˚f̃˚˚, F1 ´ Pbf̃˚˚q (90)

where (62) and (89) were taken into account.
Applying the conormal derivative operator T`

a

to both sides of equation (87), substituting their
(90), taking into account (11), we obtain,

T`
a pf̃˚˚ ´ E̊∇ ¨ pF1∇bq, F1q

´ T`
a pf̃˚˚ ` E̊Rb

˚f̃˚˚,Pbf̃˚˚q

“ ´L`
abΦ˚, on BΩ. (91)

Subtracting (91) from (84), we get,

F2 “ T`
a

`

f̃˚˚ ´ E̊∇ ¨ pF1∇bq,F1

˘

on BΩ. (92)

Due to (89), we can represent

f̃˚˚ “ ∆̌pbF1q ` f̃1˚

“ ∇ ¨ E̊∇pbF1q ´ γ˚Ψ˚˚, (93)

where f̃1˚ P H´1
BΩ is defined by (2) and hence,

due to e.g. (Mikhailov, 2011, Theorem 2.10) can
be in turn represented as f̃1˚ “ ´γ˚Ψ˚˚, with
some Ψ˚˚ P H´ 1

2 pBΩq. Then (89) is satisfied and

b

a
T`
a

`

f̃˚˚ ´ E̊∆ ¨ pF1∇bq,F1

˘

“ T`
b

`

f̃˚˚ ´ E̊∆ ¨ pF1∇bq,F1

˘

“ pγ´1q˚rf̃˚˚ ´ E̊∇ ¨ pF1∇bq ´ B̌F1s

“ pγ´1q˚rf̃˚˚ ´ E̊∇ ¨ pF1∇bq ´ ∇ ¨ E̊pb∇F1qs

“ pγ´1q˚r∇ ¨ E̊∇pbF1q ´ ∇ ¨ E̊pb∇F1q

´ γ˚Ψ˚˚ ´ E̊∇ ¨ pF1∇bqs

“ pγ´1q˚r∇ ¨ E̊pF1∇bq ´ γ˚Ψ˚˚ ´ E̊∇ ¨ pF1∇bqs

“ ´Ψ˚˚ ´ pγ`F1qBnb

for which

T`
a pf̃˚˚ ´ E̊∆ ¨ pF1∇bq,F1q

“
a

b

“

´Ψ˚˚ ´ pγ`F1qBnb
‰

(94)

because

xpγ´1q˚r∇¨E̊pF1∇bq´γ˚Ψ˚˚´E̊∇¨pF1∇bqs, wyBΩ

“ xr∇¨E̊pF1∇bq´γ˚Ψ˚˚´E̊∇¨pF1∇bqs, γ´1wyΩ

“ xr∇ ¨ E̊pF1∇bq, γ´1wyR2

´ γ˚Ψ˚˚ ´ xE̊∇ ¨ pF1∇bqs, γ´1wyΩ

“ ´xrE̊pF1∇bq,∇pγ´1wqyR2 ´ γ˚Ψ˚˚`

`xpF1∇bq,∇pγ´1wqyΩ´´xn¨γ`pF1∇bq, γ`γ´wyΩ

“ ´xpγ`pF1q∇bq, wyBΩ ´ Ψ˚˚. (95)
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Hence (92) reduces to

Ψ˚˚ “ ´
b

a
F2 ´ pγ`F1qBnb

“ ´T`
b F1 ´ pγ`F1qBnb, (96)

and (93) to (85).
Now (87) can be written in the form

W∆pbΦ˚q “ F∆ in Ω, (97)

where

F∆ :“ ´bF1 ` P∆f̃˚˚

“ ´bF1 ` P∆

”

∆̌pbF1q ` γ˚
´ b

a
F2`

` pγ`F1qBnb
¯ı

(98)

is harmonic function in Ω due to (88). The trace
of Eq. (98) gives

´
1

2
bΦ˚ ` W∆pbΦ˚q “ γ`F∆ on BΩ. (99)

It is well known that the operator
“

´1
2I ` W∆

‰

is an isomorphism, see (Steinbach, 2007, Lem-
mas 6.10 and 6.11), this implies

Φ˚ “
1

b

´

´
1

2
I ` W∆

¯´1
γ`F∆

“
1

b

´

´
1

2
I ` W∆

¯´1
γ`

!

´ bF1 ` P∆

”

∆̌pbF1q

` γ˚
´ b

a
F2 ` pγ`F1qBnb

¯ı)

,

which is Eq. (86). Relations (85), (86) can
be written as pf̃˚˚,Φ˚q “ C˚˚pF1,F2q, where
C˚˚ : H1pΩq ˆ H´ 1

2 pBΩq Ñ rH´1pΩq ˆ H
1
2 pBΩq

is a linear continuous operator, as required. We
still have to check that the functions f̃˚˚ and
Φ˚, given by (85) and (86), satisfy equations
(83) and (84). Indeed, Φ˚ given by (86) satisfies
equation (99) and thus γ`W∆paΦ˚q “ γ`F∆.
Since bothW∆paΦ˚q and F∆ are harmonic func-
tions, this implies (97)-(98) and by (85) also
(83). Finally, (85) implies by (94) that (92) is
satisfied, and adding (91) to it leads to (84). Let
us prove that the operator C˚˚ is unique. Indeed,
let a couple pf̃˚˚,Φ˚q P rH´1pΩq ˆH

1
2 pBΩq be a

solution of linear system (83)-(84) with F1 “ 0

and F2 “ 0. Then (89) implies that rΩf̃˚˚ “ 0

in Ω, that is f̃˚˚ P H´1
BΩ Ă rH´1pΩq. Hence (92)

reduces to

0 “ T`
a pf̃˚˚, 0q on BΩ. (100)

By the first Green identity (10), this gives,

0 “ xT`
a pf̃˚˚, 0q, γ`vyBΩ “ xf̃˚˚, vyΩ,

@v P H1pΩq, (101)

which implies f̃˚˚ “ 0 in R2. Finally, (86) gives
Φ˚ “ 0. Hence any solution of non-homogeneous
linear system (83) ´ (84) has only one solution,
which implies the uniqueness of the operator
C˚˚. □

The following assertion is (Mikhailov, 2005b,
Lemma 19) generalized to a wider space in 2D.

Lemma 18. For any couple pF̃1, F̃2q P H1pΩqˆ

H
1
2 pBΩq, there exists a unique couple pf̃˚˚,Φ˚q P

rH´1pΩq ˆH
1
2 pBΩq such that

F̃1 “ Pbf̃˚˚ ´WbΦ˚ (102)

F̃2 “ γ`pPbf̃˚˚ ´WbΦ˚q (103)

Moreover, pf̃˚˚,Φ˚q “ C̃˚˚pF̃1, F̃2q with C̃˚˚ :

H1pΩq ˆH
1
2 pBΩq Ñ rH´1pΩq ˆH´ 1

2 pBΩq a lin-
ear continuous operator is given by

f̃˚˚ “ ∆̌pbF̃1q ` γ˚pT`
b F̃1 ` F̃2qBnbq (104)

Φ˚ “
1

b

`

´
1

2
I`W∆

˘´1`

´bF̃2`γ`P∆r∆̌pbF̃1q

` γ˚pT`
b F̃1 ` F̃2qBnbqs

˘

(105)

where ∆̌pbF̃1q “ ∇ ¨ Ě∇pbF̃1q.

Proof. Let us first assume that there exist
pf̃˚˚,Φ˚q P rH´1pΩq ˆ H

1
2 pBΩq satisfying equa-

tions (102)-(103) and find their expression in
terms of F̃1 and F̃2. Let us re write (102) as

F̃1 ´ Pbf̃˚˚ “ ´WbΦ˚ in Ω. (106)

Multiplying (106) by b and applying Laplacian
to it, we obtain,

∆pbF̃1 ´ P∆f̃˚˚q “ ∆pbF̃1q ´ f̃˚˚

“ ´∆pW∆pbΦ˚qq “ 0 in Ω, (107)

which means

∆pbF̃1q “ rΩf̃˚˚ in Ω, (108)

and bF̃1 ´ P∆f̃˚˚ P H1,0pΩ,∆q, while F̃1 ´

Pbf̃˚˚ P H1,0pΩ, Bq “ H1,0pΩ, Aq. The latter
imply that the canonical conormal derivatives
T`
b pF̃1 ´ Pbf̃˚˚q and T`

a pF̃1 ´ Pbf̃˚˚q are well
defined and T`

a pF̃1´Pbf̃˚˚q “ b
aT

`
b pF̃1´Pbf̃˚˚q.

Due to (108) and using f̃1˚ “ ´γ˚Ψ˚˚ with
some Ψ˚˚ P H´ 1

2 pBΩq as in (96), we can rep-
resent

f̃˚˚ “ ∆̌pbF̃1q ` f̃1˚

“ ∇ ¨ E̊∇pbF̃1q ´ γ˚Ψ˚˚, (109)

where f̃1˚ P H´1
BΩ . Then (108) is satisfied. Re-

placing F2 by T`
a pF̃1, uq in Lemma 17, relation
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(96) yields,

Ψ˚˚ “ ´
b

a
T`
a F̃1 ´ pγ`F̃1qBnb

“ ´T`
b F̃1 ´ F̃2Bnb (110)

and (109) reduces to (104). Now (106) can be
written in the form

W∆pbΦ˚q “ Q∆ in Ω, (111)

where

Q∆ :“ ´bF̃1 ` P∆f̃˚˚ “ ´bF̃1 ` P∆r∆̌pbF̃1q

` γ˚pT`
b F̃1 ` pγ`F̃1qBnbqs (112)

is harmonic function in Ω due to (107). The
trace of equation (112) gives

´
1

2
bΦ˚ ` W∆pbΦ˚q “ γ`Q∆ on BΩ. (113)

By similar argument as in Lemma 17, the op-
erator ´1

2I ` W∆ : H
1
2 pBΩq Ñ H´ 1

2 pBΩq is an
isomorphism this implies

Φ˚ “
1

b

´

´
1

2
I ` W∆

¯´1
γ`Q∆

“
1

b

´

´
1

2
I ` W∆

¯´1
γ`t´bF̃1 ` P∆r∆̌pbF̃1q`

` γ˚pT`
b F̃1 ` pγ`F̃1qBnbqsu

which is Eq. (105). Relations (104), (105) can
be written as pf̃˚˚,Φ˚q “ C̃˚˚pF̃1, F̃2q, where
C̃˚˚ : H1pΩq ˆ H´ 1

2 pBΩq Ñ rH´1pΩq ˆ H
1
2 pBΩq

is a linear continuous operator, as required. We
still have to check that the functions f̃˚˚ and Φ˚,
given by (104) and (105), satisfy equations (102)
and (103). Indeed, Φ˚ given by (105) satisfies
equation (113) and thus γ`W∆paΦ˚q “ γ`Q∆.
Since bothW∆paΦ˚q and Q∆ are harmonic func-
tions, this implies (111)-(112) and by (104) also
(102) while (103) follows from Eqs.(104) and
(111).
Let us prove that the operator C̃˚˚ is unique. In-
deed, let a couple pf̃˚˚,Φ˚q P rH´1pΩqˆH

1
2 pBΩq

be a solution of linear system (102)-(103) with
F̃1 “ 0 and F̃2 “ 0. Then (108) implies that
rΩf̃˚˚ “ 0 in Ω, that is f̃˚˚ P H´1

BΩ Ă rH´1pΩq.
Hence (92) reduces to

0 “ T`
a pf̃˚˚, 0q on BΩ. (114)

By the first Green identity (10), this gives re-
lation (101), which implies f̃˚˚ “ 0 in R2. Fi-
nally, (105) gives Φ˚ “ 0. Hence any solution of
nonhomogeneous linear system (102)´(103) has
only one solution, which implies the uniqueness
of the operator C̃˚˚. □

Theorem 19. Let r0 ą diampΩq. The operators
(81) and (82) are continuous and continuously
invertible.

Proof. The continuity of operators (81) and (82)
is proved above. To prove the invertibility of
operator (81), let us consider the BDIE system
(D1) with arbitrary right-hand side

FD1
˚ “ pFD1

˚1 ,FD1
˚2 qT P H1pΩq ˆH

1
2 pBΩq.

Take F̃1 “ FD1
˚1 and Φ˚ “ γ`FD1

˚1 ´ FD1
˚2 in

Lemma 18, to obtain the representation of FD1
˚

as:

FD1
˚1 “ F̃1 FD1

˚2 “ γ`F̃1 ´ Φ˚

where the couple

pf̃˚,Φ˚q “ C̃˚˚pF̃1, F̃2q P rH´1pΩq ˆH
1
2 pBΩq

(115)
is unique and the operator

C̃˚˚ : H1pΩq ˆH
1
2 pBΩq Ñ rH´1pΩq ˆH

1
2 pBΩq

(116)
is linear and continuous. If r0 ą diampΩq, then
taking into account (Mikhailov, 2015, Remark
5.3) and applying Theorem 13 with f “ rΩf̃ “

rΩf̃˚, Φ˚ “ φ0, we obtain that BDIE system
(D1) is uniquely solvable and its solution is:
U1 “ pADq´1prΩf̃ , φ0qJ, U2 “ γ`U1 ´ φ0,
where the inverse operator, pADq´1 : H´1pΩq ˆ

H
1
2 pBΩq Ñ H1pΩq, to the left-hand side opera-

tor, AD : H1pΩq Ñ H´1pΩq ˆ H
1
2 pBΩq, of the

Dirichlet problem (69)–(70), is continuous. Rep-
resentation (115) and continuity of the opera-
tor (116) imply invertibility of (81). To prove
the invertibility of operator (82), let us consider
the BDIE system (D2) with arbitrary right-hand
side

FD2
˚ “ pFD2

˚1 ,FD2
˚2 qJ P H1pΩq ˆH´ 1

2 pBΩq.

Take F1 “ FD2
˚1 and F2 “ T`

a pF1, uq “ FD2
˚2 in

Lemma 17 to represent FD2
˚ as

FD2
˚1 “ F1 FD2

˚2 “ T`
a pF1, uq “ F2

and the couple

pf̃˚˚,Φ˚q “ C̃˚˚pF1,F2q P rH´1pΩq ˆH
1
2 pBΩq

is unique and the operator

C̃˚˚ : H1pΩq ˆH´ 1
2 pBΩq Ñ rH´1pΩq ˆH

1
2 pBΩq

(117)
is linear and continuous. Taking into ac-
count (Mikhailov, 2015, Remark 5.3) and ap-
plying Theorem 13 with f̃ “ f̃˚˚, Φ˚ “

φ0, we obtain that BDIE system (D2) is
uniquely solvable and its solution is: U1 “

pADq´1prΩf̃ , φ0qJ, U2 “ T`
a prΩf̃ ,U1q, where

the inverse operator, pADq´1 : H´1pΩq ˆ
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H
1
2 pBΩq Ñ H1pΩq, to the left-hand side oper-

ator, AD : H1pΩq Ñ H´1pΩq ˆ H
1
2 pBΩq, of the

Dirichlet problem (69)–(70), is continuous. Rep-
resentation (115) and continuity of the operator
(117) imply invertibility of (82). □

Two-operator BDIE systems for
Neumann problem

Let Ω be a domain in R2 bounded by a smooth
curve BΩ. We shall derive and investigate the
two-operator BDIE systems for the following
Neumann problem: for ψ0 P H´ 1

2 pBΩq and
f̃ P rH´1pΩq, find a function u P H1pΩq satis-
fying

Au “ rΩf̃ in Ω, (118)

T`
a pf̃ , uq “ ψ0 on BΩ. (119)

Here Eq. (118) is understood in the distribu-
tional sense (4) and the Neumann boundary con-
dition (119) in the weak sense (10). The follow-
ing assertion is well-known and can be proved
e.g. using variational settings and the Lax-
Milgram lemma.

Theorem 20. (i) The homogeneous Neu-
mann problem (118)-(119) admits only
linearly independent solution u0 “ 1 in
H1pΩq.

(ii) The nonhomogeneous Neumann problem
(118)-(119) is solvable if and only if the
following solvability condition is satis-
fied.

xf̃ , u0yΩ ´ xψ0, γ
`u0yBΩ “ 0 (120)

BDIE system formulation for the Neu-
mann problem. We explore different possibil-
ities of reducing the Neumann problem (118)–
(119) with f̃ P rH´1pΩq, for u P H1pΩq, to
two different segregated boundary-domain inte-
gral equations (BDIE) systems. Correspond-
ing formulations for the Neumann problem for
u P H1,0pΩ,∆q with f P L2pΩq in 2D were in-
troduced and analysed in Ayele Tsegaye et al.
(2017). Let us represent in (48), (66) and
(67) the generalised conormal derivative and the
trace of the function u as

T`
a pf̃ , uq “ ψ0, γ`u “ φ,

and will regard the new unknown function φ P

H
1
2 pBΩq as formally segregated of u. Thus

we will look for the couple pu, φq P H1pΩq ˆ

H
1
2 pBΩq.

BDIE system (N1). To reduce BVP (118)-
(119) to a BDIE system in this section we will
use equation (48) in Ω and equation (67) on BΩ.

Then we arrive at the following system, (N1), of
two boundary-domain integral equations for the
couple of unknowns,pu, φq,

u`Zbu`Rbu`Wbφ “ FN1
1 , in Ω, (121)

T`
a Zbu ` T`

a Rbu ` L`
abφ “ FN1

2 , on BΩ,
(122)

where

FN1 :“

«

FN1
1

FN1
2

ff

“

»

—

–

Pbf̃ ` Vbψ0

T`
a pf̃ ` E̊Rb

˚f̃ ,Pbf̃q´

´ψ0 ` a
2bψ0 ` W 1

abψ0

fi

ffi

fl

(123)

Due to the mapping properties of operators
involved in (123) we have FN1 P H1pΩq ˆ

H´ 1
2 pBΩq and FN

0 :“ Pbf̃ ` Vbψ0 P H1pΩq.

Remark 21. Let f̃ P rH´1pΩq, ψ0 P H´ 1
2 pBΩq

and r0 ą diampΩq. Then FN1 “ 0 if and only if
pf̃ , ψ0q “ 0.

Proof. The later equality implies the former.
Conversely, let FN1 “ 0, that is, Pbf̃`Vbψ0 “ 0
in Ω and T`

a pf̃ ` E̊Rb
˚f̃ ,Pbf̃q ´ ψ0 ` a

2bψ0 `

W 1
abψ0 “ 0 on BΩ. Multiplying the first relation

by b gives P∆f̃`V∆ψ0 “ 0 in Ω. Further, taking
into account that bVbψ0 “ V∆ψ0 is harmonic and
applying Laplace operator we get f̃ “ 0 in R2

and hence Vbψ0 “ 0 in Ω. Then due to Lemma
12(i), we get ψ0 “ 0 on BΩ. □

BDIE system (N2). To obtain a segregated
BDIE system of the second kind, we will use
equation (48) in Ω and equation (66) on BΩ.
Then we arrive at the following system, (D2), of
boundary-domain integral equation systems,

u` Zbu` Rbu`Wbφ

“ Pbf̃ ` Vbψ0, in Ω, (124)

1

2
φ` γ`Zbu` γ`Rbu` Wbφ

“ γ`Pbf̃ ` Vbψ0, on BΩ, (125)

where

FN2 :“

«

FN2
1

FN2
2

ff

“

»

–

Pbf̃ ` Vbψ0

γ`Pbf̃ ` Vbψ0

fi

fl .(126)

Due to the mapping properties of operators in-
volved in (126), we have the inclusion FN2

1 “

Pbf̃ ` Vbψ0 P H1pΩq and FN2 P H1pΩq ˆ

H
1
2 pBΩq.
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Remark 22. Let f̃ P rH´1pΩq, ψ0 P H´ 1
2 pBΩq

and r0 ą diampΩq. Then FN2 “ 0 if and only if
pf̃ , ψ0q “ 0.

Proof. The later equality implies the former.
Conversely, let FN2 “ 0, that is, Pbf̃`Vbψ0 “ 0
in Ω and γ`Pbf̃ ` Vbψ0 “ 0 on BΩ. Multiplying
the first relation by b gives P∆f̃`V∆ψ0 “ 0 in Ω.
Further, taking into account that bVbψ0 “ V∆ψ0

is harmonic and applying Laplace operator we
get f̃ “ 0 in R2 and hence Vbψ0 “ 0 in Ω. Then
due to Lemma 12(i), we get ψ0 “ 0 on BΩ. □

BDIE systems equivalence to the Neu-
mann problem.

Theorem 23. Let ψ0 P H´ 1
2 pBΩq and f̃ P

rH´1pΩq.

(i) If a function u P H1pΩq solves the
BVP (118)-(119), then the couple pu, φq,
where

φ “ γ`u (127)
solves the BDIE systems (N1) and (N2).

(ii) If a couple pu, φq P H1pΩq ˆ H
1
2 pBΩq

solves the BDIE system (N1), then the
u solves BDIE system (N2) and u solves
the Neumann problem (118)-(119) and φ
satisfies (127).

(iii) If a couple pu, φq P H1pΩq ˆ H
1
2 pBΩq

solves the BDIE system (N2) and r0 ą

diampΩq, then the u solves BDIE system
(N1) and Neumann problem (118)-(119)
and φ satisfies (127).

(iv) The homogeneous BDIE systems (N1)
and (N2) have unique linearly inde-
pendent solution spanned by U0 “

pu0, φ0qJ “ p1, 1qJ in H1pΩq ˆH
1
2 pBΩq.

Condition (120) is necessary and suffi-
cient for solvability of the nonhomoge-
neous BDIE systems (N1) and, if r0 ą

diampΩq, also of the system (N2), in
H1pΩq ˆH

1
2 pBΩq.

Proof. (i) Let u P H1pΩq be a solution to the
Neumann BVP (118)–(119). It immediately fol-
lows from Theorem 48 and relations (66)–(67)
that the couple pu, φq with φ “ γ`u satisfies
the BDIE systems (N1) and (N2), which proves
item (i).
(ii) Let now a couple pu, φq P H1pΩq ˆ H

1
2 pBΩq

solve BDIE system (N1) or (N2). Due to the
first equations in the BDIE systems, the hy-
potheses of Lemma 4 are satisfied implying that
u is a solution of equation (118) in Ω, and equa-
tions (55)-(58) hold for Ψ “ ψ0 and Φ “ φ.

If a couple pu, φq P H1pΩq ˆ H
1
2 pBΩq solve the

system (N1) then subtracting (58) from (122)
gives T`

a pf̃ , uq “ ψ0 on BΩ. Thus Neumann
(119) is satisfied. Further, from (56) we derive
Wbpγ

`u ´ φq “ 0 in Ω, where γ`u “ φ on BΩ
by Lemma 12 completing the proof of item (ii).
(iii) Let now couple pu, φq P H1pΩq ˆ H

1
2 pBΩq

solve BDIE system (N2). Further, taking the
trace of (124) on BΩ and comparing the results
with (125), we easily derive that γ`u “ φ on
BΩ. Lemma 4 for equation (124) implies that u
is a solution of equation (118), while equations
(55)-(58) hold for Ψ “ ψ0 and Φ “ φ. Further,
from (56) we derive

Vbpψ0 ´ Tapf̃ , uqq “ 0 in Ω,

whence Tapf̃ , uq “ ψ0 on BΩ due to Lemma 12
(i) and u solves Neumann problem (118)-(119)
which completes the proof of item (iii).
(iv) Theorem 20 along with items (i) and (ii)
imply the claims of item (iv) for BDIE system
(N2) and (N1). □

Properties of BDIE system operators for
the Neumann problem. BDIE systems (N1)
and (N2) can be written respectively, as

R1UN “ FN1, R2UN “ FN2, (128)

where UN “ pu, φqT P H1pΩqˆH
1
2 pBΩDq, while

FN1 and FN2 are given by Eqs. (123) and
(126) respectively. Due to the mapping prop-
erties of potentials in (123) and (126), FN1 P

H1pΩqˆH´ 1
2 pBΩq and FN2 P H1pΩqˆH

1
2 pBΩq.

R1 :“

„

I ` Zb ` Rb Wb

T`
a Zb ` T`

a Rb L`
ab

ȷ

,

R2 :“

„

I ` Zb ` Rb Wb

γ`Zb ` γ`Rb
1
2I ` Wb

ȷ

.

Due to the mapping properties of potentials in
(123) and (126), the right hand sides of BDIE
systems (N1)and (N2) are such that FN1 P

H1pΩqˆH´ 1
2 pBΩq and FN2 P H1pΩqˆH

1
2 pBΩq.

Theorem 24. The operators

R1 : H1pΩq ˆH
1
2 pBΩq Ñ H1pΩq ˆH´ 1

2 pBΩq,
(129)

R2 : H1pΩq ˆH
1
2 pBΩq Ñ H1pΩq ˆH

1
2 pBΩq,

(130)

are continuous. They have one-dimensional null
spaces, kerR1 “ kerR2, in H1pΩq ˆ H

1
2 pBΩq,

spanned over the element pu0, φ0q “ p1, 1q.

Proof. The mapping properties of the poten-
tials imply continuity of the operators (129) and
(130). The claims that kerR1 and kerR2 are
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one-dimensional and the couple pu0, φ0q “ p1, 1q

belong to kerR1 “ kerR2 directly follows from
Theorem 23(iii). □

To describe in more details the range of oper-
ators (129) and (130), i.e., to give more infor-
mation about the co-kernels of these operators,
we will need several auxiliary assertions. First
of all, let us remark that for any v P Hs´ 3

2 pBΩq,
s ă 3

2 , the single layer potential can be defined
as follows:

Vbvpyq :“ ´xγPbp., yq, vyBΩ “ ´xPbp., yq, γ˚vyR3

“ ´Pbγ
˚vpyq, y P R2zBΩ. (131)

where γ˚ : Hs´ 3
2 pBΩq Ñ Hs´2

BΩ , s ă 3
2 , is

the operator adjoined to the trace operator γ :

H2´spR3q Ñ H
3
2

´spBΩq, and the space Hs
BΩ is

defined by (2).

Lemma 25. Let f̃ P rHs´2pΩq, s ą 1
2 and

r0 ą diampΩq. If

rΩPbf̃ “ 0 in Ω, (132)

then f̃ “ 0 in R2.

Proof. Multiplying (132) by b, taking into ac-
count the first relation in (34) and applying the
Laplace operator, we obtain rΩf̃ “ 0, which
means f̃ P Hs´2

BΩ . If s ě 3
2 , then f̃ “ 0

by (Mikhailov, 2011, Theorem 2.10). If 1
2 ă

s ă 3
2 , then by the same theorem there ex-

ists v P Hs´ 3
2 pBΩq such that f̃ “ γ˚v. This

gives Pbf̃ “ Pbγ
˚v “ ´Vbv in R2. Then (132)

reduces to Vbv “ 0 in Ω, which by Lemma
12(i) (for s “ 1, which can be generalized to
1
2 ă s ă 3

2) implies v “ 0 on BΩ and thus f̃ “ 0

in R2. □

Theorem 26. Let 1
2 ă s ă 3

2 and r0 ą

diampΩq. The operator

Pb : rHs´2pΩq Ñ HspΩq (133)

and its inverse

pPbq
´1 : HspΩq Ñ rHs´2pΩq (134)

are continuous and

pPbq´1g “

”

∆E̊pI´rΩV∆V´1
∆ γ`q´γ˚V´1

∆ γ`
ı

.

.pbgq in R2, @g P HspΩq. (135)

Proof. The continuity of equation (133) follows
from (Chkadua et al., 2009, Theorem 3.8). By
Lemma 25 operator (133) is injective. Let us
prove its surjectivity. To this end, for arbitrary
g P HspΩq let us consider the following equation

with respect to f̃ P rHs´2pΩq,

P∆f̃ “ g in Ω. (136)

Let g1 P HspΩq be the (unique) solution of the
following Dirichlet problem:

∆g1 “ 0 in Ω, γ`g1 “ γ`g,

which by (Ayele Tsegaye and Bekele Solomon,
2019, Theorem 2) the single layer potential V´1

∆
exists and due to Costabel (1988) or (Mikhailov,
2011, Lemma 2.6) can be particularly presented
as g1 “ V∆V´1

∆ γ`g. Let g0 :“ g ´ g1. Then
g0 P HspΩq and γ`g0 “ 0 and thus g0 can be
uniquely extended to E̊g0 P rHspΩq, where E̊ is
the operator of extension by zero outside Ω .
Thus, by (131) equation (136) takes the form

rΩP∆rf̃ ` γ˚V´1
∆ γ`gs “ g0 in Ω. (137)

Any solution f̃ P rHs´2pΩq of the corresponding
equation on R2

P∆rf̃ ` γ˚V´1
∆ γ`gs “ E̊g0 in R2, (138)

solves (137). If f̃ solves (138), then acting with
the Laplace operator on (138) we obtain

f̃ “ Q̃g :“ ∆E̊g0 ´ γ˚V´1
∆ γ`g

“ ∆E̊pg ´ rΩV∆V´1
∆ γ`gq

´ γ˚V´1
∆ γ`g in R2. (139)

On the other hand, substituting f̃ given by (139)
to (138) and taking into account that P∆∆h̃ “

h̃ for any h̃ P rHspΩq, s P R, we obtain that Q̃g
is indeed a solution of equation (138) and thus
(137). By Lemma 25 the solution of (138) is
unique, which means that the operator Q̃ is in-
verse to the operator (133), i.e., Q̃ “ prΩPbq

´1.
Since ∆ is a continuous operator from rHspΩq

to rHs´2pΩq, equation (85) implies that operator
prΩPq

´1
b “ Q̃ : HspΩq Ñ rHs´2pΩq is continu-

ous. The relations Pb “ 1
bP∆ and bpxq ą c ą 0

then imply the invertibility of the operator (133)
and ansatz (135). □

Theorem 27. The co-kernel of the operator
(129) is spanned over the functional

g˚1 :“ ppγ`q˚Bnb, 1qJ (140)

in rH´1pΩq ˆ H
1
2 pBΩq, that is, g˚1pF1,F2q “

xpγ`F1qBnb` F2, γ
`u0yBΩ, where u0 “ 1.

Proof. The proof follows from the proof of
(Mikhailov, 2015, Theorem 6.7) and Lemma
17. Indeed, let us consider the first equation
in (128), i.e. the equation R1U “ pF1,F2qJ,
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representing the BDIE system (N1)

u` Zbu` Rbu`Wbφ “ F1 in Ω, (141)

T`
a Zbu` T`

a Rbu` L`
abφ “ F2 on BΩ, (142)

with arbitrary right hand side pF1,F2qJ P

H1pΩqˆH´ 1
2 pBΩq, for pu, φq P H1pΩqˆH

1
2 pBΩq.

By Lemma 17 the right-hand side of the system
has the form (83)-(84), that is, system (141)-
(142) reduces to

u` Zbu` Rbu`Wbpφ` Φ˚q

“ Pbf̃˚˚ in Ω, (143)

T`
a Zbu` T`

a Rbu` L`
abpφ` Φ˚q

“ T`
a pf̃˚˚ ` E̊Rb

˚f̃˚˚,Pbf̃˚˚q on BΩ, (144)

where the couple pf̃˚˚,Φ˚q P rH´1pΩq ˆH
1
2 pBΩq

is given by (83)-(84). Up to the notations (143)-
(144) is the same as in (123) with ψ0 “ 0.
Then, Theorems 23(iii) and 26 imply that the
BDIE system (143)-(144) and hence (141)-(142)
is solvable if and only if

xf̃˚˚, u
0yΩ “ xp∆̌bF1q ` γ˚pF2`

` pγ`F1qBnbq, u
0yΩ

“ xp∇ ¨ Ě∇pbF1q ` γ˚pF2`

` pγ`F1qBnbq, u
0yR2

“ xp∇ ¨ Ě∇pbF1,∇u0yR2

` xpF2 ` pγ`F1qBnbq, γ
`u0yBΩ

“ xpF2 ` pγ`F1qBnbq, γ
`u0yBΩ “ 0,

(145)

where we took into account that ∇u0 “ 0 in R2.
Thus the functional g˚1 defined by (140) gener-
ates the necessary and sufficient solvability con-
dition for the first equation in (128). Hence g˚1

is basis of the co-kernel of R1. □

Theorem 28. Let r0 ą diampΩq. Then the co-
kernel of operator (130) is spanned over

g˚2 :“

ˆ

´bγ`˚p12 ` W 1
∆qV´1

∆ γ`u0

´bp12 ´ W 1
∆qV´1

∆ γ`u0

˙

(146)

in rH´1pΩq ˆH´ 1
2 pBΩq, that is,

g˚2pF1,F2q “

A

´bγ`˚
´1

2
`W 1

∆

¯

V´1
∆ γ`u0,F1

E

Ω

`

A

´ b
´1

2
´ W 1

∆

¯

V´1
∆ γ`u0,F2

E

BΩ
,

where u0 “ 1.

Proof. The proof follows from the proof of
(Mikhailov, 2015, Theorem 6.8), (Ayele Tsegaye
and Bekele Solomon, 2019, Theorem 2) and
Lemma 17. Indeed, let us consider the first

equation in (128), i.e. the equation R1U “

pF1,F2qJ, representing the BDIE system (N1)

u ` Zbu ` Rbu ` Wbφ “ F1 in Ω, (147)

1

2
φ` γ`Zbu` γ`Rbu` Wbφ

“ F2 on BΩ, (148)

with arbitrary pF1,F2qT P H1pΩq ˆ H´ 1
2 pBΩq,

for pu, φq P H1pΩq ˆH
1
2 pBΩq.

Introducing the new variable , φ1 “ φ ´ pF2 ´

γ`F1q, BDIE system (147)-(148) takes the form

u ` Zbu ` Rbu ` Wbφ “ F 1
1 in Ω, (149)

1

2
φ1 ` γ`Zbu` γ`Rbu` Wbφ

1

“ F 1
2 on BΩ, (150)

where

F 1
1 “ F1 ´WbpF2 ´ γ`F1q P H1pΩq.

Let us recall that Pb “ rΩPb : rHs´2pΩq Ñ

HspΩq and then by Theorem 26, the operator
P´1
b “ pPbq

´1 : HspΩq Ñ rHs´2pΩq is contin-
uous for 1

2 ă s ă 3
2 , while V´1

∆ exists (Ayele
Tsegaye and Bekele Solomon, 2019, Theorem 2).
Hence we always represent F1 “ Pbf̃˚, with

f̃˚ “ r∆E̊pI ´ rΩV∆V´1
∆ γ`q´

´ γ˚V´1
∆ γ`spbF 1

1q P rH´1pΩq.

For F 1
1 “ Pbf̃˚, the right hand side of BDIE

system (149)-(150) is the same as in (126) with
f “ f̃˚ and ψ0 “ 0. Then Theorems 23(iii)
implies that the BDIE system (149)-(150) and
hence (147)-(148) is solvable if and only if

xf̃˚, u
0yΩ “

“ xr∆E̊pI´rΩV∆V´1
∆ γ`q´γ`˚V´1

∆ γ`spbF 1
1q, u0yR2

“ xE̊pI ´ rΩV∆V´1
∆ γ`qpbF 1

1q,∆u0yR2

´ xpγ`˚V´1
∆ γ`qpbF 1

1q, u0yR2

´ xγ`pbF 1
1q,V´1

∆ γ`u0yBΩ “

´ x
1

2
rγ`pbF1q ` pbF2qs ´ W∆rbpF2 ´ γ`F1qs,

,V´1
∆ γ`u0yBΩ

“ x´bγ`˚
´1

2
` W 1

∆

¯

V´1
∆ γ`u0,F1yΩ

` x´b
´1

2
` W 1

∆

¯

V´1
∆ γ`u0,F2yBΩ “ 0. (151)
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Thus the functional g˚2 defined by (146) gener-
ates the necessary and sufficient solvability con-
dition of the equation R2U “ pF1,F2qJ. Hence
g˚2 is basis of the cokernel of R2. □

Perturbed segregated BDIE systems for
Neumann problem. Theorem 23 implies,
that even when the solvability condition (120)
is satisfied, the solutions of both BDIE sys-
tems, (N1) and (N2), are not unique. By The-
orem 24, in turn, the BDIE left hand side op-
erators, R1 and R2, have non-zero kernels and
thus are not invertible. To find a solution pu, φq

from uniquely solvable BDIE system with con-
tinuously invertible left hand side operators, let
us consider, following Mikhailov (1999), some
BDIE systems obtained form (N1) and (N2)
by finite-dimensional operator perturbations (cf.
Ayele Tsegaye (2021b) for the three-dimensional
case). Below we use the notations U “ pu, φqJ

and |BΩ| :“
ş

BΩ

dS.

0.0.1. Perturbation of BDIE system (N1). Let
us introduce the perturbed counterparts of the
BDIE system (N1),

R̂1UN “ FN1, (152)

where

R̂1 :“ R̂1`R̊1 and R̊1UN pyq :“ g0pUN qG1pyq

“
1

|BΩ|

ż

|BΩ|

φpxqdS

ˆ

b´1pyq

0

˙

,

that is,

g0pUN q :“
1

|BΩ|

ż

BΩ
φpxqdS, G1pyq :“

ˆ

b´1pyq

0

˙

.

For the functional g˚1 given by (140) in The-
orem 27, g˚1pG1q “ |BΩ| , while g0pU0q “ 1.
Hence (Mikhailov, 2015, Theorem D.1 in Ap-
pendix) and (Ayele Tsegaye et al., 2017) imply
the following assertion.

Theorem 29. Let r0 ą diampΩq, then

(i) The operator R̂1 : H1pΩq ˆ H
1
2 pBΩq Ñ

H1pΩq ˆ H´ 1
2 pBΩq is continuous and

continuously invertible.
(ii) If condition g˚1pFN1q “ 0 or condi-

tion (120) for FN1 in form (129) is sat-
isfied, then the unique solution of per-
turbed BDIDE system (152) gives a solu-
tion of original BDIE system (N1) such
that

g0pUN q “
1

|BΩ|

ż

BΩ
γ`udS “

1

|BΩ|

ż

BΩ
φdS “ 0.

Perturbation of BDIE system (N2). Let us in-
troduce the perturbed counterparts of the BDIE
system (N2)

R̂2UN “ FN2, (153)

where

R̂2 :“ R2`R̊2 and R̊2UN pyq :“ g0pUN qG2pyq

“
1

|BΩ|

ż

|BΩ|

φpxqds

ˆ

b´1pyq

γ`b´1pyq

˙

,

that is,

g0pUN q :“
1

|BΩ|

ż

|BΩ|

φpxqds,

G2pyq :“

ˆ

pb´1u0qpyq

γ`pb´1u0qpyq

˙

.

For the functional g˚2 given by (146) in The-
orem 28, since the operator V´1

∆ : H
1
2 pBΩq Ñ

H´ 1
2 pBΩq is positive definite (with additional

condition r0 ą diampΩq) and u0pxq “ 1, there
exists a positive constant C such that

g˚2pG2q “

@

´ bγ`˚
`1

2
` W 1

∆

˘

V´1
∆ γ`u0, b´1u0

D

Ω
`

@

´ b
`1

2
´ W 1

∆

˘

V´1
∆ γ`u0, γ`

`

b´1u0
˘D

BΩ

“ ´xp
1

2
` W 1

∆qV´1
∆ γ`u0`

` p
1

2
´ W 1qV´1

∆ γ`u0, γ`u0yBΩ

“ ´xV´1
∆ γ`u0, γ`u0yBΩ

ď ´C}γ`u0}2

H
1
2 pBΩq

ď ´C}γ`u0}2

H
1
2 pBΩq

“ ´C|BΩ|2 ă 0.

(154)

Due to (154) and g0pU0q “ 1, (Mikhailov, 2015,
Theorem D.1) and (Ayele Tsegaye et al., 2017,
Theorem 7) imply the following assertion.

Theorem 30. Let r0 ą diampΩq, then

(i) The operator R̂2 : H1pΩq ˆ H
1
2 pBΩq Ñ

H1pΩqˆH
1
2 pBΩq is continuous and con-

tinuously invertible.
(ii) If condition g˚2pF2q “ 0 or condition

(120) for FN2 in form (130) is satis-
fied, then the unique solution of per-
turbed BDIDE system (153) gives a solu-
tion of original BDIE system (N2) such
that

g0pUN q “
1

|BΩ|

ż

BΩ
γ`udS “

1

|BΩ|

ż

BΩ
φdS “ 0.



128 Markos F. Yimer and Tsegaye G. Ayele

Acknowledgments

The authors thank the anonymous reviewers for
their valuable comments and suggestions. This
work was supported by the International Science
Program (isp), Sweden. The first author thanks
the Simons Foundation based at Botswana In-
ternational University of Science and Technol-
ogy (biust) for partial support.

References

1. Ayele, Tsegaye G. (2021a). Analysis of two-
operator boundary-domain integral equations
for variable-coefficient mixed BVP in 2D with
general right-hand side. J. Integral Equations
and Appl. Vol. 33(4), pp. 403-426. DOI:
10.1216/jie.2021.33.403

2. Ayele, Tsegaye G. (2021b). Analysis of two-
operator boundary-domain integral equations
for variable-coefficient BVPs with general
data. Math Meth Appl Sci. 2021; 44: 9831-
9861. DOI:10.1002/mma.6774

3. Ayele, Tsegaye G. and Bekele, Solomon T. (2023).
Two-operator boundary-domain integral
equations for variable-coefficient mixed
boundary value problem in 2D. Math
Meth Appl Sci. 46 (2023), 12131-12154.
DOI:10.1002/mma.7971

4. Ayele, Tsegaye G. and Bekele, Solomon T. (2019).
Two-operator BDIEs for variable-coefficient
Dirichlet problem in 2D. In: Integral Meth-
ods in Science and Engineering. Analytic
Treatment and Numerical Approximations,
(eds. C. Constanda and P. Harris), Springer
Nature Switzerland AG (2019), ISBN 978-3-
030-16077-7, 53–66, doi.org/10.1007/978-3-
030-16077-7_5.

5. Ayele, Tsegaye G. and Dagnaw, Mulugeta A.
(2021a). Boundary-domain integral equation
systems to the mixed BVP for compressible
Stokes equations with variable viscosity in
2D. Math Meth Appl Sci. 2021; 44: 9899-9926.
DOI: 10.1002/mma.7203

6. Ayele, Tsegaye G. and Dagnaw, Mulugeta A.
(2021b). Boundary-domain integral equation
systems to the Dirichlet and Neumann prob-
lems for compressible Stokes equations with
variable viscosity in 2D. Math Meth Appl Sci.
2021; 44: 9876-9898. DOI: 10.1002/mma.6476

7. Ayele, Tsegaye G., Dufera, Tamirat T. and
Mikhailov,S. E.(2019). Analysis of Boundary-
Domain Integral Equations for Variable-
Coefficient Mixed BVP in 2D. In: Analysis,
Probability, Applications, and Computation.
Trends in Mathematics, (eds. K.-O. Lindahl
et al.), Springer Nature Switzerland AG,
ISBN 978-3-030-04459-6, 467-480.
DOI : 10.1007{978 ´ 3 ´ 030 ´ 04459 ´ 6_45.

8. Ayele, Tsegaye G., Dufera, Tamirat T. and
Mikhailov,S. E.(2017). Analysis of Boundary-
Domain Integral Equations for Variable-
Coefficient Neumann BVP in 2D. In:
Integral Methods in Science and Engineering,
Springer (Birkhäuser): Boston C. Constanda
et al. (eds.), Vol.1 Theoretical Techniques.
DOI : 10.1007{978 ´ 3 ´ 319 ´ 59384 ´ 5_3.
pp. 21-33.

9. Ayele, Tsegaye G. and Yimer, Markos. F
(2023). Two-operator boundary-domain
integral equations for variable-coefficient
Dirichlet BVP in 2D with general right-hand
side. In: Integral Methods in Science and
Engineering. (In Press)

10. Ayele, Tsegaye G. and Mikhailov, S. E.
(2011). Analysis of two-operator boundary-
domain integral equations for a variable-
coefficient BVP. Eurasian Math. J., 2:3,
20-41.

11. Ayele, Tsegaye G. and Mikhailov, S.E.
(2010). Two-operator boundary-domain
integral equations for a variable-coefficient
BVP. In: Integral Methods in Science and
Engineering (eds. C. Constanda, M. Pérez),
Vol. 1: Analytic Methods, Birkhäuser,
Boston-Basel-Berlin, ISBN 978-08176-4898-5,
29–39.

12. Chkadua, O., Mikhailov, S. E. and Na-
troshvili, D. (2011). Analysis of segregated
boundary-domain integral equations for
variable-coefficient problems with cracks.
Numerical Methods for Partial Differential
Equations, 27, 121–140.

13. Chkadua, O., Mikhailov, S. E. and Na-
troshvili, D. (2010). Analysis of direct
boundary-domain integral equations for a
mixed BVP with variable coefficient, II: So-
lution regularity and asymptotics. J. Integral
Equations Appl., 22(1),19–37.



SINET: Ethiop. J. Sci., 46(2), 2023 129

14. Chkadua, O., Mikhailov, S. and Natroshvili,
D. (2009). Analysis of direct boundary-
domain integral equations for a mixed BVP
with variable coefficient, I: equivalence and
invertibility. J. Integral Equations App.21: 4,
499-543.

15. Constanda, C. (2000). Direct and Indirect
Boundary Integral Equation Methods, Chap-
man & Hall/CRC, 2000.

16. Costabel, M. (1988). Boundary integral
operators on Lipschiz domains: elementary
results. SIAM Journal on Mathematical
Analysis, 19, 613–626.

17. Dautray, R. and Lions, J. (1990). Mathe-
matical Analysis and Numerical Methods for
Science and Technology, volume 4: Integral
Equations and Numerical Methods, Springer,
Berlin–Heidelberg–New York.

18. Dufera, Tamirat T. and Mikhailov, S. E.
(2015). Analysis of boundary-domain integral
equations for variable-coefficient Dirichlet
BVP in 2D. In: Integral Methods in Science
and Engineering: Theoretical and Compu-
tational Advances, (eds. C. Constanda and
A. Kirsh), Springer (Birkhäuser) Boston,
ISBN 978-3-319-16727-5, 163-175, DOI:
10.1007/978-3-319-16727-5_15.

19. Grisvard, P. (1985). Elliptic Problems
in Nonsmooth Domains, Pitman, Boston–
London–Melbourne.

20. Hellwig, G. (1977). Partial Differential Equations:
An introduction, Teubner, Stuttgart.

21. Kohr, M. Lanza de Cristoforis, M. and
Wendland, W. L. (2015). Poisson problems
for semilinear Brinkman systems on Lipschitz
domains in R3. Z. Angew. Math. Phys., 66,
833–864.

22. Lions, J. L. and Magenes, E. (1972). Non-
Homogeneous Boundary Value Problems
and Applications, Vol. 1. Springer, Berlin,
Heidberg, New York.

23. McLean, W. (2000). Strongly Elliptic Sys-
tems and Boundary Integral Equations,
Cambridge University Press, Cambrige.

24. Mikhailov, S. E. (2018). Analysis of segre-
gated boundary-domain integral equations
for BVPs with non-smooth coefficients on
Lipschitz domains. Boundary Value Prob-
lems, 1–52.

25. Mikhailov, S. E. (2015). Analysis of
segregated boundary-domain integral equa-
tions for variable-coefficient Dirichlet and
Neumann problems with general data.
ArXiv:1509.03501, 1–32.

26. Mikhailov, S. E. (2013). Solution regularity
and conormal derivatives for elliptic systems
with non-smooth coefficients on Lipschitz
domains. J. Math. Anal. Appl., 400(1),
48–67.

27. Mikhailov, S. E. (2011). Traces, extensions
and conormal derivatives for elliptic systems
on Lipschitz domains, J. Math. Analysis and
Appl. 378, 324–342.

28. Mikhailov, S. E. (2006). Analysis of united
boundary-domain integral and integro-
differential equations for a mixed BVP with
variable coefficients. Math. Meth. Appl. Sci.
29, 715–739.

29. Mikhailov, S. E. (2005a). Localized direct
boundary-domain integro-differential for-
mulations for scalar nonlinear BVPs with
variable coefficients. J. Eng. Math., 51,
283–302.

30. Mikhailov, S. E. (2005b). Analysis of
extended boundary-domain integral and
integro-differential equations for some
variable-coefficient BVP. In: Advances in
Boundary Integral Methods. Proceedings of
the 5th UK Conference on Boundary Integral
Methods, (ed. Ke Chen), University of Liver-
pool Publ., UK, ISBN 0 906370 39 6, 106-125.

31. Mikhailov, S. E. (2002). Localized boundary-
domain integral formulations for problems
with variable coefficients. Int. J. Engineering
Analysis with Boundary Elements 26, 681-
690.

32. Mikhailov, S. E. (1999). Finite-dimensional
perturbations of linear operators and some
applications to boundary integral equations,
Engineering Analysis with Boundary Ele-
ments, 23, 805–813.



130 Markos F. Yimer and Tsegaye G. Ayele

33. Miranda, C. (1970) Partial Differential
Equations of Elliptic Type," 2nd edition.
Springer, Berlin-Heidelberg-New York.

34. Pomp, A. (1998a). The boundary-domain
integral method for elliptic systems. With an
application to shells, volume 1683 of Lecture
Notes in Mathematics. Springer, Berlin –
Heidelberg – New York.

35. Pomp, A. (1998b). Levi functions for linear
elliptic systems with variable coefficients

including shell equations. Comput. Mech.,
22, 93–99.

36. Steinbach, O. (2007). Numerical Approxi-
mation Methods for Elliptic Boundary Value
Problems: Finite and Boundary Elements,
Springer-Verlag.

37. Yan, Y. and Sloan, L. H. (1988). On inte-
gral equations of the first kind with logarith-
mic kernels. Journal of Integral Equations and
Applications, 1(4), 549–579.


