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ABSTRACT: In this paper, we introduce and investigate an iterative scheme for finding a 
common element of the set of common solutions of a finite family of generalized equilibrium 
problems and the set of fixed points of a Lipschitz and hemicontractive-type multi-valued mapping. 
We obtain strong convergence theorems of the proposed iterative process in real Hilbert space 
settings. Our results improve, generalize and extend most of the recent results that have been 
proved by many authors in this research area.   

 
Key words/phrases: Continuous monotone mapping, demiclosedness principle, fixed point 

problem, generalized equilibrium problems, hemicontractive-type multi-valued mapping 
 
 
 

INTRODUCTION 
 
Let 𝐶𝐶 be a nonempty subset of a real Hilbert 
space 𝐻𝐻 with inner product 〈. , . 〉 and norm ‖. ‖.  
A single-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 is said to be 
k-strictly pseudocontractive in the sense of 
Browder and Petryshtn (1967) if there exists 
𝑘𝑘 ∈ [0,1) such that 
||𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 ||2 ≤ ‖𝑇𝑇 − 𝑇𝑇‖2 +  𝑘𝑘‖𝑇𝑇 − 𝑇𝑇𝑇𝑇 − (𝑇𝑇 − 𝑇𝑇𝑇𝑇)‖2,    
  ∀ 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶 .................................................. (1.1) 
 
If 𝑘𝑘 = 1 in (1.1), then 𝑇𝑇 is called pseudocontractive 
mapping.  
 
 A mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 is called Lipschitzian if 
there exists 𝐿𝐿 ≥ 0 such that ‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖ ≤
𝐿𝐿‖𝑇𝑇 − 𝑇𝑇‖,∀ 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. If 𝐿𝐿 = 1, then 𝑇𝑇 is called 
nonexpansive and if 𝐿𝐿 ∈ [0,1), then 𝑇𝑇 is called 
contraction. 
 Observe that the class of pseudocontractive 
mappings contains the class of 𝑘𝑘-strictly pseudo-
contractive mappings and nonexpansive map-
pings (see Browder and Petryshyn, 1967; Chi-
dume et al., 2013).  
 A mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 is said to be firmly 
nonexpansive if ‖𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇‖2 ≤ 〈𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉 for 
all 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. It is known that every firmly 

nonexpansive mapping is nonexpansive 
mapping, but the inclusion is proper (see 
Mongkolkeha et al., 2013).  
 A mapping 𝑇𝑇:𝐶𝐶 → 𝐻𝐻 with 𝐹𝐹(𝑇𝑇) = {𝑇𝑇 ∈ 𝐶𝐶: 𝑇𝑇 =
𝑇𝑇𝑇𝑇} nonempty is said to be quasi-nonexpansive if 
‖𝑇𝑇𝑇𝑇 − 𝑝𝑝‖ ≤ ‖𝑇𝑇 − 𝑝𝑝‖ holds for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑇𝑇 ∈ 𝐶𝐶 
and 𝑇𝑇 is called hemicontractive if ‖𝑇𝑇𝑇𝑇 − 𝑝𝑝‖2 ≤
‖𝑇𝑇 − 𝑝𝑝‖2 + ‖𝑇𝑇 − 𝑇𝑇𝑇𝑇‖2 holds for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑇𝑇 ∈ 𝐶𝐶. 
 We remark that the class of hemicontractive 
mappings contains the class of pseudocontrac-
tive mappings with 𝐹𝐹(𝑇𝑇) ≠ ∅ and the class of 
quasi-nonexpansive mappings. The following 
examples show that the inclusion is proper.  
 
Example 1.1. Let 𝐻𝐻 = ℝ and 𝐶𝐶 = [0,1]. Let 
𝑇𝑇:𝐶𝐶 → 𝐻𝐻 be defined by 𝑇𝑇𝑇𝑇 = 𝑇𝑇2sin �1

x
� if 𝑇𝑇 ≠ 0 

and 𝑇𝑇0 = 0. Then, zero is the only fixed point of 
𝑇𝑇 and for all 𝑇𝑇 ∈ 𝐶𝐶, we have  

|𝑇𝑇𝑇𝑇 − 0|2 = �𝑇𝑇2 sin �
1
𝑇𝑇
��

2

≤ |𝑇𝑇|4 

                                  ≤ |𝑇𝑇|2 ≤ |𝑇𝑇 − 0|2 + |𝑇𝑇 − 𝑇𝑇𝑇𝑇|2. 
Hence, 𝑇𝑇 is hemicontractive mapping. However, 
if we take 𝑇𝑇 = 2

𝜋𝜋
 and 𝑇𝑇 = 1

𝜋𝜋
, then we get that 

|𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇|2 = � 4
𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠

𝜋𝜋
2
− 1

𝜋𝜋2 𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋�
2

= 16
𝜋𝜋4. 

But,   
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|𝑇𝑇 − 𝑇𝑇|2 + |𝑇𝑇 − 𝑇𝑇 − (𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇)|2  =
1
𝜋𝜋2 + �

𝜋𝜋 − 4
𝜋𝜋2 �

2
 

                                                                =
2𝜋𝜋2 − 8𝜋𝜋 + 16

𝜋𝜋4  

                                                                  <  16
𝜋𝜋4 = |𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇|2, 

which shows that 𝑇𝑇 is not pseudocontractive. 
 
Example 1.2. Let 𝐻𝐻 = ℝ and 𝐶𝐶 = [0,1]. Let 
𝑇𝑇:𝐶𝐶 → 𝐻𝐻 be defined by 

𝑇𝑇𝑇𝑇 = �

1
2

,   𝑠𝑠𝑖𝑖 𝑇𝑇 ∈ �0,
1
2
� ,

0,    𝑠𝑠𝑖𝑖 𝑇𝑇 ∈ �
1
2

, 1� .
� 

Then, 1
2
 is the only fixed point of 𝑇𝑇. If 𝑇𝑇 ∈ �0, 1

2
�, 

we have 

�𝑇𝑇𝑇𝑇 − 𝑇𝑇(1
2
)�

2
= 0 ≤ �𝑇𝑇 − 1

2
�

2
+ |𝑇𝑇 − 𝑇𝑇𝑇𝑇|2. 

And if 𝑇𝑇 ∈ �1
2

, 1�, we get  

�𝑇𝑇𝑇𝑇 − 𝑇𝑇 �1
2
��

2
= 1

4
< 𝑇𝑇2 ≤ �𝑇𝑇 − 1

2
�

2
+ |𝑇𝑇 − 𝑇𝑇𝑇𝑇|2. 

Thus, 𝑇𝑇 is hemicontractive mapping. However, 𝑇𝑇 
is not quasi-nonexpansive mapping. In fact, for 
𝑇𝑇 = 3

5
, we have 

 �𝑇𝑇𝑇𝑇 − 𝑇𝑇 �1
2
�� = 1

2
> 1

10
= 3

5
− 1

2
= �𝑇𝑇 − 1

2
�. 

 Let 𝐶𝐶𝐶𝐶(𝐶𝐶) denote the family of nonempty, 
closed and bounded subsets of 𝐶𝐶. The Pompeiu-
Hausdorff metric (see Berinde and P𝑎𝑎�curar, 
2013) on 𝐶𝐶𝐶𝐶(𝐶𝐶) is defined by 
𝐷𝐷(𝐴𝐴,𝐶𝐶) = max�𝑠𝑠𝑠𝑠𝑝𝑝𝑇𝑇∈𝐴𝐴𝑑𝑑(𝑇𝑇,𝐶𝐶),  𝑠𝑠𝑠𝑠𝑝𝑝𝑇𝑇∈𝐶𝐶𝑑𝑑(𝑇𝑇,𝐴𝐴)�,  
for all 𝐴𝐴,𝐶𝐶 ∈ 𝐶𝐶𝐶𝐶(𝐶𝐶), where 𝑑𝑑(𝑇𝑇,𝐶𝐶) = inf{‖𝑇𝑇 − 𝑏𝑏‖ ∶
𝑏𝑏 ∈ 𝐶𝐶}. 
 A multi-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) is called 
Lipschitzian if there exists 𝐿𝐿 ≥ 0 such that  
 
 𝐷𝐷(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝐿𝐿‖𝑇𝑇 − 𝑇𝑇‖,∀𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. ................ (1.2) 
 
If 𝐿𝐿 = 1 in (1.2), then 𝑇𝑇 is called nonexpansive and 
if 𝐿𝐿 ∈ [0,1), then 𝑇𝑇 is called contraction mapping. 
 A multi-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) is said 
to be 𝑘𝑘-strictly pseudocontractive in the sense of 
Chidume et al. (2013) if there exists a constant 
𝑘𝑘 ∈ [0,1) such that 
 
𝐷𝐷2(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ ‖𝑇𝑇 − 𝑇𝑇‖2 +  𝑘𝑘‖(𝑇𝑇 − 𝑠𝑠) − (𝑇𝑇 − 𝑣𝑣)‖2,  . (1.3) 
 
 for all 𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶 and 𝑠𝑠 ∈ 𝑇𝑇𝑇𝑇 , 𝑣𝑣 ∈ 𝑇𝑇𝑇𝑇, where 
𝐷𝐷2(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) = (𝐷𝐷(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇))2. If 𝑘𝑘 = 1 in (1.3), then 
𝑇𝑇 is said to be pseudocontractive mapping. 
 

 Let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a multi-valued mapping, 
then an element 𝑇𝑇 ∈ 𝐶𝐶 is called fixed point of 𝑇𝑇 if 
𝑇𝑇 ∈ 𝑇𝑇𝑇𝑇. We denote the set of fixed points of a 
mapping 𝑇𝑇 by 𝐹𝐹(𝑇𝑇). We also write weak 
convergence and strong convergence of a 
sequence {𝑇𝑇𝑠𝑠 } to 𝑇𝑇 in 𝐻𝐻 as 𝑇𝑇𝑠𝑠 ⇀ 𝑇𝑇 and 𝑇𝑇𝑠𝑠 → 𝑇𝑇, 
respectively.  
 A multi-valued mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) with 
nonempty set of fixed points is called: 
i) Quasi-nonexpansive if for all 𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑇𝑇 ∈ 𝐶𝐶, 

we have  𝐷𝐷(𝑇𝑇𝑇𝑇,𝑇𝑇𝑝𝑝) ≤ ‖𝑇𝑇 − 𝑝𝑝‖.  
ii) Hemicontractive-type in the sense of Sebsibe 

Teferi et al. (2015) if for all  𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇), 𝑇𝑇 ∈ 𝐶𝐶 
 

  𝐷𝐷2(𝑇𝑇𝑇𝑇,𝑇𝑇𝑝𝑝) ≤ ‖𝑇𝑇 − 𝑝𝑝‖2 + ‖𝑇𝑇 − 𝑠𝑠‖2  
   holds for all 𝑠𝑠 ∈ 𝑇𝑇𝑇𝑇.  .................... (1.4) 
 
 We observe that every nonexpansive mapping 
𝑇𝑇 with 𝐹𝐹(𝑇𝑇) ≠ ∅ is quasi-nonexpansive map-
ping, and every pseudocontractive mapping 𝑇𝑇 
with 𝐹𝐹(𝑇𝑇) ≠ ∅ and 𝑇𝑇(𝑝𝑝) = {𝑝𝑝},∀𝑝𝑝 ∈ 𝐹𝐹(𝑇𝑇) is hemi-
contractive-type mapping (Habtu Zegeye et al., 
2017).  
 In recent years, the existence and approxima-
tion of fixed  points  for multi-valued  (including 
hemicontractive-type) mappings in various 
spaces under different assumptions has been 
studied by several authors; (see, for example, 
Nadler, 1969; Panyanak, 2007; Shahzad and 
Habtu Zegeye, 2008; Yu et al., 2012; Chidume et 
al., 2013; Isiogugu and Osilike, 2014; and  refer-
ences  therein).  
 Sebsibe Teferi et al. (2015) proved the following 
result:  
 
Theorem WSZ. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇𝑠𝑠 :𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶), 𝑠𝑠 = 1,2, … ,𝑁𝑁, be a finite family of 
Lipschitz hemicontractive-type mappings with 
Lipschitz constants 𝐿𝐿𝑠𝑠 , 𝑠𝑠 = 1, 2, … ,𝑁𝑁,  respectively. 
Assume that (𝐼𝐼 − 𝑇𝑇𝑠𝑠), 𝑠𝑠 = 1, 2, … ,𝑁𝑁, are demi-
closed at zero and Ƒ = ⋂ 𝐹𝐹(𝑇𝑇𝑠𝑠)𝑁𝑁

𝑠𝑠=1  is nonempty, 
closed and convex with 𝑇𝑇𝑠𝑠(𝑝𝑝) = {𝑝𝑝},∀𝑝𝑝 ∈ Ƒ. Let 
{𝑇𝑇𝑠𝑠 } be the sequence generated from an arbitrary 
𝑇𝑇1,𝑤𝑤 ∈ 𝐶𝐶 by 
 

�
𝑇𝑇𝑠𝑠 = (1 − 𝛽𝛽𝑠𝑠)𝑇𝑇𝑠𝑠 + 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠 ,   𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑠𝑠𝑇𝑇𝑠𝑠 ,
𝑧𝑧𝑠𝑠 = (1 − 𝛾𝛾𝑠𝑠)𝑇𝑇𝑠𝑠 + 𝛾𝛾𝑠𝑠𝑤𝑤𝑠𝑠 ,   𝑤𝑤𝑠𝑠 ∈ 𝑇𝑇𝑠𝑠𝑇𝑇𝑠𝑠 ,

 𝑇𝑇𝑠𝑠+1 = 𝛼𝛼𝑠𝑠𝑤𝑤 + (1 − 𝛼𝛼𝑠𝑠)𝑧𝑧𝑠𝑠 ,   ∀𝑠𝑠 ≥ 1,   
� ........... (1.5) 
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where 𝑇𝑇𝑠𝑠 ≔ 𝑇𝑇𝑠𝑠𝑛𝑛𝑛𝑛𝑑𝑑 (𝑁𝑁)+1 and {𝛼𝛼𝑠𝑠 }, {𝛽𝛽𝑠𝑠 }, {𝛾𝛾𝑠𝑠} 
⊂ (0,1) satisfy the following conditions:  

i) 0 <  𝛼𝛼𝑠𝑠 ≤ 𝑐𝑐 < 1,∀𝑠𝑠 ≥ 1  such that  
lim𝑠𝑠→∞ 𝛼𝛼𝑠𝑠 → 0 and ∑ 𝛼𝛼𝑠𝑠 = ∞∞

𝑠𝑠=1 ;  
ii) 0 <  𝛼𝛼 ≤ 𝛾𝛾𝑠𝑠 ≤ 𝛽𝛽𝑠𝑠 ≤ 𝛽𝛽 < 1

�4𝐿𝐿2+1+1
,∀𝑠𝑠 ≥ 1, 

for 𝐿𝐿 ≔ max{𝐿𝐿𝑠𝑠 : 𝑠𝑠 = 1, 2, … ,𝑁𝑁}. 
Then, {𝑇𝑇𝑠𝑠 } converges strongly to some point 
𝑝𝑝 ∈ Ƒ nearest to 𝑤𝑤. 
 Recall that a mapping 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 is called 
monotone if 〈𝐴𝐴𝑇𝑇 − 𝐴𝐴𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉 ≥ 0,∀𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶 
 𝐴𝐴 is called 𝛼𝛼-inverse strongly monotone if there 
exists a positive real number 𝛼𝛼 such that 
〈𝐴𝐴𝑇𝑇 − 𝐴𝐴𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉 ≥ 𝛼𝛼‖𝐴𝐴𝑇𝑇 − 𝐴𝐴𝑇𝑇‖2,∀𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶. 
 We note that the class of 𝛼𝛼-inverse strongly 
monotone mappings is properly contained in the 
class of monotone mappings (see Habtu Zegeye 
et al., 2017). 
 Let 𝐶𝐶 be a nonempty, closed and convex subset 
of a real Hilbert space 𝐻𝐻. Let 𝐹𝐹:𝐶𝐶 × 𝐶𝐶 → ℝ be a 
bifunction and 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be a nonlinear mapping. 
Takahashi and Takahashi (2008) considered the 
following generalized equilibrium problem: 
Finding a point 𝑧𝑧 ∈ 𝐶𝐶 such that  
 
  𝐹𝐹(𝑧𝑧,𝑇𝑇) + 〈𝐴𝐴𝑧𝑧,𝑇𝑇 − 𝑧𝑧〉 ≥ 0,∀𝑇𝑇 ∈ 𝐶𝐶.  .......... (1.6) 
 
 In this paper, we denote the set of solutions of 
problem (1.6) by 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴), i.e., 
𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴) = {𝑧𝑧 ∈ 𝐶𝐶 ∶  𝐹𝐹(𝑧𝑧,𝑇𝑇) + 〈𝐴𝐴𝑧𝑧,𝑇𝑇 − 𝑧𝑧〉 ≥ 0,∀𝑇𝑇 ∈ 𝐶𝐶}. 

 
 If in (1.6) we have 𝐴𝐴 ≡ 0, then problem (1.6) 
reduces to the equilibrium problem of finding an 
element 𝑧𝑧 ∈ 𝐶𝐶  such that 
 
  𝐹𝐹(𝑧𝑧,𝑇𝑇) ≥ 0,∀𝑇𝑇 ∈ 𝐶𝐶, .................................. (1.7) 
 
which was studied by Blum and Oettli (1994) 
and many others (Combettes and Hirstoaga, 
2005; Takahashi and Takahashi, 2007; Wang et 
al., 2007; Ali, 2009; Cholamjiak et al., 2015). The 
set of solutions of problem (1.7) is denoted by 
𝐸𝐸𝐸𝐸(𝐹𝐹). 
 If in (1.6) we have 𝐹𝐹 ≡ 0, then the generalized 
equilibrium problem (1.6) reduced to finding a 
point 𝑧𝑧 ∈ 𝐶𝐶  such that 
 
  〈𝐴𝐴𝑧𝑧,𝑇𝑇 − 𝑧𝑧〉 ≥ 0,∀𝑇𝑇 ∈ 𝐶𝐶, ............................ (1.8) 
 
which is called the classical variational inequal-
ity problem. The set of solutions of problem (1.8) 

is denoted by 𝑉𝑉𝐼𝐼(𝐶𝐶,𝐴𝐴). Problem (1.8) has been 
considered by many authors (see, for instance, 
Ali, 2009; Habtu Zegeye and Shahzad, 2011a; 
2012; Tesfalem Hadush et al., 2016) and refer-
ences therein. 
 We note that if a point 𝑧𝑧 ∈ 𝑉𝑉𝐼𝐼(𝐶𝐶,𝐴𝐴) ∩ 𝐸𝐸𝐸𝐸(𝐹𝐹), 
then 𝑧𝑧 ∈ 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴), however, the converse is not 
true (see Habtu Zegeye et al., 2017). 
 
Assumption 1.1. Let 𝐶𝐶 be a nonempty, closed 
and convex subset of a real Hilbert space 𝐻𝐻. In 
the sequel, let 𝐹𝐹 be a bifunction of 𝐶𝐶 × 𝐶𝐶 into ℝ 
satisfying the following assumptions: 
  
 (A1)  𝐹𝐹(𝑇𝑇, 𝑇𝑇) = 0,∀𝑇𝑇 ∈ 𝐶𝐶;  
 (A2) 𝐹𝐹 is monotone, i.e., 
  𝐹𝐹(𝑇𝑇,𝑇𝑇) + 𝐹𝐹(𝑇𝑇, 𝑇𝑇) ≤ 0,∀𝑇𝑇,𝑇𝑇 ∈ 𝐶𝐶;  
 (A3) lim𝑡𝑡↓0 𝐹𝐹(𝑡𝑡𝑧𝑧 + (1 − 𝑡𝑡)𝑇𝑇,𝑇𝑇) ≤ 𝐹𝐹(𝑇𝑇,𝑇𝑇),∀𝑇𝑇,𝑇𝑇, 𝑧𝑧 ∈ 𝐶𝐶;  
 (A4) For each 𝑇𝑇 ∈ 𝐶𝐶, 𝑇𝑇 ↦ 𝐹𝐹(𝑇𝑇,𝑇𝑇) is convex and 

lower semicontinuous.  
For instance, the bifunction 𝐹𝐹: [0,∞) × [0,∞) →  ℝ 
given by 𝐹𝐹(𝑇𝑇,𝑇𝑇) = 𝑇𝑇 − 𝑇𝑇 satisfies Assumption 
1.1. 
 
Remark 1.2. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 𝐹𝐹 be 
a bifunction from 𝐶𝐶 × 𝐶𝐶 into ℝ satisfying 
Assumption 1.1 and let 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be a continuous 
monotone mapping. Define 𝐺𝐺:𝐶𝐶 × 𝐶𝐶 → ℝ by 
𝐺𝐺(𝑇𝑇,𝑇𝑇) = 𝐹𝐹(𝑇𝑇,𝑇𝑇) + 〈𝐴𝐴𝑇𝑇,𝑇𝑇 − 𝑇𝑇〉, then it is easy to 
see that the bifunction 𝐺𝐺 satisfies Assumption 
1.1. Thus, the generalized equilibrium problem 
(1.6) is equivalent to the equilibrium problem of 
finding a point 𝑧𝑧 ∈ 𝐶𝐶 such that 𝐺𝐺(𝑧𝑧,𝑇𝑇) ≥ 0, for all 
𝑇𝑇 ∈ 𝐶𝐶. 
 Generalized equilibrium problem is more 
general in the sense that it includes, as special 
case, equilibrium problems and hence varia-
tional inequality, optimization problems, Nash 
equilibrium problems, fixed point problems, etc. 
Consequently, many authors have shown their 
interest in constructing an iterative algorithms 
for approximating common solution of general-
ized equilibrium and fixed point problems (see, 
for example, Hao, 2011; Kamraksa and Wang-
keeree, 2011; Razani and Yazdi, 2012; Zhang and 
Hao, 2016 and references cited therein). 
 Takahashi and Takahashi (2008) introduced 
and considered the following iterative algorithm 
for finding a common point of the set of solu-
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tions of problem (1.6) and the set of fixed points 
of nonexpansive single-valued mapping 𝑇𝑇 and 
then they obtained a strong convergence theo-
rem in Hilbert space settings. 
 

⎩
⎨

⎧𝐹𝐹(𝑧𝑧𝑠𝑠 ,𝑇𝑇) + 〈𝐴𝐴𝑇𝑇𝑠𝑠 ,𝑇𝑇 − 𝑧𝑧𝑠𝑠〉 +
1
𝜆𝜆𝑠𝑠
〈𝑇𝑇 − 𝑧𝑧𝑠𝑠 , 𝑧𝑧𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑇𝑇 ∈ 𝐶𝐶,

𝑇𝑇𝑠𝑠 = 𝛼𝛼𝑠𝑠𝑠𝑠 + (1 − 𝛼𝛼𝑠𝑠)𝑧𝑧𝑠𝑠 ,                                                                   
 𝑇𝑇𝑠𝑠+1 = 𝛽𝛽𝑠𝑠𝑇𝑇𝑠𝑠 + (1 − 𝛽𝛽𝑠𝑠)𝑇𝑇𝑇𝑇𝑠𝑠 ,   ∀𝑠𝑠 ≥ 1,                                         

� 

where 𝑠𝑠, 𝑇𝑇1 ∈ 𝐶𝐶 are arbitrary,  𝐹𝐹:𝐶𝐶 × 𝐶𝐶 → ℝ is a 
bifunction satisfying Assumption 1.1 and 𝐴𝐴 is an 
𝛼𝛼-inverse strongly monotone mapping from 𝐶𝐶 
into 𝐻𝐻, and {𝛼𝛼𝑠𝑠}, {𝛽𝛽𝑠𝑠} ⊂ [0,1] and {𝜆𝜆𝑠𝑠} ⊂ [0,2𝛼𝛼] 
satisfy some appropriate control conditions. 
 Recently, Huang and Ma (2014) extended the 
results of Takahashi and Takahashi (2008) from 
nonexpansive mapping to 𝑘𝑘-strictly pseudocon-
tractive mapping. In fact, they proved the 
following weak convergence theorem. 
 
Theorem 1.3. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be an 𝛼𝛼-inverse strongly monotone 
mapping and  𝐹𝐹 be a bifunction from 𝐶𝐶 × 𝐶𝐶 into 
ℝ which satisfies Assumption 1.1. Let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 
be a 𝑘𝑘-strictly pseudocontractive mapping such 
that Ƒ ≔ 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴) ∩ 𝐹𝐹(𝑇𝑇) is nonempty and let 
{𝑒𝑒𝑠𝑠} be a bounded sequence in 𝐶𝐶. Let {𝑇𝑇𝑠𝑠 } be a 
sequence generated by 
 

�
𝐹𝐹(𝑠𝑠𝑠𝑠 ,𝑠𝑠) + 〈𝐴𝐴𝑇𝑇𝑠𝑠 ,𝑇𝑇 − 𝑠𝑠𝑠𝑠〉 + 1

𝑟𝑟𝑠𝑠
〈𝑠𝑠 − 𝑠𝑠𝑠𝑠 ,𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑠𝑠 ∈ 𝐶𝐶,

𝑇𝑇𝑠𝑠+1 = 𝛼𝛼𝑠𝑠𝑇𝑇𝑠𝑠 + 𝛽𝛽𝑠𝑠(𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝛿𝛿𝑠𝑠)𝑇𝑇𝑠𝑠𝑠𝑠)+𝛾𝛾𝑠𝑠𝑒𝑒𝑠𝑠 ,   ∀𝑠𝑠 ∈ ℕ,    
�  

    ............................ (1.9)  
 
where the sequences {𝛼𝛼𝑠𝑠}, {𝛽𝛽𝑠𝑠 }, {𝛾𝛾𝑠𝑠}, {𝛿𝛿𝑠𝑠} ⊂
(0,1) and {𝑟𝑟𝑠𝑠 } ⊂ [0,2𝛼𝛼] satisfy some mild 
restrictions. Then the sequence {𝑇𝑇𝑠𝑠 }, generated 
by (1.9), converges weakly to a point 𝑝𝑝 ∈ Ƒ, 
where 𝑝𝑝 = lim𝑠𝑠→∞ 𝐸𝐸Ƒ𝑇𝑇𝑠𝑠 .  
 In this paper, motivated and inspired by the 
results surveyed above, we introduce an 
iterative algorithm for finding a common 
element of the common solution set of a finite 
family of generalized equilibrium problems (1.6) 
and the fixed point set of a multi-valued 
Lipschitz hemicontractive-type mapping. The 
results presented in this paper generalize, 
improve and extend the corresponding results of 
Huang and Ma (2014), Tesfalem Hadush et al. 
(2016), Habtu Zegeye et al. (2017), Takahashi and 
Takahashi (2008), Ceng et al. (2010) and Zhang 

and Hao (2016) and some other recent results 
that have been obtained previously in this 
research area.  
 
 

PRELIMINARIES 
 
Throughout this section unless otherwise stated, 
𝐶𝐶 denotes a nonempty, closed and convex subset 
of a real Hilbert space 𝐻𝐻. For every point 𝑇𝑇 ∈ 𝐻𝐻, 
there exists a unique nearest point in 𝐶𝐶, denoted 
by 𝐸𝐸𝐶𝐶𝑇𝑇, such that ‖𝑇𝑇 − 𝐸𝐸𝐶𝐶𝑇𝑇‖ = inf{‖𝑇𝑇 − 𝑇𝑇‖ ∶ 𝑇𝑇 ∈
𝐶𝐶}. 𝐸𝐸𝐶𝐶  is called the metric projection of 𝐻𝐻 onto 𝐶𝐶. 
The following characterizes the metric projection 
𝐸𝐸𝐶𝐶 : for given 𝑇𝑇 ∈ 𝐻𝐻 and 𝑧𝑧 ∈ 𝐶𝐶,  
 
𝑧𝑧 = 𝐸𝐸𝐶𝐶𝑇𝑇 ⟺ 〈𝑇𝑇 − 𝑧𝑧, 𝑧𝑧 − 𝑇𝑇〉 ≥ 0, ∀𝑇𝑇 ∈ 𝐶𝐶. ............ (2.1) 
 
Definition 2.1. Let {𝑇𝑇𝑠𝑠 } be a sequence in 𝐶𝐶 such 
that 𝑇𝑇𝑠𝑠  ⇀  𝑇𝑇 and let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a multi-
valued mapping. Then, (𝐼𝐼 − 𝑇𝑇) is said to be 
demiclosed at zero if lim𝑠𝑠→∞ 𝑑𝑑(𝑇𝑇𝑠𝑠 ,𝑇𝑇𝑇𝑇𝑠𝑠) = 0 
implies 𝑇𝑇 ∈ 𝑇𝑇𝑇𝑇, where 𝐼𝐼 is the identity mapping 
on 𝐶𝐶. 
 We note that if the mapping 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 in 
Definition 2.1 is a single-valued nonexpansive 
mapping, then (𝐼𝐼 − 𝑇𝑇) is demiclosed at zero (see 
Agrawal et al., 2009). 
 In the proof of our main result, we also need 
the following lemmas. 
 
Lemma 2.2. (Habtu Zegeye and Shahzad, 2011b). 
Let 𝐻𝐻 be a real Hilbert space and {𝑇𝑇𝑠𝑠}𝑠𝑠=1

𝑠𝑠 ⊂ 𝐻𝐻. 
Then, for 𝛼𝛼𝑠𝑠 ∈ [0,1], 𝑠𝑠 = 1,2, … ,𝑠𝑠, such that 
𝛼𝛼1 + 𝛼𝛼2 + ⋯+ 𝛼𝛼𝑠𝑠 = 1, we have the following 
identity:  
 
  ‖𝛼𝛼1𝑇𝑇1 + 𝛼𝛼2𝑇𝑇2 +  … + 𝛼𝛼𝑠𝑠𝑇𝑇𝑠𝑠‖2  
                  = ∑ 𝛼𝛼𝑠𝑠‖𝑇𝑇𝑠𝑠‖2∞

𝑠𝑠=1 −∑ 𝛼𝛼𝑠𝑠𝛼𝛼𝑗𝑗 �𝑇𝑇𝑠𝑠 −  𝑇𝑇𝑗𝑗 �
2

1≤𝑠𝑠 ,𝑗𝑗≤𝑠𝑠 . 
 
Lemma 2.3. (Agrawal et al., 2009). Let 𝐻𝐻 be a real 
Hilbert space. Then, for every 𝑇𝑇,𝑇𝑇 ∈ 𝐻𝐻, we have 
the following: 

i) ‖𝑇𝑇 − 𝑇𝑇‖2 = ‖𝑇𝑇‖2 +  ‖𝑇𝑇‖2 − 2〈𝑇𝑇,𝑇𝑇〉; 
ii) ‖𝑇𝑇 + 𝑇𝑇‖2 = ‖𝑇𝑇‖2 + 2〈𝑇𝑇, 𝑇𝑇 + 𝑇𝑇〉.         

 
Lemma 2.4. (Blum and Oettli, 1994; Combettes 
and Hirstoaga, 2005).  Let 𝐹𝐹 be a bifunction from 
𝐶𝐶 × 𝐶𝐶 into ℝ which satisfies Assumption 1.1. For 
𝑟𝑟 > 0, define 𝑇𝑇𝑟𝑟 :𝐻𝐻 → 𝐶𝐶 as follows: 
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𝑇𝑇𝑟𝑟𝑇𝑇 = �𝑧𝑧 ∈ 𝐶𝐶 ∶ 𝐹𝐹(𝑧𝑧,𝑇𝑇) + 1
𝑟𝑟
〈𝑇𝑇 − 𝑧𝑧, 𝑧𝑧 − 𝑇𝑇〉,∀𝑇𝑇 ∈ 𝐶𝐶�. 

Then, the following hold: 
(1) 𝑇𝑇𝑟𝑟  is nonempty and single-valued; 
(2) 𝑇𝑇𝑟𝑟  is firmly nonexpansive, i.e., 

‖𝑇𝑇𝑟𝑟𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑇𝑇‖2 ≤ 〈𝑇𝑇𝑟𝑟𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑇𝑇, 𝑇𝑇 − 𝑇𝑇〉,∀𝑇𝑇,𝑇𝑇 ∈ 𝐻𝐻;  
(3) 𝐹𝐹(𝑇𝑇𝑟𝑟) = 𝐸𝐸𝐸𝐸(𝐹𝐹);  
(4) 𝐸𝐸𝐸𝐸(𝐹𝐹) is closed and convex.  

 
Lemma 2.5. (Nadler, 1969). Let (𝑋𝑋,𝑑𝑑) be a metric 
space and let 𝐴𝐴,𝐶𝐶 ∈ 𝐶𝐶𝐶𝐶(𝑋𝑋). Then, for any 𝑠𝑠 ∈ 𝐴𝐴 
and 𝜀𝜀 > 0, there exists a point 𝑣𝑣 ∈ 𝐶𝐶 such that 
𝑑𝑑(𝑠𝑠, 𝑣𝑣) ≤ 𝐷𝐷(𝐴𝐴,𝐶𝐶) + 𝜀𝜀. This implies that for every 
element 𝑠𝑠 ∈ 𝐴𝐴, there exists an element 𝑣𝑣 ∈ 𝐶𝐶 
such that 𝑑𝑑(𝑠𝑠, 𝑣𝑣) ≤ 2𝐷𝐷(𝐴𝐴,𝐶𝐶). 
 
Lemma 2.6. (Xu, 2002). Let {𝑎𝑎𝑠𝑠 } be a sequence of 
nonnegative real numbers such that  
 𝑎𝑎𝑠𝑠+1 ≤ (1 − 𝛼𝛼𝑠𝑠)𝑎𝑎𝑠𝑠 + 𝛼𝛼𝑠𝑠𝛿𝛿𝑠𝑠  ,  for 𝑠𝑠 ≥ 𝑠𝑠0,  
where {𝛼𝛼𝑠𝑠} ⊂ (0,1) and {𝛿𝛿𝑠𝑠} ⊂ ℝ satisfying the 
following conditions:  
 lim𝑠𝑠→∞ 𝛼𝛼𝑠𝑠 = 0 , ∑ 𝛼𝛼𝑠𝑠∞

𝑠𝑠=1 = ∞, and  limsup
𝑠𝑠→∞

 𝛿𝛿𝑠𝑠 ≤ 0.  

Then, lim𝑠𝑠→∞ 𝛼𝛼𝑠𝑠 = 0. 
 
Lemma 2.7. (Mainge, 2008). Let {𝑏𝑏𝑠𝑠 } be a 
sequence of real numbers such that there exists a 
subsequence �𝑠𝑠𝑗𝑗 � of {𝑠𝑠} such that 𝑏𝑏𝑠𝑠𝑗𝑗 < 𝑏𝑏𝑠𝑠𝑗𝑗+1,  for 
all 𝑗𝑗 ∈ ℕ. Then, there exists a nondecreasing 
sequence {𝑠𝑠𝑘𝑘} ⊂ ℕ such that 𝑠𝑠𝑘𝑘  →  ∞ and the 
following properties are satisfied by all 
(sufficiently large) numbers 𝑘𝑘 ∈ ℕ:  
 

bnk≤bnk+1   and  𝑏𝑏𝑘𝑘 ≤ 𝑏𝑏𝑠𝑠𝑘𝑘+1 
 

In fact,  𝑠𝑠𝑘𝑘 = max{𝑠𝑠 ≤ 𝑘𝑘 ∶  𝑏𝑏𝑠𝑠 ≤ 𝑏𝑏𝑠𝑠+1}. 
 
 

MAIN RESULT 
 
In this section, we define an iterative algorithm 
and prove its strong convergence to a common 
solution of a finite family of generalized equilib-
rium problems and a fixed point problem for a 
multi-valued Lipschitz hemicontractive-type 
mapping. 
 
Theorem 3.1.  Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-
type multi-valued mapping with Lipschitz con-

stant 𝐿𝐿. Let 𝐴𝐴𝑛𝑛 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone 
mapping and let 𝐹𝐹𝑛𝑛 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction 
satisfying Assumption 1.1, for each m∈{1,2,.., N}. 
Assume that Θ = ⋂ EP(Fm,Am)∩F(T)N

m=1  is 
nonempty and 𝑇𝑇𝑇𝑇 = {𝑇𝑇} for all 𝑇𝑇 ∈ 𝛩𝛩. Let 
�𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂ (0,∞) and let {𝑎𝑎𝑠𝑠 }, {𝑏𝑏𝑠𝑠}, {𝑐𝑐𝑠𝑠}, {𝑒𝑒𝑠𝑠} and 
�𝑑𝑑𝑛𝑛 ,𝑠𝑠� be sequences in (0,1) such that 

i) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1; 
ii) ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁

𝑛𝑛=1 ;  
iii) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 

 𝐹𝐹𝑛𝑛�𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧� + 〈𝐴𝐴𝑛𝑛𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠〉                                                 

+
1
𝑟𝑟𝑛𝑛 ,𝑠𝑠

〈𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 ,𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑛𝑛 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑠𝑠 = � 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛 ,𝑠𝑠

𝑁𝑁

𝑛𝑛=1

,                                                                       

𝑧𝑧𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                                              
𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 ,                                                           

� 

    ........................................................ (3.1)  
for all 𝑠𝑠 ≥ 1, where 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑤𝑤𝑠𝑠 , 𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠  such that 
‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠). Then, the sequence 
{𝑇𝑇𝑠𝑠 } is bounded. 
 
Proof. Let 𝑇𝑇 ∈ 𝛩𝛩. Then, we have 𝑇𝑇𝑇𝑇 = {𝑇𝑇} and 
𝐹𝐹𝑛𝑛(𝑇𝑇, 𝑧𝑧) + 〈𝐴𝐴𝑛𝑛𝑇𝑇, 𝑧𝑧 − 𝑇𝑇〉 ≥ 0, for all 𝑛𝑛 = 1, 2, … ,𝑁𝑁 
and 𝑧𝑧 ∈ 𝐶𝐶. Define 𝐺𝐺𝑛𝑛 :𝐶𝐶 × 𝐶𝐶 →  ℝ by 𝐺𝐺𝑛𝑛 (𝑇𝑇, 𝑧𝑧) ≔
 𝐹𝐹𝑛𝑛 (𝑇𝑇, 𝑧𝑧) + 〈𝐴𝐴𝑛𝑛𝑇𝑇, 𝑧𝑧 − 𝑇𝑇〉 for all 𝑇𝑇, 𝑧𝑧 ∈ 𝐶𝐶 and 
𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. Then, in view of Remark 1.2, 𝐺𝐺𝑛𝑛  
is a bifunction satisfying Assumption 1.1, for 
each 𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁} and 𝑇𝑇 ∈ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛 ) is 
equivalent to 𝐺𝐺𝑛𝑛 (𝑇𝑇, 𝑧𝑧) ≥ 0 for all 𝑧𝑧 ∈ 𝐶𝐶. Hence, 
using Lemma 2.4, 𝑇𝑇𝑠𝑠 ,𝑛𝑛  can be rewritten as 
𝑇𝑇𝑛𝑛 ,𝑠𝑠 = 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇𝑠𝑠  and hence we obtain 𝑇𝑇 = 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇. In 
view of the fact that 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠  is nonexpansive, by 
Lemma 2.4, we have that 
�𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇� = �𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇� ≤ ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖ ....... (3.2) 
 
Then, from (3.2) and condition (ii), we have the 
following: 

‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖  = �� 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛,𝑠𝑠

𝑁𝑁

𝑛𝑛=1

− 𝑇𝑇�                  

= �� 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛,𝑠𝑠

𝑁𝑁

𝑛𝑛=1

− � 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇
𝑁𝑁

𝑛𝑛=1

� 

      ≤  � 𝑑𝑑𝑛𝑛 ,𝑠𝑠�𝑇𝑇𝑛𝑛,𝑠𝑠 − 𝑇𝑇�                      
𝑁𝑁

𝑛𝑛=1
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   ≤  � 𝑑𝑑𝑛𝑛 ,𝑠𝑠‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖                    
𝑁𝑁

𝑛𝑛=1

 

                     = ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖.  ............................... (3.3) 
 Using Lemma 2.2, the fact that 𝑇𝑇 is hemicon-
tractive-type mapping and 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑤𝑤𝑠𝑠 , we find 
that 
‖𝑧𝑧𝑠𝑠 − 𝑇𝑇‖2 = ‖𝑎𝑎𝑠𝑠(𝑣𝑣𝑠𝑠 − 𝑇𝑇) + (1 − 𝑎𝑎𝑠𝑠)(𝑤𝑤𝑠𝑠 − 𝑇𝑇)‖2       
                   =  𝑎𝑎𝑠𝑠‖𝑣𝑣𝑠𝑠 − 𝑇𝑇‖2 + (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2      

                     −𝑎𝑎𝑠𝑠(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2                  
                  ≤  𝑎𝑎𝑠𝑠𝐷𝐷2(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑇𝑇) + (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 

    −𝑎𝑎𝑠𝑠(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
  ≤  𝑎𝑎𝑠𝑠(‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 + ‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2)  

                  +(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2  
                  −𝑎𝑎𝑠𝑠(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
                   = ‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 + 𝑎𝑎𝑠𝑠 2‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2. 
 
 From (3.3), it follows that 
 
‖𝑧𝑧𝑠𝑠 − 𝑇𝑇‖2 ≤ ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 + 𝑎𝑎𝑠𝑠 2‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2. ........ (3.4) 
 
 In addition, since 𝑇𝑇 is hemicontractive-type 
mapping and  𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠 , from (3.1) and (3.4), we 
get that 
 ‖𝑠𝑠𝑠𝑠 − 𝑇𝑇‖2 ≤ 𝐷𝐷2(𝑇𝑇𝑧𝑧𝑠𝑠 ,𝑇𝑇𝑇𝑇)  
    ≤ ‖𝑧𝑧𝑠𝑠 − 𝑇𝑇‖2 + ‖𝑧𝑧𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
    ≤ ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2+ 𝑎𝑎𝑠𝑠2‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 + ‖𝑧𝑧𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
    ........................................................... (3.5) 
 
 It follows from (3.1) that 

‖𝑤𝑤𝑠𝑠 − 𝑧𝑧𝑠𝑠‖2 = ‖𝑤𝑤𝑠𝑠 − (𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠)‖2 
        = 𝑎𝑎𝑠𝑠2‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2. ...................... (3.6) 
 
 Thus, since ‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠) and 𝑇𝑇 is 
a 𝐿𝐿 −Lipschitzian mapping, from (3.6) and 
Lemma 2.2, we get that 
‖𝑧𝑧𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 = ‖𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2     

            = 𝑎𝑎𝑠𝑠‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 + (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
                               −𝑎𝑎𝑠𝑠(1− 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
                       ≤ (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 + 4𝑎𝑎𝑠𝑠𝐷𝐷2(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠) 

                                 −𝑎𝑎𝑠𝑠(1− 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
                        ≤ (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 + 4𝑎𝑎𝑠𝑠𝐿𝐿2‖𝑤𝑤𝑠𝑠 − 𝑧𝑧𝑠𝑠‖2 
                                 −𝑎𝑎𝑠𝑠(1− 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
            = (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 + 4𝑎𝑎𝑠𝑠3𝐿𝐿2‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
                −𝑎𝑎𝑠𝑠(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
            = (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
                +𝑎𝑎𝑠𝑠(4𝐿𝐿2𝑎𝑎𝑠𝑠2 + 𝑎𝑎𝑠𝑠 − 1)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2. .............. (3.7) 
 
 Hence, substituting (3.7) into (3.5), we have 
that 
‖𝑠𝑠𝑠𝑠 − 𝑇𝑇‖2 ≤ ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2+ 𝑎𝑎𝑠𝑠2‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 

                         +(1− 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
                         +𝑎𝑎𝑠𝑠(4𝐿𝐿2𝑎𝑎𝑠𝑠2 + 𝑎𝑎𝑠𝑠 − 1)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 

                    = ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 + (1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
                        +𝑎𝑎𝑠𝑠(4𝐿𝐿2𝑎𝑎𝑠𝑠2 + 2𝑎𝑎𝑠𝑠 − 1)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2....... (3.8) 
 
 Thus, from (3.3), (3.8), Lemma 2.2 and condi-
tion (i), we obtain that 
‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 
 = ‖𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 
 ≤ 𝑏𝑏𝑠𝑠‖𝑣𝑣 − 𝑇𝑇‖2 + 𝑐𝑐𝑠𝑠‖𝑠𝑠𝑠𝑠 − 𝑇𝑇‖2 
  +𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 − 𝑐𝑐𝑠𝑠𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
 ≤ 𝑏𝑏𝑠𝑠‖𝑣𝑣 − 𝑇𝑇‖2 + 𝑐𝑐𝑠𝑠(‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
  +(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
  +𝑎𝑎𝑠𝑠(4𝐿𝐿2𝑎𝑎𝑠𝑠 2 + 2𝑎𝑎𝑠𝑠 − 1)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2) 
  +𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 − 𝑐𝑐𝑠𝑠𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
 ≤ 𝑏𝑏𝑠𝑠‖𝑣𝑣 − 𝑇𝑇‖2 + (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
  +𝑐𝑐𝑠𝑠(1 − 𝑒𝑒𝑠𝑠 − 𝑎𝑎𝑠𝑠) ‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2  
  −𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠(1 − 4𝐿𝐿2𝑎𝑎𝑠𝑠 2 − 2𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
 = 𝑏𝑏𝑠𝑠‖𝑣𝑣 − 𝑇𝑇‖2 + (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
  −𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠(1 − 4𝐿𝐿2𝑎𝑎𝑠𝑠 2 − 2𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
  +𝑐𝑐𝑠𝑠(𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2,   ................ (3.9) 
 
and from condition (iii), we have that 
1 − 4𝐿𝐿2𝑎𝑎𝑠𝑠 2 − 2𝑎𝑎𝑠𝑠 ≥ 1 − 4𝐿𝐿2𝑑𝑑2 − 2𝑑𝑑 > 0 and  
𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 − 𝑎𝑎𝑠𝑠 ≤ 0, for all 𝑠𝑠 ≥ 1. ....................... (3.10) 
 
 Thus, from (3.9) and (3.10), we find that 
‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 ≤ 𝑏𝑏𝑠𝑠‖𝑣𝑣 − 𝑇𝑇‖2 + (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
     ≤ max{‖𝑣𝑣 − 𝑇𝑇‖2,‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2}. 
 Hence, by induction, the sequence {𝑇𝑇𝑠𝑠 } is 
bounded. This completes the proof.               □ 
 
Theorem 3.2. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-type 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐴𝐴𝑛𝑛 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone map-
ping and let 𝐹𝐹𝑛𝑛 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satis-
fying Assumption 1.1, for each 𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. 
Assume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑛𝑛=1  is non-
empty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed 
at zero and 𝑇𝑇𝑇𝑇 = {𝑇𝑇} for all 𝑇𝑇 ∈ 𝛩𝛩. Let �𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂
(0,∞) such that  lim𝑠𝑠→∞ 𝑟𝑟𝑛𝑛 ,𝑠𝑠 = 𝑟𝑟𝑛𝑛  for some 
0 < 𝑟𝑟𝑛𝑛 < ∞ and for each 𝑛𝑛 = 1, 2, … ,𝑁𝑁,  and let 
{𝑎𝑎𝑠𝑠 }, {𝑏𝑏𝑠𝑠}, {𝑐𝑐𝑠𝑠}, {𝑒𝑒𝑠𝑠} and �𝑑𝑑𝑛𝑛 ,𝑠𝑠� be sequences in 
(0,1) such that 

i) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑠𝑠 , 𝑒𝑒𝑠𝑠 ≤ 𝑏𝑏 < 1; 
ii) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞

𝑠𝑠=1 ; 
iii)   ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁

𝑛𝑛=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 ≤ 1; 
iv)   𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 
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𝐹𝐹𝑛𝑛�𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧� + 〈𝐴𝐴𝑛𝑛𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 〉                                          

+
1
𝑟𝑟𝑛𝑛 ,𝑠𝑠

〈𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑛𝑛 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑠𝑠  = � 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛 ,𝑠𝑠

𝑁𝑁

𝑛𝑛=1

,                                                               

𝑧𝑧𝑠𝑠   = 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                                      
 𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 ,                                                         

� 

    ...................................................... (3.11) 
for all 𝑠𝑠 ≥ 1, where 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠  such that 
‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠). Then, the sequence 
{𝑇𝑇𝑠𝑠 }  converges strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 
Proof. Since 𝛩𝛩 is nonempty, closed and convex 
subset of 𝐻𝐻, then we see that 𝐸𝐸𝛩𝛩 is well defined. 
Obviously, from Theorem 3.1 the sequence {𝑇𝑇𝑠𝑠 } 
and hence �𝑇𝑇𝑠𝑠 ,𝑛𝑛�, {𝑤𝑤𝑠𝑠 } and {𝑧𝑧𝑠𝑠 } are bounded. 
Now, let 𝑇𝑇 ∈ 𝛩𝛩. Then, using the fact that 𝑇𝑇𝑟𝑟𝑠𝑠 ,𝑛𝑛  is 
firmly nonexpansive and 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇 = 𝑇𝑇, for all 
𝑛𝑛 = 1, 2, … ,𝑁𝑁,  and Lemma 2.3 (i), we find that 
�𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇�2 

 =  �𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠 𝑇𝑇�
2 

 ≤  〈𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇, 𝑇𝑇𝑠𝑠 − 𝑇𝑇〉 

 =  1
2
��𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇�2 + ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 − �𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠�

2�, 
which implies that 

      �𝑇𝑇𝑛𝑛,𝑠𝑠 − 𝑇𝑇�2 ≤  ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 − �𝑇𝑇𝑛𝑛,𝑠𝑠 − 𝑇𝑇𝑠𝑠�
2. 

This gives that 

‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 ≤ � 𝑑𝑑𝑛𝑛 ,𝑠𝑠�𝑇𝑇𝑛𝑛,𝑠𝑠 − 𝑇𝑇�2
𝑁𝑁

𝑛𝑛=1

 

                     ≤ ‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 − � 𝑑𝑑𝑛𝑛 ,𝑠𝑠�𝑇𝑇𝑛𝑛,𝑠𝑠 − 𝑇𝑇𝑠𝑠�
2

𝑁𝑁

𝑛𝑛=1

. 

    ............................................................. (3.12) 
 
 On the other hand, from (3.11), Lemma 2.2 and 
Lemma 2.3 (ii), we have 
 ‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 = ‖𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 
   ≤ ‖𝑐𝑐𝑠𝑠(𝑠𝑠𝑠𝑠 − 𝑇𝑇) + 𝑒𝑒𝑠𝑠(𝑤𝑤𝑠𝑠 − 𝑇𝑇)‖2 
       +2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉 
   ≤  𝑐𝑐𝑠𝑠‖𝑠𝑠𝑠𝑠 − 𝑇𝑇‖2 +  𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑇𝑇‖2 
       −𝑐𝑐𝑠𝑠𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
       +2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉. ............ (3.13) 
 
 Thus, substituting (3.8) and (3.12) into (3.13), 
we obtain that 
 ‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 
 ≤ 𝑐𝑐𝑠𝑠(‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 +  𝑎𝑎𝑠𝑠(4𝐿𝐿2𝑎𝑎𝑠𝑠2 + 2𝑎𝑎𝑠𝑠 − 1)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2) 
       +𝑐𝑐𝑠𝑠(1 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
   +𝑒𝑒𝑠𝑠 �‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 − ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠�𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠�

2𝑁𝑁
𝑛𝑛=1 � 

   −𝑐𝑐𝑠𝑠𝑒𝑒𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 + 2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉 

 = (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
   −𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠(1 − 4𝐿𝐿2𝑎𝑎𝑠𝑠2 − 2𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
   +𝑐𝑐𝑠𝑠(𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 − 𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖2 
   −𝑒𝑒𝑠𝑠 ∑ 𝑑𝑑𝑛𝑛,𝑠𝑠�𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠�

2𝑁𝑁
𝑛𝑛=1  

   +2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉 ......................................... (3.14) 
 
 Now, we consider the following two cases: 
Case 1. Suppose that there exists 𝑠𝑠0 ∈ ℕ such that 
{‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖}𝑠𝑠≥𝑠𝑠0

∞  is nonincreasing sequence. Then, 
the boundedness of {‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖} implies that  
{‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖} is convergent. From (3.10) and (3.14), 
it follows that 
 𝑐𝑐𝑠𝑠𝑎𝑎𝑠𝑠(1 − 4𝐿𝐿2𝑎𝑎𝑠𝑠2 − 2𝑎𝑎𝑠𝑠)‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖2 
  ≤  (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 −  ‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 
     +2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉 
 Thus, from (3.10), the assumptions of {𝑐𝑐𝑠𝑠 } and 
{𝑎𝑎𝑠𝑠 }, and the fact that 𝑏𝑏𝑠𝑠 → 0 as 𝑠𝑠 → ∞ and {𝑇𝑇𝑠𝑠 } is 
bounded, we find that 
 
 ‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖  → 0 as 𝑠𝑠 → ∞. ............................. (3.15) 
 
 This implies that 
 lim𝑠𝑠→∞ 𝑑𝑑(𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑤𝑤𝑠𝑠) = 0. ................................. (3.16) 
 
 From (3.10) and (3.14), we see that 
𝑒𝑒𝑠𝑠𝑑𝑑𝑛𝑛 ,𝑠𝑠�𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠�

2 ≤  (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
    − ‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 
    +2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉. 
 This together with conditions (i), (ii) and (iii) 
imply that 
 lim𝑠𝑠→∞�𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠� = 0.   ............................... (3.17) 
 
 In addition, from the Lipschitz condition of 𝑇𝑇, 
(3.6) and (3.15), we get that 
‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤  ‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖ +  ‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ 
      ≤ ‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖ +  2𝐿𝐿‖𝑤𝑤𝑠𝑠 − 𝑧𝑧𝑠𝑠‖ 
      = ‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖ +  2𝐿𝐿𝑎𝑎𝑠𝑠‖𝑤𝑤𝑠𝑠 − 𝑣𝑣𝑠𝑠‖ .  
Hence 
 lim𝑠𝑠→∞‖𝑤𝑤𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ = 0. ................................... (3.18) 
 
 Again from (3.11) and triangle inequality, we 
get that 
‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇𝑠𝑠‖ ≤  ‖𝑇𝑇𝑠𝑠+1 − 𝑤𝑤𝑠𝑠‖ +  ‖𝑤𝑤𝑠𝑠 − 𝑇𝑇𝑠𝑠‖ 
     = ‖𝑏𝑏𝑠𝑠(𝑣𝑣 − 𝑤𝑤𝑠𝑠) + 𝑐𝑐𝑠𝑠(𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠)‖ 
      + �∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛,𝑠𝑠

𝑁𝑁
𝑛𝑛=1 − 𝑇𝑇𝑠𝑠� 

     ≤  𝑏𝑏𝑠𝑠‖𝑣𝑣 − 𝑤𝑤𝑠𝑠‖ +  𝑐𝑐𝑠𝑠‖𝑠𝑠𝑠𝑠 − 𝑤𝑤𝑠𝑠‖ 
        +∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠

𝑁𝑁
𝑛𝑛=1 �𝑇𝑇𝑛𝑛,𝑠𝑠 − 𝑇𝑇𝑠𝑠�. 

 Therefore, from (3.17), (3.18) and the fact that    
𝑏𝑏𝑠𝑠 → 0 as 𝑠𝑠 → ∞, we obtain   
 lim𝑠𝑠→∞‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇𝑠𝑠‖ = 0. ................................ (3.19) 
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It follows from (3.10) and (3.14) that  
 ‖𝑇𝑇𝑠𝑠+1 − 𝑇𝑇‖2 ≤  (1 − 𝑏𝑏𝑠𝑠)‖𝑇𝑇𝑠𝑠 − 𝑇𝑇‖2 
     +2𝑏𝑏𝑠𝑠〈𝑣𝑣 − 𝑇𝑇, 𝑇𝑇𝑠𝑠+1 − 𝑇𝑇〉. .............. (3.20) 
 
 Now, let 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). Then, we show that      
limsup𝑠𝑠→∞〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠+1 − 𝑝𝑝〉 ≤ 0. Since {𝑇𝑇𝑠𝑠+1} is a 
bounded sequence in a real Hilbert space 𝐻𝐻, 
which is a reflexive Banach space, then there 
exists a subsequence �𝑇𝑇𝑠𝑠𝑠𝑠+1� of {𝑇𝑇𝑠𝑠+1} such that 
𝑇𝑇𝑠𝑠𝑠𝑠+1  ⇀ 𝑇𝑇  as   𝑠𝑠 → ∞    and 

limsup
𝑠𝑠→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑠𝑠+1 − 𝑝𝑝〉 = lim
𝑠𝑠→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑠𝑠+1 − 𝑝𝑝〉. 

 Since, 𝐶𝐶 is weakly closed, we have 𝑇𝑇 ∈ 𝐶𝐶 and 
from (3.19), it follows that 𝑇𝑇𝑠𝑠𝑠𝑠 ⇀ 𝑇𝑇 as 𝑠𝑠 → ∞. 
Using (3.17), we see that �𝑤𝑤𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑠𝑠𝑠𝑠� → 0 as 
𝑠𝑠 → ∞ and so 𝑤𝑤𝑠𝑠𝑠𝑠 ⇀ 𝑇𝑇 as 𝑠𝑠 → ∞. Thus, demi-
closedness of (𝐼𝐼 − 𝑇𝑇) at zero and (3.16) imply 
that 𝑇𝑇 ∈ 𝐹𝐹(𝑇𝑇). 
 On the other hand, from the fact that (𝐼𝐼 −
𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠𝑠𝑠

) is demiclosed at zero and (3.17), we obtain 
that 𝑇𝑇 = 𝑇𝑇𝑟𝑟𝑛𝑛 ,𝑠𝑠𝑠𝑠

𝑇𝑇 and thus 𝑇𝑇 ∈ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛 ), for all 
𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. That is, 

𝑇𝑇 ∈ � 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛 )
𝑁𝑁

𝑛𝑛=1

. 

Therefore, 𝑇𝑇 ∈ 𝛩𝛩. Hence, since 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣) and 
𝑇𝑇𝑠𝑠𝑠𝑠 ⇀ 𝑇𝑇 as 𝑠𝑠 → ∞, from the property of a metric 
projection, equation (2.1), we have that 
 
limsup
𝑠𝑠→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑠𝑠+1 − 𝑝𝑝〉 = lim
𝑠𝑠→∞

〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑠𝑠+1 − 𝑝𝑝〉 

  = 0, ≤−− pypv . ........................... (3.21) 

 
 Thus, since 𝑝𝑝 ∈ 𝛩𝛩, from (3.20), (3.21), condition 
(ii) and Lemma 2.6, we conclude that ‖𝑇𝑇𝑠𝑠 − 𝑝𝑝‖  →
0  as  𝑠𝑠 →  ∞. That is, 𝑇𝑇𝑠𝑠  → 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 
Case 2. Suppose that there exists a subsequence 
�𝑠𝑠𝑗𝑗 � of {𝑠𝑠} such that �𝑇𝑇𝑠𝑠𝑗𝑗 − 𝑇𝑇� <  �𝑇𝑇𝑠𝑠𝑗𝑗 − 𝑇𝑇�, for 
all 𝑗𝑗 ∈  ℕ. Then, by Lemma 2.7, there exists a 
nondecreasing sequence {𝑠𝑠𝑘𝑘} ⊂ ℕ such that 
𝑠𝑠𝑘𝑘  →  ∞, and 
  �𝑇𝑇𝑠𝑠𝑘𝑘  − 𝑇𝑇� ≤  �𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑇𝑇�  and 
  ‖𝑇𝑇𝑘𝑘 − 𝑇𝑇‖ ≤  �𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑇𝑇�, ....................... (3.22) 
 
for all 𝑘𝑘 ∈  ℕ. Thus, replacing 𝑠𝑠 by 𝑠𝑠𝑘𝑘  and using 
(3.22), (3.14), (3.10) and the fact that 𝑏𝑏𝑠𝑠 → 0 as 
𝑠𝑠 → ∞, we find that �𝑤𝑤𝑠𝑠𝑘𝑘  –𝑣𝑣𝑠𝑠𝑘𝑘�  → 0 and 
�𝑇𝑇𝑛𝑛 ,𝑠𝑠𝑘𝑘  – 𝑇𝑇𝑠𝑠𝑘𝑘�  → 0 as 𝑘𝑘 →  ∞. 

 Hence, following an argument similar to that in 
Case 1, we obtain that 
 
  limsup𝑠𝑠→∞〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝〉 ≤ 0 ................... (3.23) 
 
 Now, since 𝑝𝑝 ∈ 𝛩𝛩, from (3.20), we get that  
 �𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝�2 ≤  �1 − 𝑏𝑏𝑠𝑠𝑘𝑘��𝑇𝑇𝑠𝑠𝑘𝑘 − 𝑝𝑝�2 
  +2𝑏𝑏𝑠𝑠𝑘𝑘 〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝〉 ........................ (3.24) 
 
and hence,  since 𝑝𝑝 ∈ 𝛩𝛩, (3.22) and (3.24) imply 
that 
𝑏𝑏𝑠𝑠𝑘𝑘�𝑇𝑇𝑠𝑠𝑘𝑘 − 𝑝𝑝�2 ≤  �𝑇𝑇𝑠𝑠𝑘𝑘 − 𝑝𝑝�2 −   �𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝�2 
     +2𝑏𝑏𝑠𝑠𝑘𝑘〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝〉 
      ≤  2𝑏𝑏𝑠𝑠𝑘𝑘 〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝〉. 
 
 Then, from the fact that 𝑏𝑏𝑠𝑠𝑘𝑘 > 0, we have that 

�𝑇𝑇𝑠𝑠𝑘𝑘 − 𝑝𝑝�2 ≤ 2〈𝑣𝑣 − 𝑝𝑝, 𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝〉. It follows from 
(3.23) that �𝑇𝑇𝑠𝑠𝑘𝑘 − 𝑝𝑝�  → 0   as   𝑘𝑘 →  ∞. 
 This together with (3.24) and the fact that 
𝑏𝑏𝑠𝑠𝑘𝑘 → 0 imply that �𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝�  → 0 as 𝑘𝑘 →  ∞. 
Since 𝑝𝑝 ∈ 𝛩𝛩, we get that  ‖𝑇𝑇𝑘𝑘 − 𝑝𝑝‖ ≤  �𝑇𝑇𝑠𝑠𝑘𝑘+1 − 𝑝𝑝� 
for all 𝑘𝑘 ∈ ℕ. Thus, we obtain that 𝑇𝑇𝑘𝑘 →  𝑝𝑝 as  
𝑘𝑘 →  ∞. Therefore, we conclude that the 
sequence {𝑇𝑇𝑠𝑠} generated by (3.11) converges 
strongly to the point 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). This completes 
the proof.                                                                    □ 
 As a direct consequence of our main result, we 
obtain the following results. 
 
Corollary 3.3. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz pseudocontractive 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐴𝐴𝑛𝑛 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone 
mapping and let 𝐹𝐹𝑛𝑛 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction 
satisfying Assumption 1.1, for each 𝑛𝑛 ∈
{1, 2, … ,𝑁𝑁}. Assume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛) ∩𝑁𝑁

𝑛𝑛=1
𝐹𝐹(𝑇𝑇)  is nonempty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is 
demiclosed at zero and 𝑇𝑇𝑇𝑇 = {𝑇𝑇} for all 𝑇𝑇 ∈ 𝐹𝐹(𝑇𝑇). 
Let �𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂ (0,∞) such that  lim𝑠𝑠→∞ 𝑟𝑟𝑛𝑛 ,𝑠𝑠 = 𝑟𝑟𝑛𝑛  for 
some 0 < 𝑟𝑟𝑛𝑛 < ∞ and for each 𝑛𝑛 = 1, 2, … ,𝑁𝑁,  and 
let {𝑎𝑎𝑠𝑠 }, {𝑏𝑏𝑠𝑠}, {𝑐𝑐𝑠𝑠}, {𝑒𝑒𝑠𝑠} and �𝑑𝑑𝑠𝑠 ,𝑛𝑛� be sequences in 
(0,1) such that 
 
i) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑠𝑠 , 𝑒𝑒𝑠𝑠 ≤ 𝑏𝑏 < 1;   
ii) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞

𝑠𝑠=1  ;  
iii) ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁

𝑛𝑛=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 ≤ 1;  
iv) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1
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 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 

𝐹𝐹𝑛𝑛�𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧� + 〈𝐴𝐴𝑛𝑛𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠〉                                            

+
1
𝑟𝑟𝑛𝑛,𝑠𝑠

〈𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 ,𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑛𝑛 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑠𝑠 = � 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛 ,𝑠𝑠

𝑁𝑁

𝑛𝑛=1

,                                                              

𝑧𝑧𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                                          
 𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 ,                                                     

� 

 
for all 𝑠𝑠 ≥ 1, where 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠  such that 
‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠). Then, the sequence 
{𝑇𝑇𝑠𝑠 }  converges strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 
Proof. Since a Lipschitz pseudocontractive multi-
valued mapping 𝑇𝑇 with 𝐹𝐹(𝑇𝑇) ≠ ∅ and 𝑇𝑇𝑇𝑇 = {𝑇𝑇}, 
∀𝑇𝑇 ∈ 𝐹𝐹(𝑇𝑇) is Lipschitz hemicontractive-type 
mapping, we obtain the desired result from 
Theorem 3.2.                                                             □ 
 If, in Theorem 3.2, we assume that 𝐴𝐴𝑛𝑛 ≡ 0, for 
all 𝑛𝑛 ∈ {1,2, … ,𝑁𝑁}, then we obtain the following 
corollary on a finite family of equilibrium prob-
lems and fixed point problem of multi-valued 
Lipschitz hemicontractive-type mapping. 
 
Corollary 3.4. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-type 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐹𝐹𝑛𝑛 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satisfying 
Assumption 1.1, for each 𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. 
Assume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑛𝑛=1  is non-
empty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed 
at zero and 𝑇𝑇𝑇𝑇 = {𝑇𝑇} for all 𝑇𝑇 ∈ 𝛩𝛩. Let �𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂
(0,∞) such that  lim𝑠𝑠→∞ 𝑟𝑟𝑛𝑛 ,𝑠𝑠 = 𝑟𝑟𝑛𝑛  for some 
0 < 𝑟𝑟𝑛𝑛 < ∞ and for each 𝑛𝑛 = 1, 2, … ,𝑁𝑁, and let 
{𝑎𝑎𝑠𝑠 }, {𝑏𝑏𝑠𝑠}, {𝑐𝑐𝑠𝑠}, {𝑒𝑒𝑠𝑠} and �𝑑𝑑𝑛𝑛 ,𝑠𝑠� be sequences in 
(0,1) such that 

i) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑠𝑠 , 𝑒𝑒𝑠𝑠 ≤ 𝑏𝑏 < 1;   
ii) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞

𝑠𝑠=1  ;  
iii) ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁

𝑛𝑛=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 ≤ 1;    
iv) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1
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 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by  
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 𝐹𝐹𝑛𝑛�𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧�  + 1
𝑟𝑟𝑛𝑛 ,𝑠𝑠

〈𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 ,𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,         

 ∀𝑧𝑧 ∈ 𝐶𝐶, 𝑛𝑛 = 1,2, … ,𝑁𝑁,     
𝑤𝑤𝑠𝑠 = ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛 ,𝑠𝑠

𝑁𝑁
𝑛𝑛=1 ,                                                      

 𝑧𝑧𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                               
𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 ,                                          

� 

for all 𝑠𝑠 ≥ 1, where 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠  such that 

‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠). Then, the sequence 
{𝑇𝑇𝑠𝑠 }  converges strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 
If, in Theorem 3.2, we assume that 𝐹𝐹𝑛𝑛 ≡ 0, for all 
𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}, then we have the following 
result on the problem of finding a common point 
of the common solution set of a finite family of 
variational inequality problems and fixed point 
set of Lipschitz hemicontractive-type mapping. 
 
Corollary 3.5.  Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a Lipschitz hemicontractive-type 
multi-valued mapping with Lipschitz constant 𝐿𝐿. 
Let 𝐴𝐴𝑛𝑛 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone 
mapping , for each 𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. Assume that 
𝛩𝛩 = ⋂ 𝑉𝑉𝐼𝐼(𝐶𝐶,𝐴𝐴𝑛𝑛 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑛𝑛=1   is nonempty, closed 
and convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed at zero and 
𝑇𝑇𝑇𝑇 = {𝑇𝑇} for all 𝑇𝑇 ∈ 𝛩𝛩. Let �𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂ (0,∞) such 
that  lim𝑠𝑠→∞ 𝑟𝑟𝑛𝑛 ,𝑠𝑠 = 𝑟𝑟𝑛𝑛  for some 0 < 𝑟𝑟𝑛𝑛 < ∞ and 
for each 𝑛𝑛 = 1, 2, … ,𝑁𝑁, and let {𝑎𝑎𝑠𝑠}, {𝑏𝑏𝑠𝑠 }, {𝑐𝑐𝑠𝑠 }, {𝑒𝑒𝑠𝑠} 
and �𝑑𝑑𝑛𝑛 ,𝑠𝑠� be sequences in (0,1) such that 
𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑠𝑠 , 𝑒𝑒𝑠𝑠 ≤ 𝑏𝑏 < 1; 

i) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞
𝑠𝑠=1  ;  

ii) ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁
𝑛𝑛=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 ≤ 1;    

iii) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1
�1+4𝐿𝐿2+1

. 

 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
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⎨

⎪
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〈𝐴𝐴𝑛𝑛𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠〉  + 1
𝑟𝑟𝑠𝑠 ,𝑛𝑛

〈𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 ,𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,                 

 ∀𝑧𝑧 ∈ 𝐶𝐶, 𝑛𝑛 = 1,2, … ,𝑁𝑁,     
 𝑤𝑤𝑠𝑠 = ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛 ,𝑠𝑠

𝑁𝑁
𝑛𝑛=1 ,                                                                         

𝑧𝑧𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                                                
𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 ,                                                            

�   

for all 𝑠𝑠 ≥ 1, where 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠  such that 
‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑤𝑤𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠). Then, the sequence 
{𝑇𝑇𝑠𝑠 }  converges strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 If, in Theorem 3.2, we assume that 𝑇𝑇 is a single-
valued hemicontractive mapping from 𝐶𝐶 into 
itself, then we obtain the following result. 
 
Corollary 3.6. Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶 be a Lipschitz hemicontractive mapping 
with Lipschitz constant 𝐿𝐿. Let 𝐴𝐴𝑛𝑛 :𝐶𝐶 → 𝐻𝐻 be a 
continuous monotone mapping and let 𝐹𝐹𝑛𝑛 :𝐶𝐶 ×
𝐶𝐶 →  ℝ be a bifunction satisfying Assumption 1.1 
for each,𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. Assume that 𝛩𝛩 =
⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁
𝑛𝑛=1   is nonempty, closed and 

convex, (𝐼𝐼 − 𝑇𝑇) is demiclosed at zero. Let 
�𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂ (0,∞) such that  lim𝑠𝑠→∞ 𝑟𝑟𝑛𝑛 ,𝑠𝑠 = 𝑟𝑟𝑛𝑛  for 
some 0 < 𝑟𝑟𝑛𝑛 < ∞ and for each 𝑛𝑛 = 1, 2, … ,𝑁𝑁,  and 
let {𝑎𝑎𝑠𝑠 }, {𝑏𝑏𝑠𝑠}, {𝑐𝑐𝑠𝑠}, {𝑒𝑒𝑠𝑠} and �𝑑𝑑𝑛𝑛 ,𝑠𝑠� be sequences in 
(0,1) such that 
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i) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑠𝑠 , 𝑒𝑒𝑠𝑠 ≤ 𝑏𝑏 < 1;   
ii) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞

𝑠𝑠=1  ;  
iii) ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁

𝑛𝑛=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 ≤ 1;    
iv) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪⎪
⎨

⎪⎪
⎧

 

𝐹𝐹𝑛𝑛�𝑇𝑇𝑠𝑠 ,𝑛𝑛 , 𝑧𝑧� + 〈𝐴𝐴𝑛𝑛𝑇𝑇𝑠𝑠 ,𝑛𝑛 , 𝑧𝑧 − 𝑇𝑇𝑠𝑠 ,𝑛𝑛〉                                                   

+ 1
𝑟𝑟𝑛𝑛 ,𝑠𝑠

〈𝑧𝑧 − 𝑇𝑇𝑠𝑠 ,𝑛𝑛 ,𝑇𝑇𝑠𝑠 ,𝑛𝑛 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑛𝑛 = 1,2, … ,𝑁𝑁,      

 𝑤𝑤𝑠𝑠 = ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑠𝑠 ,𝑛𝑛
𝑁𝑁
𝑛𝑛=1 ,                                                                        

 𝑧𝑧𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑇𝑇𝑤𝑤𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                                             
 𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑇𝑇𝑧𝑧𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑤𝑤𝑠𝑠 ,                                                         

� 

for all 𝑠𝑠 ≥ 1. Then, the sequence {𝑇𝑇𝑠𝑠 }  converges 
strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 If, in Theorem 3.2, we assume that 𝑁𝑁 = 1, then 
we get the following corollary. 
Corollary 3.7. (Habtu Zegeye et al., 2017). Let 𝐶𝐶 
be a nonempty, closed and convex subset of a 
real Hilbert space 𝐻𝐻. Let 𝑇𝑇:𝐶𝐶 → 𝐶𝐶𝐶𝐶(𝐶𝐶) be a 
Lipschitz hemicontractive-type multi-valued ma-
pping with Lipschitz constant 𝐿𝐿. Let 𝐴𝐴:𝐶𝐶 → 𝐻𝐻 be 
a continuous monotone mapping and let 
𝐹𝐹:𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satisfying Assump-
tion 1.1. Assume that 𝛩𝛩 = 𝐸𝐸𝐸𝐸(𝐹𝐹,𝐴𝐴) ∩ 𝐹𝐹(𝑇𝑇)  is 
nonempty, closed and convex, (𝐼𝐼 − 𝑇𝑇) is demi-
closed at zero and 𝑇𝑇𝑇𝑇 = {𝑇𝑇} for all 𝑇𝑇 ∈ 𝛩𝛩. Let 
{𝑟𝑟𝑠𝑠 } ⊂ (0,∞) such that  lim𝑠𝑠→∞ 𝑟𝑟𝑠𝑠 = 𝑟𝑟 for some 
0 < 𝑟𝑟 < ∞, and let {𝑎𝑎𝑠𝑠}, {𝑏𝑏𝑠𝑠 }, {𝑐𝑐𝑠𝑠 }, and  {𝑒𝑒𝑠𝑠 } be 
sequences in (0,1) such that 
 
i) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠 + 𝑒𝑒𝑠𝑠 = 1 and 0 < 𝑎𝑎 ≤ 𝑐𝑐𝑠𝑠 , 𝑒𝑒𝑠𝑠 ≤ 𝑏𝑏 < 1;   
ii) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞

𝑠𝑠=1  ;  
iii) 𝑏𝑏𝑠𝑠 + 𝑐𝑐𝑠𝑠  ≤ 𝑎𝑎𝑠𝑠  ≤ 𝑑𝑑 < 1

�1+4𝐿𝐿2+1
. 

 
 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪
⎨

⎪
⎧

                
𝐹𝐹(𝑇𝑇𝑠𝑠 , 𝑧𝑧) + 〈𝐴𝐴𝑇𝑇𝑠𝑠 , 𝑧𝑧 − 𝑇𝑇𝑠𝑠〉                            

+
1
𝑟𝑟𝑠𝑠
〈𝑧𝑧 − 𝑇𝑇𝑠𝑠 ,𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,

𝑧𝑧𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑣𝑣𝑠𝑠 + (1 − 𝑎𝑎𝑠𝑠)𝑇𝑇𝑠𝑠 ,                          
𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑒𝑒𝑠𝑠𝑇𝑇𝑠𝑠 ,                           

� 

for all 𝑠𝑠 ≥ 1, where 𝑣𝑣𝑠𝑠 ∈ 𝑇𝑇𝑇𝑇𝑠𝑠 ,𝑠𝑠𝑠𝑠 ∈ 𝑇𝑇𝑧𝑧𝑠𝑠  such that 
‖𝑣𝑣𝑠𝑠 − 𝑠𝑠𝑠𝑠‖ ≤ 2𝐷𝐷(𝑇𝑇𝑇𝑇𝑠𝑠 ,𝑇𝑇𝑧𝑧𝑠𝑠). Then, the sequence 
{𝑇𝑇𝑠𝑠 }  converges strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 If, in Theorem 3.2, we assume that 𝑇𝑇 = 𝐼𝐼, where 
𝐼𝐼 is the identity mapping on 𝐶𝐶, then we obtain 
the following corollary on a finite family of 
generalized equilibrium problems. 
 
Corollary 3.8.  Let 𝐶𝐶 be a nonempty, closed and 
convex subset of a real Hilbert space 𝐻𝐻. Let 
𝐴𝐴𝑛𝑛 :𝐶𝐶 → 𝐻𝐻 be a continuous monotone mapping 
and let 𝐹𝐹𝑛𝑛 :𝐶𝐶 × 𝐶𝐶 →  ℝ be a bifunction satisfying 

Assumption 1.1, for each 𝑛𝑛 ∈ {1, 2, … ,𝑁𝑁}. As-
sume that 𝛩𝛩 = ⋂ 𝐸𝐸𝐸𝐸(𝐹𝐹𝑛𝑛 ,𝐴𝐴𝑛𝑛 ) ∩ 𝐹𝐹(𝑇𝑇)𝑁𝑁

𝑛𝑛=1   is non-
empty. Let �𝑟𝑟𝑛𝑛 ,𝑠𝑠� ⊂ (0,∞) such that  lim𝑠𝑠→∞ 𝑟𝑟𝑛𝑛 ,𝑠𝑠 =
𝑟𝑟𝑛𝑛  for some 0 < 𝑟𝑟𝑛𝑛 < ∞ and for each 𝑛𝑛 =
1, 2, … ,𝑁𝑁, and let {𝑏𝑏𝑠𝑠} and �𝑑𝑑𝑛𝑛 ,𝑠𝑠� be sequences in 
(0,1) such that 

i) lim𝑠𝑠→∞ 𝑏𝑏𝑠𝑠 = 0,   ∑ 𝑏𝑏𝑠𝑠 = ∞∞
𝑠𝑠=1  ;  

ii) ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 = 1𝑁𝑁
𝑛𝑛=1   and  0 < 𝑐𝑐 ≤ 𝑑𝑑𝑛𝑛 ,𝑠𝑠 ≤ 1 

 Let {𝑇𝑇𝑠𝑠} be a sequence generated from an 
arbitrary 𝑇𝑇1, 𝑣𝑣 ∈ 𝐶𝐶 by 

⎩
⎪
⎨

⎪
⎧ 𝐹𝐹𝑛𝑛�𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧� + 〈𝐴𝐴𝑛𝑛𝑇𝑇𝑛𝑛 ,𝑠𝑠 , 𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠〉                                            

     + 1
𝑟𝑟𝑛𝑛 ,𝑠𝑠

〈𝑧𝑧 − 𝑇𝑇𝑛𝑛 ,𝑠𝑠 ,𝑇𝑇𝑛𝑛 ,𝑠𝑠 − 𝑇𝑇𝑠𝑠〉 ≥ 0,∀𝑧𝑧 ∈ 𝐶𝐶,𝑛𝑛 = 1,2, … ,𝑁𝑁,

𝑤𝑤𝑠𝑠 = ∑ 𝑑𝑑𝑛𝑛 ,𝑠𝑠𝑇𝑇𝑛𝑛 ,𝑠𝑠
𝑁𝑁
𝑛𝑛=1 ,                                                                 

𝑇𝑇𝑠𝑠+1 = 𝑏𝑏𝑠𝑠𝑣𝑣 + (1 − 𝑏𝑏𝑠𝑠)𝑤𝑤𝑠𝑠 ,                                                     
  

�  

for all 𝑠𝑠 ≥ 1. Then, the sequence {𝑇𝑇𝑠𝑠 }  converges 
strongly to 𝑝𝑝 = 𝐸𝐸𝛩𝛩(𝑣𝑣). 
 
Remark 3.9. Theorem 3.2 extends the results of 
Tesfalem Hadush et al. (2016), Habtu Zegeye et al. 
(2017), Razani and Yazdi (2012), Hao (2011), 
Wang et al. (2007), Ceng et al. (2010), Huang and 
Ma (2014) in the sense that our iterative algo-
rithm provides strong convergence to a common 
element of the set of common solutions of a finite 
family of generalized equilibrium problems and 
the set of fixed points of a Lipschitz hemicontrac-
tive-type multi-valued mapping. We have used 
the demiclosedness principle in the proof of our 
Theorem 3.2 which makes a little simpler than 
using Assumption 1.1. 
 
 

ACKNOWLEDGEMENTS 
 

This work was completed with the financial support 
of Simons Foundation based at Botswana Interna-
tional University of Science and Technology. The 
authors are thankful to the anonymous reviewers for 
their valuable suggestions to enhance the quality of 
our research paper. 
 
 

REFERENCES 
 

1. Agrawal, R.P., O’Regan, D and Sahu, D.R. (2009). 
Fixed Point Theory for Lipschitzian-type 
Mappings with Application. Springer, New 
York.  

2. Ali, B. (2009). Fixed points approximation and 
solutions of some equilibrium and variational 
inequalities problems. International Journal of 
Mathematics and Mathematical Sciences, 17 
pages, doi: 10.1152/2009/656534.  



SINET: Ethiop. J. Sci., 38(1), 2015                                                                                                                                            27 

 

3. Berinde, V. and P𝑎𝑎�curar, M. (2013). The role of 
Pompeiu-Hausdorff metric in fixed point 
theory. Creat. Math. Inform. 22(2):143–150.  

4. Blum, E. and Oettli, W. (1994). From optimization 
and variational inequalities to equilibrium 
problems. Math. Stud. 63:123–145.  

5. Browder, F.E. and Petryshyn, W.V. (1967). Con-
struction of fixed points of nonlinear map-
pings in Hilbert space. J. Math. Anal. Appl. 
20:197–228.  

6. Ceng, L., Petrusel, A. and Wong, M. (2010). Strong 
convergence theorem for a generalized equi-
librium problem and a pseudocontractive 
mapping in a Hilbert space. Taiwan J. Math. 
14:1881–1901.  

7. Chidume, C.E., Chidume, C.O., Djitte, N. and 
Minjibir, M.S. (2013). Convergence theorems 
for fixed points of multi-valued strictly pseu-
docontractive mapping in Hilbert spaces. 
Abstr. Appl. Anal., 10 pages, doi: 10.1155/-
2013/629468. 

8. Cholamjiak, W., Cholamjiak, P. and Suantai, S. 
(2015). Convergence of iterative schemes for 
solving fixed point problems for multi-valued 
nonself mappings and equilibrium problems. 
J. Nonlinear Sci. Appl. 8:1245–1256.  

9. Combettes, P.L. and Hirstoaga, S.A. (2005). 
Equilibrium programming in Hilbert spaces. 
J. Nonlinear Convex Anal. 6:117–136.  

10. Habtu Zegeye and Shahzad, N. (2011a). A hybrid 
scheme for finite families of equilibrium, 
variational inequality and fixed point prob-
lems. Nonlinear Anal. 74:263–272.  

11. Habtu Zegeye and Shahzad, N. (2011b). Conver-
gence of Manns type iteration method for 
generalized asymptotically nonexpansive 
mappings. Comput. Math. Appl. 62:4007–4014.  

12. Habtu Zegeye and Shahzad, N. (2012). Strong 
convergence of an iterative method for 
pseudo-contractive and monotone mappings. 
J. Glob. Optim. 54:173–184.  

13. Habtu Zegeye, Tesfalem Hadush and Mengistu 
Goa (2017). Algorithms of common solutions 
for a fixed point of hemicontractive-type 
mapping and a generalized equilibrium prob-
lem. International Journal of Advanced Mathe-
matical Sciences 5(1):20–26.  

14. Hao, Y. (2011). A strong convergence theorem on 
generalized equilibrium problems and strictly 
pseudocontractive mappings. Proc. Eston. 
Acad. Sci. 60:12–24.  

15. Huang, C. and Ma, X. (2014). On generalized 
equilibrium problems and strictly pseu-
docontractive mappings in Hilbert spaces. 
Fixed Point Theory Appl., 11 pages, doi: 
10.1186/1687–1812–2014–145. 

16. Isiogugu, F.O. and Osilike, M.O. (2014). Conver-
gence theorems for new classes of multi-

valued hemicontractive-type mappings. Fixed 
Point Theory Appl., 12 pages, doi: 10.1186/-
1687–1812–2014–93. 

17. Kamraksa, U. and Wangkeeree, R. (2011). General-
ized equilibrium problems and fixed point 
problems for nonexpansive semigroups in 
Hilbert spaces. J. Glob. Optim. 51:689–714.  

18. Mainge, P.E. (2008). Strong convergence of 
projected subgradient methods for non-
smooth and nonstrictly convex minimization. 
Set-valued Anal. 16:899–912. 

19. Mongkolkeha, C., Cho, Y.J. and Kumam, P. (2013). 
Convergence theorems for 𝑘𝑘 −demicontrac-
tive mapping in Hilbert spaces. Math. Inequal. 
Appl. 16(4):1065–1082.  

20. Nadler, S.B. Jr. (1969). Multi-valued contraction 
mappings. Pacific J. Math. 30:475–487. 

21. Panyanak, B. (2007). Mann and Ishikawa iteration 
processes for multi-valued mappings I Ba-
nach spaces. Comput. Math. Appl. 54:872–877. 

22. Razani, A. and Yazdi, M. (2012). A new iterative 
method for generalized equilibrium and fixed 
point problems of nonexpansive mappings. 
Bulletin of the Malaysian Mathematical Sciences 
Society 35(4):1049–1061. 

23. Sebsibe Teferi, Mengistu Goa and Habtu Zegeye 
(2015). Strong convergence theorems for a 
common fixed point of a finite family of 
Lipschitz hemicontractive-type multi-valued 
mappings. Adv. Fixed Point Theory. 5(2):228–
253.  

24. Shahzad, N. and Habtu Zegeye (2008). Strong 
convergence results for nonself multimaps in 
Banach spaces. Proc. Amer. Math. Soc. 
136(2):539–548. 

25. Takahashi, S. and Takahashi, W. (2007). Viscosity 
approximation methods for equilibrium prob-
lems and fixed point problems in Hilbert 
spaces. J. Math. Anal. Appl. 331:506–515. 

26. Takahashi, S. and Takahashi, W. (2008). Strong 
convergence theorem for a generalized equi-
librium problem and nonexpansive mapping 
in Hilbert space. Nonlinear Anal. 69:1025–1033. 

27. Tesfalem Hadush, Mengistu Goa and Habtu 
Zegeye (2016). Iterative methods for a fixed 
point of hemicontractive-type mapping and a 
solution of a variational inequality problem. 
Creat. Math. Inform. 25(2):183–196. 

28. Wang, S., Zhou, H. and Song, J. (2007). Viscosity 
approximation methods for equilibrium prob-
lems and fixed point problems of nonexpan-
sive mappings and inverse-strongly mono-
tone mappings. Method Appl. Anal. 14:405–
420.  

29. Xu, H.K. (2002). Another control condition in an 
iterative method for nonexpansive mappings. 
Bull. Aust. Math. Soc. 65:109–113.  



28                                                                                                                                                                       Tesfalem Hadush et al. 

 

30. Yu, Y., Wu, Z. and Yang, P. (2012). An iterative 
algorithm for hemi-contractive mappings in 
Banach spaces. Abstr. Appl. Anal. 11 pages, 
doi: 10.1155/2012/264103.  

31. Zhang, L. and Hao, Y. (2016). Fixed point methods 
for solving solutions of a generalized equilib-
rium problem. J. Nonlinear Sci. Appl. 9:149–
159. 

 


	Tesfalem Hadush Meche 1, Mengistu Goa Sangago 2 and Habtu Zegeye 3
	1 Department of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia. E-mail: tesfalemh78@gmail.com
	2 Department of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, PO Box 31167, Addis Ababa, Ethiopia. E-mail: mengistu.goa@aau.edu.et
	3 Department of Mathematics, College of Sciences, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana. E-mail: habtuzh@yahoo.com


