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ABSTRACT: This paper studies a special case of group divisible designs (GDDs) called 3-GDDs, which were 
defined by extending the definitions of a group divisible designs and a t-design. In particular, the paper 
looks at a 3-GDD(n, 4, 5; μ

1
, μ

2
) with 4 groups and block size 5. Necessary conditions for the existence of 

such GDDs are developed, the non-existence of a 3-GDD(n, 4, 5; μ
1
, 0) is proved and several specific 

instances of non-existence are   given. 
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INTRODUCTION 
 

A balanced incomplete block design, BIBD(v, b, r, k, 
λ), is a set V of v elements together with a collection 
𝔹 of k-subsets(called blocks) of V, where each 
element occurs in 𝑟 blocks and each pair of distinct 
elements occurs in exactly 𝜆 blocks. The number 
|V|=v is called the order of the BIBD. The 
parameters of BIBD(v, b, r, k, λ) must satisfy the 
necessary conditions λ(v − 1) = r(k − 1) and vr = bk 
for a BIBD to exist, and a BIBD(v, b, r, k, λ) is 
commonly denoted by BIBD(v, k, λ) (Street and 
Street, 1996; Fu and Roger, 1998). 

A group divisible design, GDD(n, m, k; λ1, λ2), is a 
collection of k-element subsets (called blocks) of an 
𝑚𝑛-set 𝑉, which satisfies the following properties: 
The elements of 𝑉 are partitioned into m subsets 
(called groups) of size 𝑛 each. Points within the same 
group are called the first associates of each other and 
appear together in λ1 blocks; any two points not in 
the same group are called the second associates and 
appear together in λ2 blocks (Brouwer et al., 1977; 
Hurd and Sarvate, 2008; Sarvate and Zhang, 2016; 
Sarvate et al., 2018). 

The evolution of combinatorial design theory has 
been remarkable because of its deep connections 
with fundamental mathematics and the desire to 
produce order from apparent chaos (Stinson, 2008). 
Since group divisible designs have been studied for 
their usefulness in statistics and for their universal 
application to constructions of new designs (Street 

and Street, 1987; Mullin and Gronau, 1996; Street 
and Street, 1996), the existence of such GDDs has 
been of interest over the years, going back to at least 
the work of Bose and Shimamoto (1952), who began 
classifying such designs. Recently, a 3-GDD was 
defined by extending the definitions of a group 
divisible design and a t-design, and some necessary 
conditions for its existence were given (Sarvate and 
Bezire, 2018; Sarvate and Cowden, 2018). This new 
definition has the potential to raise many more 
generalizations and challenging existence problems. 
In Sarvate and Bezire (2018), the authors  proved that 
the necessary conditions are sufficient for the 
existence of a 3-GDD(n, 2, 4; λ1, λ2) except possibly 
when n ≡1, 3 (mod 6), n ≠ 3, 7, 13 and λ1> λ2 and in 
Sarvate and Cowden (2018), the authors settled that 
the necessary conditions are sufficient for the 
existence of a 3-GDD(n, 2, 4; λ1, λ2) for n ≡1, 7, 
9(mod 12). 

In this paper, we continue to focus on the 
definition of 3-GDDs and explicitly consider the case 
when the required designs have 4 groups of size n 
each and block size 5. Throughout this paper, such 
GDD is denoted by 3-GDD (n, 4, 5; μ

1
, μ

2
). In this 

work, some necessary conditions for the existence of 
such GDDs are determined, and several specific 
instances of their non-existence are proved. 

The rest of the paper is organized as follows: 
Section 2 presents some well-known definitions and 
concepts that will be used in the succeeding section. 
Section 3 is the result section, and it presents and 
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discusses the  findings of this paper. 
 
 

PRELIMINARIES 
 

In this section, we review some important 
definitions and concepts that we will be used later to 
study the main results. 

Definition 1. [Sarvate and Cowden (2018)] A t-(v, 
k, λ) design, or a t-design is a pair (𝕏, 𝔹), where 𝕏 is 
a v-set of points and 𝔹 is a collection of k-subsets 
(blocks) of 𝕏 with the property that every t-subset 
of 𝕏 is contained in exactly λ blocks. The parameter 
λ is called the index of the design. 

It is possible to generalize the concepts of GDDs 
and 𝑡-designs in many ways. Here is a 
generalization for GDDs with two groups and block 
size k: 
Definition 2. [Sarvate and Bezire (2018)] A 3-

GDD(n, 2, k; λ1, λ2) is a set 𝕏 of 2n elements 
partitioned into two parts of size n, called groups, 
together with a collection of k-subsets of 𝕏 called 
blocks, such that 

(i) every 3-subset of each group occurs in λ1 
blocks and 

(ii) every 3-subset where two elements are from 
one group and one element from the other 
group occurs in λ2 blocks. 

Example 1. Let 𝕏 = {1, 2, 3, a, b, c}, G1={1, 2, 3} 

and G2={ a, b, c}. 𝔹={{1, 2, 3, a}, {1, 2, 3, b}, 
{1, 2, 3, c}, {a, b, c, 1}, {a, b, c, 2}, {a, b, c, 3}} gives 
the required blocks of the 3-GDD(3, 2, 4;3, 1).  

The above definition from Sarvate and Bezire 
(2018), has been extended by Sarvate to include 
more  than two groups as follows: 

Definition 3. A 3-GDD(n, m, k; µ1, µ2) is a pair 

(𝕏, 𝔹), where 𝕏 is a set of mn elements partitioned 
into 𝑚 𝑛-subsets (groups) and 𝔹 is a collection of k-
subsets (blocks) of 𝕏 such that 

(i) every triple occurs in exactly µ1 blocks if it 

contains elements from at most 2 groups, 
(ii) it occurs in exactly µ2 blocks if it contains all 

three elements from different groups. 
We extrapolate the above to a type of a 3-PBIBD 
(Partially Balanced Incomplete Block Design) and 
denote it simply by 3-PBIBD(n, m, k; ⋀1, ⋀2, ⋀3), 

where 
(i) Every triple formed from elements of 
only a single group occurs in ⋀1 blocks, 
(ii) Every triple formed from elements of only 
two groups occurs in ⋀2 blocks, 
(iii) Every triple formed from elements of all 
three groups occurs in ⋀3 blocks. 

A 3- GDD(n, 4, 5; µ1, µ2) is a 3-PBIBD(n, m, k; ⋀1, ⋀2, 

⋀3) , where ⋀1= ⋀2, denoted by µ1 while ⋀3 is 

denoted by µ2. 
In this paper, we explicitly consider the case in 

which m = 4 and k = 5 in Definition 3. Throughout 
this paper, such GDD is denoted by 3-GDD(n, 4, 5; 
µ1, µ2) . 

Remark 1. 
A 3-GDD(n, 4, 5; µ1, µ2), where µ1=µ2 is the same 

as a 3-(4n, 5, µ1) and a 3-GDD(n, 4, 5; µ1, µ2) exists  

if and only if a 3-(4n, 5, µ1) exists. 

 
 

RESULTS 
 

In this section, the main results of this paper will be 
discussed. We obtain some necessary conditions for 
the existence of a 3-PBIBD(n, m, k; ⋀1, ⋀2, ⋀3) and a 

3-GDD(n, 4, 5, µ1, µ2), and assuming such designs 

exist, we count the number of blocks containing any 
given element (called the replication number 𝑟), the 
number of blocks, say λ1, containing a given first 
associate pair, the number of blocks, say λ2 
containing a given second associate pair, and the 
required number of blocks, say b, for the design. In 
addition, several specific instances of non-existence 
are presented. 

 
 

NECESSARY CONDITIONS 

 

Theorem 1. In 3-PBIBD(n, m, k; ⋀1, ⋀2, ⋀3) with 

m=4 and k=5, we have 
 

𝑟 =
1

12
((n − 1)(n − 2)⋀1 + 9n(n − 1)⋀2 + 6n2⋀3)      (1) (1 

𝑏 =
𝑛

15
((n − 1)(n − 2)⋀1 + 9n(n − 1) ⋀2 + 6n2⋀3)     (2)    (2) 

λ1=
1

3

 
((n − 2) ⋀1 + 3n⋀2)      (3) 

λ2=
1

3

 
(2(n − 2) ⋀2 + 2n⋀3)  (4) 

 
Proof: 

(1). We count the number of triples containing a 
fixed element 𝑥 in the design in two ways. 
 

First, given an element 𝑥, it appears in (𝑛−1
2

)triples 

of the type (3, 0), 3n(n-1)+3(𝑛
2
) triples of the type (2, 

1) and 3n2 triples of the type (1, 1,  1) containing x, 
and these triples are repeated ⋀1, ⋀2 and ⋀3 times, 
respectively. 

In sum, there are (𝑛−1
2

)⋀1+(3n(n-1)+3(𝑛
2
))⋀2+ 3n2⋀3 

triples containing 𝑥. 
Second, in every block containing 𝑥, there are 6 

triples containing 𝑥 and 𝑥 occurs in 𝑟 blocks, which 
means there are 6𝑟 triples containing 𝑥. 
Equating the two, the result follows. 
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(2). In a design with 4 groups, block size 5 and 𝑏 
blocks, counting the number of triples in a design in 

two ways, we get:(
5
3

) 𝑏 = 4 (
𝑛
3

) ⋀1 + 6n2(n − 1)⋀2 +

4n3⋀3 ,  which leads to 

  

b= 
𝑛

15
((n - 1)(n - 2)⋀1+ 9n(n - 1)⋀2+6n2⋀3) . 

 

(3). To count the number of blocks containing a 
given pair of points from the same group, say     
(𝑥1, 𝑥2),                      consider the following two cases: 

(a) There are (𝑛 − 2) triples of the type (3, 0) and 

3𝑛 triples of the type (2, 1) containing (𝑥1, 

𝑥2).  In sum, there are (n − 2)⋀1+3n⋀2 triples 

containing (𝑥1, 𝑥2
). 

(b) In a design with block size 5, the block 
containing a first associate pair, contains 

three triples containing (𝑥1, 𝑥2
).  Hence there 

are 3λ1 such triples. 

Since (a) and (b) counts the same, 

3λ1=(n - 2)⋀1+3n⋀2 and λ1 =
1

3
 ((n-2)⋀1+3n⋀2). 

 

(4). Again counting the number of blocks 
containing a given pair of points from different 
groups, say (𝑥, 𝑦) in two ways: 
First, the pair occurs in triples of the type (2, 1) and 
(1, 1, 1) only. It occurs in 2(n - 1)⋀2 triples of type  
(2, 1) or 2𝑛⋀3 triples of type (1, 1, 1). 
Hence, there are 2(n - 1)⋀2+ 2n⋀3 triples containing 
the pair (𝑥, 𝑦). 
Second, each of the λ2 blocks containing the pair      
(x, y) has three triples containing (𝑥, 𝑦). Hence, there 
are 3λ2 triples containing (𝑥, 𝑦). 
Since both cases count the same, the result follows. 
Example 2. 3-PBIBD(2, 4, 5; 0, 4, 7) exists and is 

constructed on the groups {1, 2}, {a, b}, {x, y} and 
{w, z}.Then the blocks are constructed by combining 
both elements of a group with every-three subsets 
(taken from distinct groups) of the union of the 
remaining three groups. 

 
 
 
 

1 1 1 1 1 1 1 1 a a a a a a a a 

2 2 2 2 2 2 2 2 b b b b b b b b 

a a a a b b b b 1 1 1 1 2 2 2 2 

x x y y x x y y x x y y x x y y 

w z w z w z w z w z w z w z w z 

 
x x x x x x x x w w w w w w w w 

y y y y y y y y z z z z z z z z 

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 

a a b b a a b b a a b b a a b b 

w z w z w z w z x y x y x y x y 

 
 
 
 
 

Example 3. 3-PBIBD(3, 4, 5; 36, 9, 3) exists. 

If G1={1, 2, 3}, G2={a, b, c}, G3={x, y, z} and G4={w, s, 
t} , then the blocks of the design are constructed by  
joining Gi for i = 1, 2, 3, 4 with every two subsets of  

 
H=⋃ 𝐺 4

𝑗=1.𝑗≠𝑖 j  

 
Example 4. 3-PBIBD(4, 4, 5; 12, 1, 0) exists. 

With G1={1, 2, 3, 4}, G2={a, b, c, d}, G3={x, y, z, w} 
and G4={r, s, t, u}, the blocks of this design are 
obtained by joining all the four elements of a group 
with every element of the union of the remaining 
three  groups. 

 
 

 
In 3-PBIBD(n, m, k; ⋀1, ⋀2, ⋀3) when ⋀1=⋀2 is 

denoted is by μ1 and ⋀3 is denoted by μ2, the 

following Corollary directly follows from Theorem 
1. So we omit their proofs. 
 
Corollary 1. Given 3-GDD(n, 4, 5; μ1, μ2), 

 

r =
(n−1)(5n−1)μ1+3n2μ2

6                 (5) 

 

  b =
2n((n−1)(5n−1)μ1+ 3n2μ2)

15
           (6)  
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λ1=
(4n-2)μ

1

3            (7) 

             

λ2 = 2(n−1)μ1+2nμ2
3         (8) 

         
Corollary 2. In a 3-GDD(n, 4, 5; μ1, μ2), μ1≠0 and 

λ1≠0. 
From (5) and (6), the necessary conditions are 
satisfied under the following conditions: 
 
Lemma 1. For 
 

i. n≡0(mod5), μ1 and μ2 are free in regards to 

the number of blocks b. 

ii. n≡0(mod6) and μ1≡0(mod6), r is an integer 

for any chosen µ2 . 

iii. n≡1(mod6) and even μ2, r is an integer for 

any chosen μ1. 

iv. n≡4(mod6) and even μ1, r is an integer for 

any chosen μ2. 

From (7) and (8), a more compact necessary 
condition is given as follows: 
 
Lemma 2. In regards to: 
 

i. λ1, for n≡2(mod3), µ1 and µ2 are free and 

for n≢2(mod3), µ1≡0(mod3) and µ2 is free. 

ii. λ2, for n≡0(mod3), μ1≡0(mod3) and µ2 is free, 

when n≡1(mod3), µ1 is free and μ2≡0(mod3) 

and for n≡2(mod3), μ1+2 μ2≡0(mod 3) . 

From Corollary 1, as the values of b and r must be 
integers, we have the following table. 
Table 1: Table of congruence restrictions (all 
values are considered to be in terms of (mod 30) 
unless otherwise stated): 

________________________________________________________________________ 
 
   𝒏      

𝒓 
                     

              𝒃 
                

 μ1                          μ2  μ1                        μ2 

   0 0(mod6) All All All 

  1, 11 All 0(mod2) All 0(mod5) 

  2, 7, 17 0(mod2) All                 ∗1          ∗1      

 3,  9              ∗2           ∗2           ∗3           ∗3 

 4, 8, 14, 28 0(mod2) All           ∗3           ∗3 

 5, 25 All 0(mod2) All All 

 6 0(mod6) All All 0(mod5) 

 10, 20 0(mod2) All All All 

 12 0(mod6) All          ∗1            ∗1 

 13, 19, 23, 29 All 0(mod2)           ∗3           ∗3 

 15          ∗2           ∗2 All All 

 16, 26 0(mod2) All All 0(mod5) 

 18, 24 0(mod6) All           ∗3           ∗3 

 21          ∗2           ∗2 All 0(mod5) 

 22 0(mod2) All          ∗1           ∗1  

 27          ∗2           ∗2         ∗1           ∗1 

_________________________________________________________________________ 
 
Where *1= μ1+3 μ2≡0(mod 5), *2=4 μ1+3 μ2≡0(mod 6) and *3= μ1+4 μ2≡0(mod 5). 

 

Remark 2. From Table 1 and Lemma 2, we have 
more compact necessary conditions for different 
values of n as follows: 

 n≡0(mod 30), for all μ2 and μ1≡0(mod 6) 

 n≡1(mod 30), μ1≡0(mod 3) and μ2≡0(mod 30) 

 n≡4, 28(mod 30), μ1≡0(mod 30) and μ2≡0(mod 

15) or, μ1≡6(mod 30) and μ2≡6(mod 15) or, 

μ1≡12(mod 30) and μ2≡12(mod 15) or,  

 

μ1≡18(mod 30) and μ2≡3(mod 15) or, 

μ1≡24(mod 30) and μ2≡9(mod 15). 

 n≡5(mod 30), μ1≡0(mod 3) and μ2≡0(mod 6) or, 

μ1≡2(mod 3) and μ2≡2(mod 6) or, μ1≡1(mod 3) 

and μ2≡4(mod 6). 

 n≡6(mod 30), μ1≡0(mod 6) and μ2≡0(mod 5). 

 n≡7(mod 30), μ1≡0(mod 15) and μ2≡0(mod 30)  
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or, μ1≡3(mod 15) and μ2≡24(mod 30) or, 

μ1≡6(mod 15) and μ2≡18(mod 30) or, μ1≡9(mod 

15) and μ2≡12(mod 30) or, μ1≡12(mod 15) and 

μ2≡6(mod 30). 

 n≡10(mod 30), μ1≡0(mod 6) and μ2≡0(mod 3). 

 n≡11(mod 30), μ1≡0(mod 3), and μ2≡0(mod 30) 

or, μ1≡1(mod 3) and μ2≡10(mod 30) or, 

μ1≡2(mod 3) and μ2≡20(mod 30). 

 n≡12(mod 30), μ1≡0(mod 30) and μ2≡0(mod 5) 

or, μ1≡6(mod 30) and μ2≡3(mod 5) or, 

μ1≡18(mod 30) and μ2≡4(mod 5) or, 

μ1≡24(mod 30) and μ2≡2(mod 5). 

 n≡13, 19 (mod 30), μ1≡0(mod 15) and 

μ2≡0(mod30) or, μ1≡3(mod 15) and 

μ2≡18(mod 30) or, μ1≡6(mod 15) and 

μ2≡6(mod 30) or, μ1≡9(mod 15) and   

μ2≡24(mod 30) or, μ1≡12(mod 15) 

& μ2≡12(mod 30).  

 n≡15(mod 30), μ1≡0(mod 3) and μ2≡0(mod 2). 

 n≡16(mod 30), μ1≡0(mod 6) and μ2≡0(mod 15). 

 n≡18, 24(mod 30), μ1≡0(mod 30) and μ2≡0(mod 

5) or, μ1≡6(mod 30) and μ2≡1(mod 5) or, 

μ1≡12(mod 30) and μ2≡2(mod 5) or, μ1≡18(mod 

30) and μ2≡3(mod 5) or, μ1≡24(mod 30) and 

μ2≡4(mod 5). 

 n≡20(mod 30), μ1≡0(mod 6) and μ2≡0(mod 3) 

or, μ1≡2(mod 6) and μ2≡2(mod 3) or, μ1≡4(mod 

6) and μ2≡1(mod 3). 

 n≡21(mod 30), μ1≡0(mod 3) and μ2≡0(mod 10). 

 n≡22(mod 30), μ1≡0(mod 30) and μ2≡0(mod 15 ) 

or, μ1≡6(mod 30) and μ2≡3(mod 15 ) or, 

μ1≡12(mod 30) and μ2≡6(mod 15 ) or, 

μ1≡18(mod 30) and μ2≡9(mod 15 ) or, 

μ1≡24(mod 30) and μ2≡12(mod 15 ). 

 n≡25(mod 30), μ1≡0(mod 3) and μ2≡0(mod 6). 

 n≡26(mod 30), μ1≡0(mod 6) and μ2≡0(mod 15) 

or, μ1≡2(mod 6) and μ2≡5(mod 15) or, μ1≡4(mod 

6) and μ2≡10(mod 15). 

When ∗1, ∗2 and ∗3 are as given in Table 1, *= μ1+2 

μ2≡0(mod 3) and ∩ denotes intersection, the  original 

necessary conditions in Corollary 1 are satisfied for 
the remaining 𝑛 as follows: 
 
 

 
When n≡2(mod 30), μ1≡0(mod 2) ⋂ *1 ⋂ * and   

μ2≡*1 ⋂ *, taking all the possible combinations, the 

original necessary conditions are satisfied for: 
 
μ1≡0(mod 30) and μ2≡0(mod 15) or, μ1≡2(mod 

30) and μ2≡11(mod 15) or, μ1≡4(mod 30) and 

μ2≡7(mod 15) or, μ1≡6(mod 30) and 

μ2≡3(mod 15) or, μ1≡8(mod 30) & μ2≡14(mod 

15) or, μ1≡10(mod 30) and μ2≡10(mod 15) or, 

μ1≡12(mod 30) & μ2≡6(mod 15) or, μ1≡14(mod 

30) and μ2≡2(mod 15) or, μ1≡16(mod 30) and 

μ2≡13(mod 15) or, μ1≡18(mod 30) and 

μ2≡9(mod 15) or,  μ1≡20(mod 30) & μ2≡5(mod 

15) or, μ1≡22(mod 30) and μ2≡1(mod 15) or, 

μ1≡24(mod 30) and μ2≡12(mod 15) or, 

μ1≡26(mod 30) and μ2≡8(mod 15) or, 

μ1≡28(mod 30) and μ2≡4(mod 15). 

 When n≡3, 9(mod 30), μ1≡0(mod 3) ⋂ *2 ⋂ *3 

and μ2≡*2 ⋂ *3 

 When n≡8, 14(mod 30), μ1≡0(mod 2) ⋂ *3 ⋂ * 

and μ2≡*3 ⋂ * 

 When n≡17(mod 30), μ1≡*1 ⋂ * and μ2≡0(mod 2) 

⋂ *1 ⋂ * 
 When n≡23, 29(mod 30), μ1≡*3 ⋂ * and 

μ2≡0(mod 2) ⋂ *3 ⋂ * 

 When n≡27(mod 30), μ1≡0(mod 3) ⋂ *2 ⋂ *1 and 

μ2≡*2 ⋂ *1. 

 
 
Theorem 2. A 3-GDD(n, 4, 5; μ1, 0) doesn't exist. 

 
Proof. If a 3-GDD(n, 4, 5; μ1, 0) exists, then blocks 

of the design are of type (5, 0), (4, 1) or (3, 2) only. 
Let 𝑥, 𝑦 and 𝑧 denote the number of blocks of type 
(5, 0), (4, 1) and (3, 2) respectively. 
 

i. Note that, for n = 3, both 𝑥 and 𝑦 are zeros and 
for n = 4, x is zero. 

 

 When 𝑛 = 3, only allowed blocks are of type 
(3, 2) and such blocks give 9 (2, 1) triples and 
1 (3, 0) triple. 
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So in a design with 𝑧 blocks, there are 𝑧 triples of 
type (3, 0) and 9𝑧 triples of type (2, 1), but 𝑧 = 4𝜇1 
(number of triples of type (3, 0)) and 9z=108µ1 

(number of triples of type (2, 1)).  From the two 
equations, we get 4µ1=12µ1, which is impossible. 
 

 When 𝑛 = 4, number of triples of type (3, 0) is 
 
   4y+z = 16μ1                                       (9) 

 
          and number of triples of type (2, 1) is 
 
              6y+9z = 288μ1                                     (10) 

 
       From (9) and (10), simultaneously solving for 𝑧       
gives 
 
              5z = 176 µ1                                            (11) 

 
From (11), z > 35 µ1  and hence equation (9) is 

impossible. 
 

ii.  For n ≥ 5, the number of triples of type (3, 0) 
and (2, 1) are respectively given by: 

 

           10x+4y+z=4 (n
3

)µ1=
2n(n−1)(n−2)μ1

3
         (12) 

 
and 
 

          6y+9z=4 (𝑛
2

) *3 (𝑛
1

)μ1= 6n2(n-1)μ
1
              (13) 

 
Solving for 𝑧 from equation (13) and substituting 
this value in to equation (12) gives: 
 
 30x + 10y + 2n2(n − 1)µ1=2n(n − 1)(n − 2)µ1      (14) 

 (14) 

Since 2n2(n − 1)µ1 > 2n(n − 1)(n − 2)µ1, equation (14) 

is impossible. 
 
Theorem 3. Given 3-GDD(n, 4, 5; μ1, μ2) 

(i)  μ1 ≥
 2nμ2

7(n−1)
  

(ii)  𝑏 ≥
3𝑛2(𝑛−1) 𝜇1+2𝑛3𝜇2

5
 

 Proof. 

(i) In 3-GDD(n, 4, 5; µ1, µ2), in each of the blocks 
which can have a (1, 1, 1) triples, the number of 
(2, 1) triples are more except in the blocks of type (2, 

1, 1, 1). Here clearly, 
7

3
 times the number of (2, 1)  

 
 
 

triples in the design must be greater than or equal 
to the number of (1, 1, 1) triples occurring in the 
design. 
 

Hence, we have 
7

3
 ∗ 6n2(n − 1)µ1 > 4n3µ2, which 

implies  μ1 ≥
 2nμ2

7(n−1)
. 

 

(ii) The inequality for b is derived from b without 
triples of the form (3, 0). 

 
 

NON-EXISTENCE 
 

Remark 3. When μ1, μ2≠0, blocks of a 3-GDD(n, 4, 5; 

μ1, μ2) are of type (5, 0), (4, 1), (3, 2), (3, 1, 1), (2, 2, 

1) or (2, 1, 1, 1). 
 
If u, v, x, y, z and w denotes the number of blocks 

of type (5, 0), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1) and (2, 1, 
1, 1) respectively, then 
 

          10u + 4v + x + y = 4 (𝑛
3

)µ1              (15) 

 
      6v + 9x +6y + 6z + 3w =6n2(n-1)μ1          (16) 

             3y + 4z + 7w =4 n3 μ2       (17) 

  
where (15), (16) and (17) denote the number of 
triples of type (3, 0), (2, 1) and (1, 1, 1) respectively. 
 
Theorem 4. A 3-GDD(n, 4, 5; µ1, µ2) does not exist if 

i). n = 3 and µ2 <  
4

9
 μ1 . 

ii). n = 4 and µ2 <  
3

8
μ1     

iii). n ≥ 5 and µ2 <  
2𝑛

7(𝑛−1)
μ2 

 
Proof. Let 𝑢, 𝑣, 𝑥, 𝑦, 𝑧 and 𝑤 denotes the number 
of blocks of type (5, 0), (4, 1), (3, 2), (3, 1, 1) , (2, 2, 1) 
and (2, 1, 1, 1) respectively. 
 
i). When n = 3, we have 𝑢 = 𝑣 = 0. 

Multiplying (16) by 
2

3
 and subtracting (15) gives 

 
          5x+ 3y + 4z + 2w = 68 μ1                              (18) 

 
Subtracting (18) from (17) yields 
 
                 5w = 108 μ2 - 68 μ1+ 5x                           (19) 

 
Since 𝑥 ≤ 4µ1 (from (15)), 5w ≤108 μ2 - 68 μ1+ 20μ1 

and 108 μ2 - 48 μ1 < 0 implies  µ2< 
4

9 
µ1. 
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But w cannot be negative, and when  μ
2
<

4

9
 μ

1
 a             

3-GDD(3, 4, 5; μ1,  μ2) does not exist. 
 
ii).  When 𝑛 = 4, we have 𝑢 = 0. 

Similarly, multiplying (16) by 
2

3
 and subtracting (15) 

gives 
 
       5x+ 3y + 4z + 2w = 176 μ1                              (20) 

 
Subtracting (20) from (17), we have 
 
            5w = 256 μ2-176 μ1+5x                               (21) 

 
When n=4, x ≤ 16 μ1 and 5w ≤ 256 μ2 − 176 μ1 +

80 μ1. Then 256 μ2 −  96 μ1 < 0  implies  μ
2
<

3

8
 μ

1
. 

Therefore, 3-GDD(4, 4, 5;  μ1,  μ2) does not exist 

when  μ
2
<

3

8
 μ

1
. 

 
iii).  From (15), (16) and (17), solving for 𝑥 in terms of 
the remaining, we have 
 

5x=4n2(n-1) μ
1
-

2n(n-1)(n-2)

3
μ

1
-4n3 μ

2
+10u + 5w 

(22) 
But 

5x ≤ 4n2(n-1)μ
1
-4 (

n
3

) μ
1
-4n3 μ

2
+4 (

n
3

) μ
1
+10n2(n-1)μ

1
  

[From (15) and (16), 10u ≤ 4 (
n
3

) μ1 and w ≤

2n2(n − 1)μ1]. 
Thus 

5x≤14n2(n-1)μ
1
-4n3μ

2
 and 14n2(n-1)μ

1
-4n3μ

2
< 0 

implies  μ
1
<

2n

7(n-1)
 μ

2
. 

For n ≥ 5, if   μ
1
<

2n

7(n-1)
μ

2
, then x < 0 (which is 

impossible).           
 
Remark 4. For n=3, the original necessary conditions 
for 3-GDD(n, 4, 5; μ1, μ2) are satisfied only when: 

 

 μ1≡0(mod 15) and μ2≡0(mod 10) or, 

 μ1≡3(mod 15) and μ2≡8(mod 10) or, 

 μ1≡6(mod 15) and μ2≡6(mod 10) or, 

 μ1≡9(mod 15) and μ2≡4(mod 10) or, 

 μ1≡12(mod 15) and μ2≡2(mod 10) . 

There are cases when the original necessary 
conditions are satisfied, but the designs do not 
exist. From theorem 4(i) and Remark 4, the 
following result follows: 
 
 
 
 
 

 
Corollary 3. For non-negative integers 𝑠 and t: 

(i)   If t >
3𝑠

2
, then 3-GDD(3, 4, 5; 15t, 10s) and 3-

GDD(3, 4, 5; 15t+9, 10s+4), do not exist. 
 

(ii) 3-GDD(3, 4, 5; 15t+3, 10s+8) does not exist if   

t >
3𝑠+2

2
 

(iii) 3-GDD(3, 4, 5; 15t+6, 10s+6) does not exist if 

t >
3𝑠+1

2
 

(iv) 3-GDD(3, 4, 5; 15t+12, 10s+2) does not exist if 

t >
3𝑠−1

2
 

 
Even when the necessary conditions are satisfied, 
here below are lists of some of these designs, which 
do not exist for n = 3: 
 

3-GDD(3, 4, 5; 15t, 10) for t ≥ 2, 3-GDD(3, 4, 5; 15t, 
20) for t ≥ 4, 3-GDD(3, 4, 5; 15t, 30) for t ≥ 5, 3-
GDD(3, 4, 5; 15t + 9, 4) for t ≥ 1, 
3-GDD(3, 4, 5; 15t + 9, 14) for t ≥ 2, 3-GDD(3, 4, 5; 
15t + 3, 8) for t ≥ 2, 3-GDD(3, 4, 5; 15t + 3, 18) for t 
≥ 3, 3-GDD(3, 4, 5; 15t + 12, 2) for t ≥ 0, 
3-GDD(3, 4, 5; 15t + 12, 12) for t ≥ 2, 3-GDD(3, 4, 
5; 15t + 6, 6) for t ≥ 1, 3-GDD(3, 4, 5; 15t + 6, 16) 
for t ≥ 3, etc. 

 

Remark 5. For n = 4, the original necessary 

conditions for 3-GDD(n, 4, 5; µ1, µ2) are satisfied 
only when:  
μ1≡0(mod 30) and µ2≡0(mod 15) or, µ1≡6(mod 30) 

and µ2≡6(mod 15) or, µ1≡12(mod 30) and 

µ2≡12(mod 15) or, µ1≡18(mod 30) and µ2≡3(mod 

15) or, µ1≡24(mod 30) and µ2≡9 (mod 15). 

When n = 4, from Theorem 4 (ii) and Remark 5, the 
following result follows: 
Corollary 4. For non-negative integers s and t: 

i.   If t >
4s

3
, then 3-GDD(4, 4, 5; 30t, 15s) and 3-

GDD(n, 4, 5; 30t+24, 15s+9),  do not exist. 

ii. If t >
4s+1

3
, then 3-GDD(4, 4, 5; 30t+6, 15s+6) 

does not exist  

iii. 3-GDD(4, 4, 5; 30+12t, 15s+12) does not exist if  

t >
4s+2

3
. 

iv. 3-GDD(4, 4, 5; 30t+18, 15s+3) does not exist if  

t >
4s−1

3
. 
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CONCLUSIONS 
 

In this paper, definition 3 is used to study a special 
type of 3-GDDs with 4 groups and block size 5, which 

is denoted by 3-GDD(n, 4, 5; μ1, μ2). Some of the 
main results of this work are; some necessary 
conditions for the existence of such designs are 
developed, when μ2 = 0, the non-existence of a 

3-GDD(n, 4, 5; μ1, μ2) is proved, and even when the 

original necessary conditions are satisfied, several 
specific instances of non- existence are given. 
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