APPROXIMATING A COMMON SOLUTION OF A FINITE FAMILY OF GENERALIZED EQUILIBRIUM AND FIXED POINT PROBLEMS

Tesfalem Hadush Meche ${ }^{1}$, Mengistu Goa Sangago ${ }^{2}$ and Habtu Zegeye ${ }^{3}$
${ }^{1}$ Department of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia. E-mail: tesfalemh78@gmail.com
${ }^{2}$ Department of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, PO Box 31167, Addis Ababa, Ethiopia. E-mail: mengistu.goa@aau.edu.et
${ }^{3}$ Department of Mathematics, College of Sciences, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana. E-mail: habtuzh@yahoo.com

Abstract

In this paper, we introduce and investigate an iterative scheme for finding a common element of the set of common solutions of a finite family of generalized equilibrium problems and the set of fixed points of a Lipschitz and hemicontractive-type multi-valued mapping. We obtain strong convergence theorems of the proposed iterative process in real Hilbert space settings. Our results improve, generalize and extend most of the recent results that have been proved by many authors in this research area.

Key words/phrases: Continuous monotone mapping, demiclosedness principle, fixed point problem, generalized equilibrium problems, hemicontractive-type multi-valued mapping

INTRODUCTION

Let C be a nonempty subset of a real Hilbert space H with inner product $\langle.,$.$\rangle and norm \|$.$\| .$ A single-valued mapping $T: C \rightarrow H$ is said to be k-strictly pseudocontractive in the sense of Browder and Petryshtn (1967) if there exists $k \in[0,1)$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|x-T x-(y-T y)\|^{2}, \tag{1.1}
\end{equation*}
$$

$\forall x, y \in C$ \qquad

If $k=1$ in (1.1), then T is called pseudocontractive mapping.

A mapping $T: C \rightarrow H$ is called Lipschitzian if there exists $L \geq 0$ such that $\|T x-T y\| \leq$ $L\|x-y\|, \forall x, y \in C$. If $L=1$, then T is called nonexpansive and if $L \in[0,1)$, then T is called contraction.
Observe that the class of pseudocontractive mappings contains the class of k-strictly pseudocontractive mappings and nonexpansive mappings (see Browder and Petryshyn, 1967; Chidume et al., 2013).
A mapping $T: C \rightarrow H$ is said to be firmly nonexpansive if $\|T x-T y\|^{2} \leq\langle T x-T y, x-y\rangle$ for all $x, y \in C$. It is known that every firmly
nonexpansive mapping is nonexpansive mapping, but the inclusion is proper (see Mongkolkeha et al., 2013).

A mapping $T: C \rightarrow H$ with $F(T)=\{x \in C: x=$ $T x\}$ nonempty is said to be quasi-nonexpansive if $\|T x-p\| \leq\|x-p\|$ holds for all $p \in F(T), x \in C$ and T is called hemicontractive if $\|T x-p\|^{2} \leq$ $\|x-p\|^{2}+\|x-T x\|^{2}$ holds for all $p \in F(T), x \in C$.
We remark that the class of hemicontractive mappings contains the class of pseudocontractive mappings with $F(T) \neq \varnothing$ and the class of quasi-nonexpansive mappings. The following examples show that the inclusion is proper.

Example 1.1. Let $H=\mathbb{R}$ and $C=[0,1]$. Let $T: C \rightarrow H$ be defined by $T x=x^{2} \sin \left(\frac{1}{x}\right)$ if $x \neq 0$ and $T 0=0$. Then, zero is the only fixed point of T and for all $x \in C$, we have

$$
\begin{aligned}
&|T x-0|^{2}=\left|x^{2} \sin \left(\frac{1}{x}\right)\right|^{2} \leq|x|^{4} \\
& \leq|x|^{2} \leq|x-0|^{2}+|x-T x|^{2}
\end{aligned}
$$

Hence, T is hemicontractive mapping. However, if we take $x=\frac{2}{\pi}$ and $y=\frac{1}{\pi}$, then we get that
$|T x-T y|^{2}=\left|\frac{4}{\pi^{2}} \sin \frac{\pi}{2}-\frac{1}{\pi^{2}} \sin \pi\right|^{2}=\frac{16}{\pi^{4}}$.
But,

$$
\begin{aligned}
&|x-y|^{2}+|x-y-(T x-T y)|^{2}=\frac{1}{\pi^{2}}+\left(\frac{\pi-4}{\pi^{2}}\right)^{2} \\
&=\frac{2 \pi^{2}-8 \pi+16}{\pi^{4}} \\
&<\frac{16}{\pi^{4}}=|T x-T y|^{2}
\end{aligned}
$$

which shows that T is not pseudocontractive.

Example 1.2. Let $H=\mathbb{R}$ and $C=[0,1]$. Let $T: C \rightarrow H$ be defined by

$$
T x= \begin{cases}\frac{1}{2}, & \text { if } x \in\left[0, \frac{1}{2}\right] \\ 0, & \text { if } x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Then, $\frac{1}{2}$ is the only fixed point of T. If $x \in\left[0, \frac{1}{2}\right]$, we have
$\left|T x-T\left(\frac{1}{2}\right)\right|^{2}=0 \leq\left|x-\frac{1}{2}\right|^{2}+|x-T x|^{2}$.
And if $x \in\left(\frac{1}{2}, 1\right]$, we get
$\left|T x-T\left(\frac{1}{2}\right)\right|^{2}=\frac{1}{4}<x^{2} \leq\left|x-\frac{1}{2}\right|^{2}+|x-T x|^{2}$.
Thus, T is hemicontractive mapping. However, T is not quasi-nonexpansive mapping. In fact, for $x=\frac{3}{5}$, we have

$$
\left|T x-T\left(\frac{1}{2}\right)\right|=\frac{1}{2}>\frac{1}{10}=\frac{3}{5}-\frac{1}{2}=\left|x-\frac{1}{2}\right| .
$$

Let $C B(C)$ denote the family of nonempty, closed and bounded subsets of C. The PompeiuHausdorff metric (see Berinde and Păcurar, 2013) on $C B(C)$ is defined by $D(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}$, for all $A, B \in C B(C)$, where $d(x, B)=\inf \{\|x-b\|$: $b \in B\}$.
A multi-valued mapping $T: C \rightarrow C B(C)$ is called Lipschitzian if there exists $L \geq 0$ such that

$$
\begin{equation*}
D(T x, T y) \leq L\|x-y\|, \forall x, y \in C \ldots \ldots \ldots \ldots \ldots \tag{1.2}
\end{equation*}
$$

If $L=1$ in (1.2), then T is called nonexpansive and if $L \in[0,1)$, then T is called contraction mapping.
A multi-valued mapping $T: C \rightarrow C B(C)$ is said to be k-strictly pseudocontractive in the sense of Chidume et al. (2013) if there exists a constant $k \in[0,1)$ such that
$D^{2}(T x, T y) \leq\|x-y\|^{2}+k\|(x-u)-(y-v)\|^{2}$,
for all $x, y \in C$ and $u \in T x, v \in T y$, where $D^{2}(T x, T y)=(D(T x, T y))^{2}$. If $k=1$ in (1.3), then T is said to be pseudocontractive mapping.

Let $T: C \rightarrow C B(C)$ be a multi-valued mapping, then an element $x \in C$ is called fixed point of T if $x \in T x$. We denote the set of fixed points of a mapping T by $F(T)$. We also write weak convergence and strong convergence of a sequence $\left\{x_{n}\right\}$ to x in H as $x_{n} \rightharpoonup x$ and $x_{n} \rightarrow x$, respectively.
A multi-valued mapping $T: C \rightarrow C B(C)$ with nonempty set of fixed points is called:
i) Quasi-nonexpansive if for all $p \in F(T), x \in C$, we have $D(T x, T p) \leq\|x-p\|$.
ii) Hemicontractive-type in the sense of Sebsibe Teferi et al. (2015) if for all $p \in F(T), x \in C$

$$
\begin{array}{r}
D^{2}(T x, T p) \leq\|x-p\|^{2}+\|x-u\|^{2} \\
\text { holds for all } u \in T x . \ldots \ldots \ldots . . . \tag{1.4}
\end{array}
$$

We observe that every nonexpansive mapping T with $F(T) \neq \varnothing$ is quasi-nonexpansive mapping, and every pseudocontractive mapping T with $F(T) \neq \emptyset$ and $T(p)=\{p\}, \forall p \in F(T)$ is hemi-contractive-type mapping (Habtu Zegeye et al., 2017).

In recent years, the existence and approximation of fixed points for multi-valued (including hemicontractive-type) mappings in various spaces under different assumptions has been studied by several authors; (see, for example, Nadler, 1969; Panyanak, 2007; Shahzad and Habtu Zegeye, 2008; Yu et al., 2012; Chidume et al., 2013; Isiogugu and Osilike, 2014; and references therein).
Sebsibe Teferi et al. (2015) proved the following result:

Theorem WSZ. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T_{i}: C \rightarrow C B(C), i=1,2, \ldots, N$, be a finite family of Lipschitz hemicontractive-type mappings with Lipschitz constants $L_{i}, i=1,2, \ldots, N$, respectively. Assume that $\left(I-T_{i}\right), i=1,2, \ldots, N$, are demiclosed at zero and $\mathrm{F}=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty, closed and convex with $T_{i}(p)=\{p\}, \forall p \in \mathrm{~F}$. Let $\left\{x_{n}\right\}$ be the sequence generated from an arbitrary $x_{1}, w \in C$ by
$\left\{\begin{array}{l}y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} u_{n}, \quad u_{n} \in T_{n} x_{n}, \\ z_{n}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} w_{n}, \quad w_{n} \in T_{n} y_{n}, \\ x_{n+1}=\alpha_{n} w+\left(1-\alpha_{n}\right) z_{n}, \quad \forall n \geq 1,\end{array}\right.$
where $T_{n}:=T_{n \bmod (N)+1}$ and $\left\{\alpha_{n}\right\}, \quad\left\{\beta_{n}\right\}, \quad\left\{\gamma_{n}\right\}$ $\subset(0,1)$ satisfy the following conditions:
i) $0<\alpha_{n} \leq c<1, \forall n \geq 1$ such that $\lim _{n \rightarrow \infty} \alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
ii) $0<\alpha \leq \gamma_{n} \leq \beta_{n} \leq \beta<\frac{1}{\sqrt{4 L^{2}+1}+1}, \forall n \geq 1$,

$$
\text { for } L:=\max \left\{L_{i}: i=1,2, \ldots, N\right\}
$$

Then, $\left\{x_{n}\right\}$ converges strongly to some point $p \in F$ nearest to w.

Recall that a mapping $A: C \rightarrow H$ is called monotone if $\langle A x-A y, x-y\rangle \geq 0, \forall x, y \in C$
A is called α-inverse strongly monotone if there exists a positive real number α such that $\langle A x-A y, x-y\rangle \geq \alpha\|A x-A y\|^{2}, \forall x, y \in C$.
We note that the class of α-inverse strongly monotone mappings is properly contained in the class of monotone mappings (see Habtu Zegeye et al., 2017).
Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $F: C \times C \rightarrow \mathbb{R}$ be a bifunction and $A: C \rightarrow H$ be a nonlinear mapping. Takahashi and Takahashi (2008) considered the following generalized equilibrium problem: Finding a point $z \in C$ such that

$$
\begin{equation*}
F(z, y)+\langle A z, y-z\rangle \geq 0, \forall y \in C \tag{1.6}
\end{equation*}
$$

In this paper, we denote the set of solutions of problem (1.6) by $E P(F, A)$, i.e.,
$E P(F, A)=\{z \in C: F(z, y)+\langle A z, y-z\rangle \geq 0, \forall y \in C\}$.
If in (1.6) we have $A \equiv 0$, then problem (1.6) reduces to the equilibrium problem of finding an element $z \in C$ such that

$$
\begin{equation*}
F(z, y) \geq 0, \forall y \in C \tag{1.7}
\end{equation*}
$$

which was studied by Blum and Oettli (1994) and many others (Combettes and Hirstoaga, 2005; Takahashi and Takahashi, 2007; Wang et al., 2007; Ali, 2009; Cholamjiak et al., 2015). The set of solutions of problem (1.7) is denoted by $E P(F)$.
If in (1.6) we have $F \equiv 0$, then the generalized equilibrium problem (1.6) reduced to finding a point $z \in C$ such that

$$
\begin{equation*}
\langle A z, y-z\rangle \geq 0, \forall y \in C, \ldots \tag{1.8}
\end{equation*}
$$

which is called the classical variational inequality problem. The set of solutions of problem (1.8)
is denoted by $\operatorname{VI}(C, A)$. Problem (1.8) has been considered by many authors (see, for instance, Ali, 2009; Habtu Zegeye and Shahzad, 2011a; 2012; Tesfalem Hadush et al., 2016) and references therein.
We note that if a point $z \in V I(C, A) \cap E P(F)$, then $z \in E P(F, A)$, however, the converse is not true (see Habtu Zegeye et al., 2017).

Assumption 1.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. In the sequel, let F be a bifunction of $C \times C$ into \mathbb{R} satisfying the following assumptions:
(A1) $F(x, x)=0, \forall x \in C$;
(A2) F is monotone, i.e.,

$$
F(x, y)+F(y, x) \leq 0, \forall x, y \in C
$$

(A3) $\lim _{t{ }^{\prime} 0} F(t z+(1-t) x, y) \leq F(x, y), \forall x, y, z \in C$;
(A4) For each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
For instance, the bifunction $F:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ given by $F(x, y)=y-x$ satisfies Assumption 1.1.

Remark 1.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ into \mathbb{R} satisfying Assumption 1.1 and let $A: C \rightarrow H$ be a continuous monotone mapping. Define $G: C \times C \rightarrow \mathbb{R}$ by $G(x, y)=F(x, y)+\langle A x, y-x\rangle$, then it is easy to see that the bifunction G satisfies Assumption 1.1. Thus, the generalized equilibrium problem (1.6) is equivalent to the equilibrium problem of finding a point $z \in C$ such that $G(z, y) \geq 0$, for all $y \in C$.

Generalized equilibrium problem is more general in the sense that it includes, as special case, equilibrium problems and hence variational inequality, optimization problems, Nash equilibrium problems, fixed point problems, etc. Consequently, many authors have shown their interest in constructing an iterative algorithms for approximating common solution of generalized equilibrium and fixed point problems (see, for example, Hao, 2011; Kamraksa and Wangkeeree, 2011; Razani and Yazdi, 2012; Zhang and Hao, 2016 and references cited therein).
Takahashi and Takahashi (2008) introduced and considered the following iterative algorithm for finding a common point of the set of solu-
tions of problem (1.6) and the set of fixed points of nonexpansive single-valued mapping T and then they obtained a strong convergence theorem in Hilbert space settings.
$\left\{\begin{array}{l}F\left(z_{n}, y\right)+\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{\lambda_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0, \forall y \in C, \\ y_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}, \\ x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T y_{n}, \quad \forall n \geq 1,\end{array}\right.$
where $u, x_{1} \in C$ are arbitrary, $F: C \times C \rightarrow \mathbb{R}$ is a bifunction satisfying Assumption 1.1 and A is an α-inverse strongly monotone mapping from C into H, and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset[0,2 \alpha]$ satisfy some appropriate control conditions.
Recently, Huang and Ma (2014) extended the results of Takahashi and Takahashi (2008) from nonexpansive mapping to k-strictly pseudocontractive mapping. In fact, they proved the following weak convergence theorem.

Theorem 1.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $A: C \rightarrow H$ be an α-inverse strongly monotone mapping and F be a bifunction from $C \times C$ into \mathbb{R} which satisfies Assumption 1.1. Let $T: C \rightarrow C$ be a k-strictly pseudocontractive mapping such that $\mathrm{F}:=E P(F, A) \cap F(T)$ is nonempty and let $\left\{e_{n}\right\}$ be a bounded sequence in C. Let $\left\{x_{n}\right\}$ be a sequence generated by
$\left\{\begin{array}{l}F\left(u_{n}, u\right)+\left\langle A x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle u-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall u \in C, \\ x_{n+1}=\alpha_{n} x_{n}+\beta_{n}\left(\delta_{n} u_{n}+\left(1-\delta_{n}\right) T u_{n}\right)+\gamma_{n} e_{n}, \quad \forall n \in \mathbb{N},\end{array}\right.$
where the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\} \subset$ $(0,1)$ and $\left\{r_{n}\right\} \subset[0,2 \alpha]$ satisfy some mild restrictions. Then the sequence $\left\{x_{n}\right\}$, generated by (1.9), converges weakly to a point $p \in F$, where $p=\lim _{n \rightarrow \infty} P_{F} x_{n}$.
In this paper, motivated and inspired by the results surveyed above, we introduce an iterative algorithm for finding a common element of the common solution set of a finite family of generalized equilibrium problems (1.6) and the fixed point set of a multi-valued Lipschitz hemicontractive-type mapping. The results presented in this paper generalize, improve and extend the corresponding results of Huang and Ma (2014), Tesfalem Hadush et al. (2016), Habtu Zegeye et al. (2017), Takahashi and Takahashi (2008), Ceng et al. (2010) and Zhang
and Hao (2016) and some other recent results that have been obtained previously in this research area.

PRELIMINARIES

Throughout this section unless otherwise stated, C denotes a nonempty, closed and convex subset of a real Hilbert space H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\|=\inf \{\|x-y\|: y \in$ $C\} . P_{C}$ is called the metric projection of H onto C. The following characterizes the metric projection P_{C} : for given $x \in H$ and $z \in C$,
$z=P_{C} x \Leftrightarrow\langle x-z, z-y\rangle \geq 0, \forall y \in C$

Definition 2.1. Let $\left\{x_{n}\right\}$ be a sequence in C such that $x_{n} \rightharpoonup x$ and let $T: C \rightarrow C B(C)$ be a multivalued mapping. Then, $(I-T)$ is said to be demiclosed at zero if $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$ implies $x \in T x$, where I is the identity mapping on C.
We note that if the mapping $T: C \rightarrow C$ in Definition 2.1 is a single-valued nonexpansive mapping, then $(I-T)$ is demiclosed at zero (see Agrawal et al., 2009).
In the proof of our main result, we also need the following lemmas.

Lemma 2.2. (Habtu Zegeye and Shahzad, 2011b). Let H be a real Hilbert space and $\left\{x_{i}\right\}_{i=1}^{n} \subset H$. Then, for $\alpha_{i} \in[0,1], i=1,2, \ldots, n$, such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1$, we have the following identity:

$$
\begin{aligned}
& \left\|\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}\right\|^{2} \\
& \quad=\sum_{i=1}^{\infty} \alpha_{i}\left\|x_{i}\right\|^{2}-\sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2}
\end{aligned}
$$

Lemma 2.3. (Agrawal et al., 2009). Let H be a real Hilbert space. Then, for every $x, y \in H$, we have the following:
i) $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle$;
ii) $\|x+y\|^{2}=\|x\|^{2}+2\langle y, x+y\rangle$.

Lemma 2.4. (Blum and Oettli, 1994; Combettes and Hirstoaga, 2005). Let F be a bifunction from $C \times C$ into \mathbb{R} which satisfies Assumption 1.1. For $r>0$, define $T_{r}: H \rightarrow C$ as follows:
$T_{r} x=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle, \forall y \in C\right\}$.
Then, the following hold:
(1) T_{r} is nonempty and single-valued;
(2) T_{r} is firmly nonexpansive, i.e.,
$\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle, \forall x, y \in H ;$
(3) $F\left(T_{r}\right)=E P(F)$;
(4) $E P(F)$ is closed and convex.

Lemma 2.5. (Nadler, 1969). Let (X, d) be a metric space and let $A, B \in C B(X)$. Then, for any $u \in A$ and $\varepsilon>0$, there exists a point $v \in B$ such that $d(u, v) \leq D(A, B)+\varepsilon$. This implies that for every element $u \in A$, there exists an element $v \in B$ such that $d(u, v) \leq 2 D(A, B)$.

Lemma 2.6. $(\mathrm{Xu}, 2002)$. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers such that
$a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \delta_{n}$, for $n \geq n_{0}$,
where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\delta_{n}\right\} \subset \mathbb{R}$ satisfying the following conditions:
$\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$, and $\limsup _{n \rightarrow \infty} \delta_{n} \leq 0$. Then, $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

Lemma 2.7. (Mainge, 2008). Let $\left\{b_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{j}\right\}$ of $\{n\}$ such that $b_{n_{j}}<b_{n_{j}+1}$, for all $j \in \mathbb{N}$. Then, there exists a nondecreasing sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ such that $n_{k} \rightarrow \infty$ and the following properties are satisfied by all (sufficiently large) numbers $k \in \mathbb{N}$:

$$
\mathrm{b}_{\mathrm{n}_{\mathrm{k}}} \leq \mathrm{b}_{\mathrm{n}_{\mathrm{k}}+1} \text { and } b_{k} \leq b_{n_{k}+1}
$$

In fact, $n_{k}=\max \left\{i \leq k: b_{i} \leq b_{i+1}\right\}$.

MAIN RESULT

In this section, we define an iterative algorithm and prove its strong convergence to a common solution of a finite family of generalized equilibrium problems and a fixed point problem for a multi-valued Lipschitz hemicontractive-type mapping.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C B(C)$ be a Lipschitz hemicontractivetype multi-valued mapping with Lipschitz con-
stant L. Let $A_{m}: C \rightarrow H$ be a continuous monotone mapping and let $F_{m}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1.1, for each $m \in\{1,2, . ., \mathrm{N}\}$. Assume that $\Theta=\bigcap_{m=1}^{N} E P\left(F_{m}, A_{m}\right) \cap F(T)$ is nonempty and $T q=\{q\}$ for all $q \in \Theta$. Let $\left\{r_{m, n}\right\} \subset(0, \infty)$ and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{e_{n}\right\}$ and $\left\{d_{m, n}\right\}$ be sequences in $(0,1)$ such that
i) $\quad b_{n}+c_{n}+e_{n}=1$;
ii) $\quad \sum_{m=1}^{N} d_{m, n}=1$;
iii) $\quad b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by

$$
\left\{\begin{array}{l}
F_{m}\left(y_{m, n}, z\right)+\left\langle A_{m} y_{m, n}, z-y_{m, n}\right\rangle \\
\quad+\frac{1}{r_{m, n}}\left\langle z-y_{m, n}, y_{m, n}-x_{n}\right\rangle \geq 0, \forall z \in C, m=1,2, \ldots, N, \\
w_{n}=\sum_{m=1}^{N} d_{m, n} y_{m, n}, \tag{3.1}\\
z_{n}=a_{n} v_{n}+\left(1-a_{n}\right) w_{n}, \\
x_{n+1}=b_{n} v+c_{n} u_{n}+e_{n} w_{n},
\end{array}\right.
$$

for all $n \geq 1$, where $v_{n} \in T w_{n}, u_{n} \in T z_{n}$ such that $\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T w_{n}, T z_{n}\right)$. Then, the sequence $\left\{x_{n}\right\}$ is bounded.

Proof. Let $q \in \Theta$. Then, we have $T q=\{q\}$ and $F_{m}(q, z)+\left\langle A_{m} q, z-q\right\rangle \geq 0$, for all $m=1,2, \ldots, N$ and $z \in C$. Define $G_{m}: C \times C \rightarrow \mathbb{R}$ by $G_{m}(x, z):=$ $F_{m}(x, z)+\left\langle A_{m} x, z-x\right\rangle$ for all $x, z \in C$ and $m \in\{1,2, \ldots, N\}$. Then, in view of Remark 1.2, G_{m} is a bifunction satisfying Assumption 1.1, for each $m \in\{1,2, \ldots, N\}$ and $q \in E P\left(F_{m}, A_{m}\right)$ is equivalent to $G_{m}(q, z) \geq 0$ for all $z \in C$. Hence, using Lemma 2.4, $y_{n, m}$ can be rewritten as $y_{m, n}=T_{r_{m, n}} x_{n}$ and hence we obtain $q=T_{r_{m, n}} q$. In view of the fact that $T_{r_{m, n}}$ is nonexpansive, by Lemma 2.4, we have that
$\left\|y_{m, n}-q\right\|=\left\|T_{r_{m, n}} x_{n}-T_{r_{m, n}} q\right\| \leq\left\|x_{n}-q\right\|$

Then, from (3.2) and condition (ii), we have the following:

$$
\begin{aligned}
\left\|w_{n}-q\right\| & =\left\|\sum_{m=1}^{N} d_{m, n} y_{m, n}-q\right\| \\
& =\left\|\sum_{m=1}^{N} d_{m, n} y_{m, n}-\sum_{m=1}^{N} d_{m, n} q\right\| \\
& \leq \sum_{m=1}^{N} d_{m, n}\left\|y_{m, n}-q\right\|
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{m=1}^{N} d_{m, n}\left\|x_{n}-q\right\| \\
& =\left\|x_{n}-q\right\| . \tag{3.3}
\end{align*}
$$

Using Lemma 2.2, the fact that T is hemicon-tractive-type mapping and $v_{n} \in T w_{n}$, we find that

$$
\begin{aligned}
\left\|z_{n}-q\right\|^{2}= & \left\|a_{n}\left(v_{n}-q\right)+\left(1-a_{n}\right)\left(w_{n}-q\right)\right\|^{2} \\
= & a_{n}\left\|v_{n}-q\right\|^{2}+\left(1-a_{n}\right)\left\|w_{n}-q\right\|^{2} \\
& \quad-a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
\leq & a_{n} D^{2}\left(T w_{n}, T q\right)+\left(1-a_{n}\right)\left\|w_{n}-q\right\|^{2} \\
& \quad-a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
\leq & a_{n}\left(\left\|w_{n}-q\right\|^{2}+\left\|w_{n}-v_{n}\right\|^{2}\right) \\
& \quad\left(1-a_{n}\right)\left\|w_{n}-q\right\|^{2} \\
& \quad-a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
=\| & w_{n}-q\left\|^{2}+a_{n}^{2}\right\| w_{n}-v_{n} \|^{2} .
\end{aligned}
$$

From (3.3), it follows that
$\left\|z_{n}-q\right\|^{2} \leq\left\|x_{n}-q\right\|^{2}+a_{n}^{2}\left\|w_{n}-v_{n}\right\|^{2}$.

In addition, since T is hemicontractive-type mapping and $u_{n} \in T z_{n}$, from (3.1) and (3.4), we get that

$$
\begin{align*}
\left\|u_{n}-q\right\|^{2} & \leq D^{2}\left(T z_{n}, T q\right) \\
& \leq\left\|z_{n}-q\right\|^{2}+\left\|z_{n}-u_{n}\right\|^{2} \\
& \leq\left\|x_{n}-q\right\|^{2}+a_{n}^{2}\left\|w_{n}-v_{n}\right\|^{2}+\left\|z_{n}-u_{n}\right\|^{2} \tag{3.5}
\end{align*}
$$

It follows from (3.1) that

$$
\begin{align*}
\left\|w_{n}-z_{n}\right\|^{2} & =\left\|w_{n}-\left(a_{n} v_{n}+\left(1-a_{n}\right) w_{n}\right)\right\|^{2} \\
& =a_{n}^{2}\left\|w_{n}-v_{n}\right\|^{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{3.6}
\end{align*}
$$

Thus, since $\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T w_{n}, T z_{n}\right)$ and T is a L-Lipschitzian mapping, from (3.6) and Lemma 2.2, we get that

$$
\begin{align*}
& \left\|z_{n}-u_{n}\right\|^{2}=\left\|a_{n} v_{n}+\left(1-a_{n}\right) w_{n}-u_{n}\right\|^{2} \\
& =a_{n}\left\|v_{n}-u_{n}\right\|^{2}+\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& -a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
& \leq\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2}+4 a_{n} D^{2}\left(T w_{n}, T z_{n}\right) \\
& -a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
& \leq\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2}+4 a_{n} L^{2}\left\|w_{n}-z_{n}\right\|^{2} \\
& -a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
& =\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2}+4 a_{n}{ }^{3} L^{2}\left\|w_{n}-v_{n}\right\|^{2} \\
& -a_{n}\left(1-a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
& =\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& +a_{n}\left(4 L^{2} a_{n}{ }^{2}+a_{n}-1\right)\left\|w_{n}-v_{n}\right\|^{2} . \tag{3.7}
\end{align*}
$$

Hence, substituting (3.7) into (3.5), we have that

$$
\begin{aligned}
\left\|u_{n}-q\right\|^{2} \leq & \left\|x_{n}-q\right\|^{2}+a_{n}^{2}\left\|w_{n}-v_{n}\right\|^{2} \\
& +\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& +a_{n}\left(4 L^{2} a_{n}^{2}+a_{n}-1\right)\left\|w_{n}-v_{n}\right\|^{2}
\end{aligned}
$$

$$
\begin{align*}
= & \left\|x_{n}-q\right\|^{2}+\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& +a_{n}\left(4 L^{2} a_{n}^{2}+2 a_{n}-1\right)\left\|w_{n}-v_{n}\right\|^{2} . \tag{3.8}
\end{align*}
$$

Thus, from (3.3), (3.8), Lemma 2.2 and condition (i), we obtain that

$$
\begin{align*}
&\left\|x_{n+1}-q\right\|^{2} \\
&=\left\|b_{n} v+c_{n} u_{n}+e_{n} w_{n}-q\right\|^{2} \\
& \leq b_{n}\|v-q\|^{2}+c_{n}\left\|u_{n}-q\right\|^{2} \\
&+e_{n}\left\|w_{n}-q\right\|^{2}-c_{n} e_{n}\left\|w_{n}-u_{n}\right\|^{2} \\
& \leq b_{n}\|v-q\|^{2}+c_{n}\left(\left\|x_{n}-q\right\|^{2}\right. \\
& \quad+\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
&\left.+a_{n}\left(4 L^{2} a_{n}^{2}+2 a_{n}-1\right)\left\|w_{n}-v_{n}\right\|^{2}\right) \\
& \quad+e_{n}\left\|w_{n}-q\right\|^{2}-c_{n} e_{n}\left\|w_{n}-u_{n}\right\|^{2} \\
& \leq b_{n}\|v-q\|^{2}+\left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2} \\
&+c_{n}\left(1-e_{n}-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& \quad-c_{n} a_{n}\left(1-4 L^{2} a_{n}^{2}-2 a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
&= b_{n}\|v-q\|^{2}+\left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2} \\
& \quad-c_{n} a_{n}\left(1-4 L^{2} a_{n}^{2}-2 a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
&+c_{n}\left(b_{n}+c_{n}-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2}, \ldots \ldots \ldots . . \tag{3.9}
\end{align*}
$$

and from condition (iii), we have that
$1-4 L^{2}{a_{n}}^{2}-2 a_{n} \geq 1-4 L^{2} d^{2}-2 d>0$ and
$b_{n}+c_{n}-a_{n} \leq 0$, for all $n \geq 1$.
Thus, from (3.9) and (3.10), we find that $\left\|x_{n+1}-q\right\|^{2} \leq b_{n}\|v-q\|^{2}+\left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2}$

$$
\leq \max \left\{\|v-q\|^{2},\left\|x_{n}-q\right\|^{2}\right\}
$$

Hence, by induction, the sequence $\left\{x_{n}\right\}$ is bounded. This completes the proof.

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C B(C)$ be a Lipschitz hemicontractive-type multi-valued mapping with Lipschitz constant L. Let $A_{m}: C \rightarrow H$ be a continuous monotone mapping and let $F_{m}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1.1, for each $m \in\{1,2, \ldots, N\}$. Assume that $\Theta=\cap_{m=1}^{N} E P\left(F_{m}, A_{m}\right) \cap F(T)$ is nonempty, closed and convex, $(I-T)$ is demiclosed at zero and $T q=\{q\}$ for all $q \in \Theta$. Let $\left\{r_{m, n}\right\} \subset$ $(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{m, n}=r_{m}$ for some $0<r_{m}<\infty$ and for each $m=1,2, \ldots, N$, and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{e_{n}\right\}$ and $\left\{d_{m, n}\right\}$ be sequences in $(0,1)$ such that
i) $b_{n}+c_{n}+e_{n}=1$ and $0<a \leq c_{n}, e_{n} \leq b<1$;
ii) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
iii) $\sum_{m=1}^{N} d_{m, n}=1$ and $0<c \leq d_{m, n} \leq 1$;
iv) $b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by

$$
\left\{\begin{array}{l}
F_{m}\left(y_{m, n}, z\right)+\left\langle A_{m} y_{m, n}, z-y_{m, n}\right\rangle \tag{3.11}\\
+\frac{1}{r_{m, n}}\left\langle z-y_{m, n}, y_{m, n}-x_{n}\right\rangle \geq 0, \forall z \in C, m=1,2, \ldots, N \\
\quad w_{n}=\sum_{m=1}^{N} d_{m, n} y_{m, n}, \\
z_{n}=a_{n} v_{n}+\left(1-a_{n}\right) w_{n}, \\
x_{n+1}=b_{n} v+c_{n} u_{n}+e_{n} w_{n},
\end{array}\right.
$$

for all $n \geq 1$, where $v_{n} \in T w_{n}, u_{n} \in T z_{n}$ such that $\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T w_{n}, T z_{n}\right)$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\theta}(v)$.

Proof. Since θ is nonempty, closed and convex subset of H, then we see that P_{θ} is well defined. Obviously, from Theorem 3.1 the sequence $\left\{x_{n}\right\}$ and hence $\left\{y_{n, m}\right\},\left\{w_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded. Now, let $q \in \Theta$. Then, using the fact that $T_{r_{n, m}}$ is firmly nonexpansive and $T_{r_{m, n}} q=q$, for all $m=1,2, \ldots, N$, and Lemma 2.3 (i), we find that

$$
\begin{aligned}
& \left\|y_{m, n}-q\right\|^{2} \\
& \quad=\left\|T_{r_{m, n}} x_{n}-T_{r_{m, n}} q\right\|^{2} \\
& \leq\left\langle y_{m, n}-q, x_{n}-q\right\rangle \\
& \quad=\frac{1}{2}\left(\left\|y_{m, n}-q\right\|^{2}+\left\|x_{n}-q\right\|^{2}-\left\|y_{m, n}-x_{n}\right\|^{2}\right),
\end{aligned}
$$

which implies that

$$
\left\|y_{m, n}-q\right\|^{2} \leq\left\|x_{n}-q\right\|^{2}-\left\|y_{m, n}-x_{n}\right\|^{2} .
$$

This gives that

$$
\begin{align*}
\left\|w_{n}-q\right\|^{2} & \leq \sum_{m=1}^{N} d_{m, n}\left\|y_{m, n}-q\right\|^{2} \\
& \leq\left\|x_{n}-q\right\|^{2}-\sum_{m=1}^{N} d_{m, n}\left\|y_{m, n}-x_{n}\right\|^{2} . \tag{3.12}
\end{align*}
$$

On the other hand, from (3.11), Lemma 2.2 and Lemma 2.3 (ii), we have

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2}= & \left\|b_{n} v+c_{n} u_{n}+e_{n} w_{n}-q\right\|^{2} \\
\leq & \left\|c_{n}\left(u_{n}-q\right)+e_{n}\left(w_{n}-q\right)\right\|^{2} \\
& +2 b_{n}\left(v-q, x_{n+1}-q\right\rangle \\
\leq & c_{n}\left\|u_{n}-q\right\|^{2}+e_{n}\left\|w_{n}-q\right\|^{2} \\
& -c_{n} e_{n}\left\|w_{n}-u_{n}\right\|^{2} \\
& +2 b_{n}\left\langle v-q, x_{n+1}-q\right\rangle \ldots \ldots \tag{3.13}
\end{align*}
$$

Thus, substituting (3.8) and (3.12) into (3.13), we obtain that

$$
\begin{aligned}
& \left\|x_{n+1}-q\right\|^{2} \\
& \leq c_{n}\left(\left\|x_{n}-q\right\|^{2}+a_{n}\left(4 L^{2} a_{n}^{2}+2 a_{n}-1\right)\left\|w_{n}-v_{n}\right\|^{2}\right) \\
& \quad+c_{n}\left(1-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& \quad+e_{n}\left(\left\|x_{n}-q\right\|^{2}-\sum_{m=1}^{N} d_{m, n}\left\|y_{m, n}-x_{n}\right\|^{2}\right) \\
& \quad-c_{n} e_{n}\left\|w_{n}-u_{n}\right\|^{2}+2 b_{n}\left\langle v-q, x_{n+1}-q\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& =\left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2} \\
& -c_{n} a_{n}\left(1-4 L^{2} a_{n}{ }^{2}-2 a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
& +c_{n}\left(b_{n}+c_{n}-a_{n}\right)\left\|w_{n}-u_{n}\right\|^{2} \\
& -e_{n} \sum_{m=1}^{N} d_{m, n}\left\|y_{m, n}-x_{n}\right\|^{2} \\
& +2 b_{n}\left\langle v-q, x_{n+1}-q\right\rangle \tag{3.14}
\end{align*}
$$

Now, we consider the following two cases:
Case 1. Suppose that there exists $n_{0} \in \mathbb{N}$ such that $\left\{\left\|x_{n}-q\right\|\right\}_{n \geq n_{0}}^{\infty}$ is nonincreasing sequence. Then, the boundedness of $\left\{\left\|x_{n}-q\right\|\right\}$ implies that $\left\{\left\|x_{n}-q\right\|\right\}$ is convergent. From (3.10) and (3.14), it follows that

$$
\begin{aligned}
& c_{n} a_{n}\left(1-4 L^{2} a_{n}^{2}-2 a_{n}\right)\left\|w_{n}-v_{n}\right\|^{2} \\
& \quad \leq\left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2}-\left\|x_{n+1}-q\right\|^{2} \\
& \quad+2 b_{n}\left\langle v-q, x_{n+1}-q\right\rangle
\end{aligned}
$$

Thus, from (3.10), the assumptions of $\left\{c_{n}\right\}$ and $\left\{a_{n}\right\}$, and the fact that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\{x_{n}\right\}$ is bounded, we find that

$$
\begin{equation*}
\left\|w_{n}-v_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.15}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(w_{n}, T w_{n}\right)=0 . \tag{3.16}
\end{equation*}
$$

From (3.10) and (3.14), we see that

$$
\begin{aligned}
e_{n} d_{m, n}\left\|y_{m, n}-x_{n}\right\|^{2} & \leq\left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2} \\
& -\left\|x_{n+1}-q\right\|^{2} \\
& +2 b_{n}\left\langle v-q, x_{n+1}-q\right\rangle .
\end{aligned}
$$

This together with conditions (i), (ii) and (iii) imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{m, n}-x_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

In addition, from the Lipschitz condition of T, (3.6) and (3.15), we get that

$$
\begin{aligned}
\left\|w_{n}-u_{n}\right\| & \leq\left\|w_{n}-v_{n}\right\|+\left\|v_{n}-u_{n}\right\| \\
& \leq\left\|w_{n}-v_{n}\right\|+2 L\left\|w_{n}-z_{n}\right\| \\
& =\left\|w_{n}-v_{n}\right\|+2 L a_{n}\left\|w_{n}-v_{n}\right\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-u_{n}\right\|=0 . \tag{3.18}
\end{equation*}
$$

Again from (3.11) and triangle inequality, we get that

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| \leq & \left\|x_{n+1}-w_{n}\right\|+\left\|w_{n}-x_{n}\right\| \\
= & \left\|b_{n}\left(v-w_{n}\right)+c_{n}\left(u_{n} w_{n}\right)\right\| \\
& +\left\|\sum_{m=1}^{N} d_{m, n} y_{m, n}-x_{n}\right\| \\
\leq & b_{n}\left\|v-w_{n}\right\|+c_{n}\left\|u_{n}-w_{n}\right\| \\
& +\sum_{m=1}^{N} d_{m, n}\left\|y_{m, n}-x_{n}\right\| .
\end{aligned}
$$

Therefore, from (3.17), (3.18) and the fact that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, we obtain
$\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$.

It follows from (3.10) and (3.14) that

$$
\begin{align*}
\left\|x_{n+1}-q\right\|^{2} \leq & \left(1-b_{n}\right)\left\|x_{n}-q\right\|^{2} \\
& +2 b_{n}\left\langle v-q, x_{n+1}-q\right\rangle \tag{3.20}
\end{align*}
$$

Now, let $p=P_{\theta}(v)$. Then, we show that $\limsup _{n \rightarrow \infty}\left\langle v-p, x_{n+1}-p\right\rangle \leq 0$. Since $\left\{x_{n+1}\right\}$ is a bounded sequence in a real Hilbert space H, which is a reflexive Banach space, then there exists a subsequence $\left\{x_{n_{i}+1}\right\}$ of $\left\{x_{n+1}\right\}$ such that $x_{n_{i}+1} \rightharpoonup y$ as $i \rightarrow \infty$ and

$$
\underset{n \rightarrow \infty}{\limsup }\left\langle v-p, x_{n_{i}+1}-p\right\rangle=\lim _{i \rightarrow \infty}\left\langle v-p, x_{n_{i}+1}-p\right\rangle .
$$

Since, C is weakly closed, we have $y \in C$ and from (3.19), it follows that $x_{n_{i}} \rightharpoonup y$ as $i \rightarrow \infty$. Using (3.17), we see that $\left\|w_{n_{i}}-x_{n_{i}}\right\| \rightarrow 0$ as $i \rightarrow \infty$ and so $w_{n_{i}} \rightharpoonup y$ as $i \rightarrow \infty$. Thus, demiclosedness of $(I-T)$ at zero and (3.16) imply that $y \in F(T)$.
On the other hand, from the fact that ($I-$ $T_{r_{m, n_{i}}}$) is demiclosed at zero and (3.17), we obtain that $y=T_{r_{m, n}} y$ and thus $y \in E P\left(F_{m}, A_{m}\right)$, for all $m \in\{1,2, \ldots, N\}$. That is,

$$
y \in \bigcap_{m=1}^{N} E P\left(F_{m}, A_{m}\right)
$$

Therefore, $y \in \Theta$. Hence, since $p=P_{\Theta}(v)$ and $x_{n_{i}} \rightharpoonup y$ as $i \rightarrow \infty$, from the property of a metric projection, equation (2.1), we have that

$$
\begin{align*}
\limsup _{n \rightarrow \infty} & \left\langle v-p, x_{n_{i}+1}-p\right\rangle=\lim _{i \rightarrow \infty}\left\langle v-p, x_{n_{i}+1}-p\right\rangle \\
& =\langle v-p, y-p\rangle \leq 0 \ldots \tag{3.21}
\end{align*}
$$

Thus, since $p \in \Theta$, from (3.20), (3.21), condition (ii) and Lemma 2.6, we conclude that $\left\|x_{n}-p\right\| \rightarrow$ 0 as $n \rightarrow \infty$. That is, $x_{n} \rightarrow p=P_{\theta}(v)$.

Case 2. Suppose that there exists a subsequence $\left\{n_{j}\right\}$ of $\{n\}$ such that $\left\|x_{n_{j}}-q\right\|<\left\|x_{n_{j}}-q\right\|$, for all $j \in \mathbb{N}$. Then, by Lemma 2.7, there exists a nondecreasing sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ such that $n_{k} \rightarrow \infty$, and

$$
\left\|x_{n_{k}}-q\right\| \leq\left\|x_{n_{k}+1}-q\right\| \text { and }
$$

$$
\begin{equation*}
\left\|x_{k}-q\right\| \leq\left\|x_{n_{k}+1}-q\right\| \tag{3.22}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Thus, replacing n by n_{k} and using (3.22), (3.14), (3.10) and the fact that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, we find that $\left\|w_{n_{k}}-v_{n_{k}}\right\| \rightarrow 0$ and $\left\|y_{m, n_{k}}-x_{n_{k}}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

Hence, following an argument similar to that in Case 1, we obtain that
$\limsup _{i \rightarrow \infty}\left\langle v-p, x_{n_{k}+1}-p\right\rangle \leq 0$

Now, since $p \in \Theta$, from (3.20), we get that

$$
\begin{align*}
& \left\|x_{n_{k}+1}-p\right\|^{2} \leq\left(1-b_{n_{k}}\right)\left\|x_{n_{k}}-p\right\|^{2} \\
& +2 b_{n_{k}}\left\langle v-p, x_{n_{k}+1}-p\right\rangle \ldots \ldots \ldots . . . \tag{3.24}
\end{align*}
$$

and hence, since $p \in \Theta$, (3.22) and (3.24) imply that

$$
\begin{aligned}
b_{n_{k}}\left\|x_{n_{k}}-p\right\|^{2} \leq & \left\|x_{n_{k}}-p\right\|^{2}-\left\|x_{n_{k}+1}-p\right\|^{2} \\
& +2 b_{n_{k}}\left\langle v-p, x_{n_{k}+1}-p\right\rangle \\
& \leq 2 b_{n_{k}}\left\langle v-p, x_{n_{k}+1}-p\right\rangle
\end{aligned}
$$

Then, from the fact that $b_{n_{k}}>0$, we have that $\left\|x_{n_{k}}-p\right\|^{2} \leq 2\left\langle v-p, x_{n_{k}+1}-p\right\rangle$. It follows from (3.23) that $\left\|x_{n_{k}}-p\right\| \rightarrow 0$ as $k \rightarrow \infty$.

This together with (3.24) and the fact that $b_{n_{k}} \rightarrow 0$ imply that $\left\|x_{n_{k}+1}-p\right\| \rightarrow 0$ as $k \rightarrow \infty$. Since $p \in \Theta$, we get that $\left\|x_{k}-p\right\| \leq\left\|x_{n_{k}+1}-p\right\|$ for all $k \in \mathbb{N}$. Thus, we obtain that $x_{k} \rightarrow p$ as $k \rightarrow \infty$. Therefore, we conclude that the sequence $\left\{x_{n}\right\}$ generated by (3.11) converges strongly to the point $p=P_{\theta}(v)$. This completes the proof.

As a direct consequence of our main result, we obtain the following results.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C B(C)$ be a Lipschitz pseudocontractive multi-valued mapping with Lipschitz constant L. Let $A_{m}: C \rightarrow H$ be a continuous monotone mapping and let $F_{m}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1.1, for each $m \in$ $\{1,2, \ldots, N\}$. Assume that $\Theta=\bigcap_{m=1}^{N} E P\left(F_{m}, A_{m}\right) \cap$ $F(T)$ is nonempty, closed and convex, $(I-T)$ is demiclosed at zero and $T q=\{q\}$ for all $q \in F(T)$. Let $\left\{r_{m, n}\right\} \subset(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{m, n}=r_{m}$ for some $0<r_{m}<\infty$ and for each $m=1,2, \ldots, N$, and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{e_{n}\right\}$ and $\left\{d_{n, m}\right\}$ be sequences in $(0,1)$ such that
i) $b_{n}+c_{n}+e_{n}=1$ and $0<a \leq c_{n}, e_{n} \leq b<1$;
ii) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
iii) $\sum_{m=1}^{N} d_{m, n}=1$ and $0<c \leq d_{m, n} \leq 1$;
iv) $b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by

$$
\left\{\begin{array}{l}
F_{m}\left(y_{m, n}, z\right)+\left\langle A_{m} y_{m, n}, z-y_{m, n}\right\rangle \\
+\frac{1}{r_{m, n}}\left\langle z-y_{m, n}, y_{m, n}-x_{n}\right\rangle \geq 0, \forall z \in C, m=1,2, \ldots, N, \\
w_{n}=\sum_{m=1}^{N} d_{m, n} y_{m, n} \\
z_{n}=a_{n} v_{n}+\left(1-a_{n}\right) w_{n}, \\
x_{n+1}=b_{n} v+c_{n} u_{n}+e_{n} w_{n},
\end{array}\right.
$$

for all $n \geq 1$, where $v_{n} \in T w_{n}, u_{n} \in T z_{n}$ such that $\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T w_{n}, T z_{n}\right)$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\Theta}(v)$.

Proof. Since a Lipschitz pseudocontractive multivalued mapping T with $F(T) \neq \emptyset$ and $T q=\{q\}$, $\forall q \in F(T)$ is Lipschitz hemicontractive-type mapping, we obtain the desired result from Theorem 3.2.

If, in Theorem 3.2, we assume that $A_{m} \equiv 0$, for all $m \in\{1,2, \ldots, N\}$, then we obtain the following corollary on a finite family of equilibrium problems and fixed point problem of multi-valued Lipschitz hemicontractive-type mapping.

Corollary 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C B(C)$ be a Lipschitz hemicontractive-type multi-valued mapping with Lipschitz constant L. Let $F_{m}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1.1, for each $m \in\{1,2, \ldots, N\}$. Assume that $\Theta=\bigcap_{m=1}^{N} E P\left(F_{m}\right) \cap F(T)$ is nonempty, closed and convex, $(I-T)$ is demiclosed at zero and $T q=\{q\}$ for all $q \in \Theta$. Let $\left\{r_{m, n}\right\} \subset$ $(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{m, n}=r_{m}$ for some $0<r_{m}<\infty$ and for each $m=1,2, \ldots, N$, and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{e_{n}\right\}$ and $\left\{d_{m, n}\right\}$ be sequences in $(0,1)$ such that
i) $b_{n}+c_{n}+e_{n}=1$ and $0<a \leq c_{n}, e_{n} \leq b<1$;
ii) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
iii) $\sum_{m=1}^{N} d_{m, n}=1$ and $0<c \leq d_{m, n} \leq 1$;
iv) $b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by

$$
\left\{\begin{array}{l}
F_{m}\left(y_{m, n}, z\right)+\frac{1}{r_{m, n}}\left\langle z-y_{m, n}, y_{m, n}-x_{n}\right\rangle \geq 0 \\
\quad \forall z \in C, m=1,2, \ldots, N \\
w_{n}=\sum_{m=1}^{N} d_{m, n} y_{m, n} \\
z_{n}=a_{n} v_{n}+\left(1-a_{n}\right) w_{n} \\
x_{n+1}=b_{n} v+c_{n} u_{n}+e_{n} w_{n}
\end{array}\right.
$$

for all $n \geq 1$, where $v_{n} \in T w_{n}, u_{n} \in T z_{n}$ such that
$\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T w_{n}, T z_{n}\right)$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\theta}(v)$.

If, in Theorem 3.2, we assume that $F_{m} \equiv 0$, for all $m \in\{1,2, \ldots, N\}$, then we have the following result on the problem of finding a common point of the common solution set of a finite family of variational inequality problems and fixed point set of Lipschitz hemicontractive-type mapping.

Corollary 3.5. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C B(C)$ be a Lipschitz hemicontractive-type multi-valued mapping with Lipschitz constant L. Let $A_{m}: C \rightarrow H$ be a continuous monotone mapping, for each $m \in\{1,2, \ldots, N\}$. Assume that $\Theta=\bigcap_{m=1}^{N} V I\left(C, A_{m}\right) \cap F(T)$ is nonempty, closed and convex, $(I-T)$ is demiclosed at zero and $T q=\{q\}$ for all $q \in \Theta$. Let $\left\{r_{m, n}\right\} \subset(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{m, n}=r_{m}$ for some $0<r_{m}<\infty$ and for each $m=1,2, \ldots, N$, and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{e_{n}\right\}$ and $\left\{d_{m, n}\right\}$ be sequences in $(0,1)$ such that $b_{n}+c_{n}+e_{n}=1$ and $0<a \leq c_{n}, e_{n} \leq b<1$;
i) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
ii) $\sum_{m=1}^{N} d_{m, n}=1$ and $0<c \leq d_{m, n} \leq 1$;
iii) $b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by

$$
\left\{\begin{array}{l}
\left\langle A_{m} y_{m, n}, z-y_{m, n}\right\rangle+\frac{1}{r_{n, m}}\left\langle z-y_{m, n}, y_{m, n}-x_{n}\right\rangle \geq 0 \\
\quad \forall z \in C, m=1,2, \ldots, N \\
w_{n}=\sum_{m=1}^{N} d_{m, n} y_{m, n} \\
z_{n}=a_{n} v_{n}+\left(1-a_{n}\right) w_{n} \\
x_{n+1}=b_{n} v+c_{n} u_{n}+e_{n} w_{n}
\end{array}\right.
$$

for all $n \geq 1$, where $v_{n} \in T w_{n}, u_{n} \in T z_{n}$ such that $\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T w_{n}, T z_{n}\right)$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\Theta}(v)$.

If, in Theorem 3.2, we assume that T is a singlevalued hemicontractive mapping from C into itself, then we obtain the following result.

Corollary 3.6. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be a Lipschitz hemicontractive mapping with Lipschitz constant L. Let $A_{m}: C \rightarrow H$ be a continuous monotone mapping and let $F_{m}: C \times$ $C \rightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1.1 for each, $m \in\{1,2, \ldots, N\}$. Assume that $\Theta=$ $\cap_{m=1}^{N} E P\left(F_{m}, A_{m}\right) \cap F(T)$ is nonempty, closed and convex, $(I-T)$ is demiclosed at zero. Let $\left\{r_{m, n}\right\} \subset(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{m, n}=r_{m}$ for some $0<r_{m}<\infty$ and for each $m=1,2, \ldots, N$, and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{e_{n}\right\}$ and $\left\{d_{m, n}\right\}$ be sequences in $(0,1)$ such that
i) $b_{n}+c_{n}+e_{n}=1$ and $0<a \leq c_{n}, e_{n} \leq b<1$;
ii) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
iii) $\sum_{m=1}^{N} d_{m, n}=1$ and $0<c \leq d_{m, n} \leq 1$;
iv) $b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by
$\left\{\begin{array}{l}F_{m}\left(y_{n, m}, z\right)+\left\langle A_{m} y_{n, m}, z-y_{n, m}\right\rangle \\ +\frac{1}{r_{m, n}}\left\langle z-y_{n, m}, y_{n, m}-x_{n}\right\rangle \geq 0, \forall z \in C, m=1,2, \ldots, N, \\ w_{n}=\sum_{m=1}^{N} d_{m, n} y_{n, m}, \\ z_{n}=a_{n} T w_{n}+\left(1-a_{n}\right) w_{n}, \\ x_{n+1}=b_{n} v+c_{n} T z_{n}+e_{n} w_{n},\end{array}\right.$
for all $n \geq 1$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\theta}(v)$.

If, in Theorem 3.2, we assume that $N=1$, then we get the following corollary.
Corollary 3.7. (Habtu Zegeye et al., 2017). Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $T: C \rightarrow C B(C)$ be a Lipschitz hemicontractive-type multi-valued mapping with Lipschitz constant L. Let $A: C \rightarrow H$ be a continuous monotone mapping and let $F: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying Assumption 1.1. Assume that $\Theta=E P(F, A) \cap F(T)$ is nonempty, closed and convex, $(I-T)$ is demiclosed at zero and $T q=\{q\}$ for all $q \in \Theta$. Let $\left\{r_{n}\right\} \subset(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{n}=r$ for some $0<r<\infty$, and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$, and $\left\{e_{n}\right\}$ be sequences in $(0,1)$ such that
i) $b_{n}+c_{n}+e_{n}=1$ and $0<a \leq c_{n}, e_{n} \leq b<1$;
ii) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
iii) $b_{n}+c_{n} \leq a_{n} \leq d<\frac{1}{\sqrt{1+4 L^{2}}+1}$.

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by

$$
\left\{\begin{array}{l}
F\left(y_{n}, z\right)+\left\langle A y_{n}, z-y_{n}\right\rangle \\
\quad+\frac{1}{r_{n}}\left\langle z-y_{n}, y_{n}-x_{n}\right\rangle \geq 0, \forall z \in C, \\
z_{n}=a_{n} v_{n}+\left(1-a_{n}\right) y_{n}, \\
x_{n+1}=b_{n} v+c_{n} u_{n}+e_{n} y_{n},
\end{array}\right.
$$

for all $n \geq 1$, where $v_{n} \in T y_{n}, u_{n} \in T z_{n}$ such that $\left\|v_{n}-u_{n}\right\| \leq 2 D\left(T y_{n}, T z_{n}\right)$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\theta}(v)$.

If, in Theorem 3.2, we assume that $T=I$, where I is the identity mapping on C, then we obtain the following corollary on a finite family of generalized equilibrium problems.

Corollary 3.8. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $A_{m}: C \rightarrow H$ be a continuous monotone mapping and let $F_{m}: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying

Assumption 1.1, for each $m \in\{1,2, \ldots, N\}$. Assume that $\Theta=\bigcap_{m=1}^{N} E P\left(F_{m}, A_{m}\right) \cap F(T)$ is nonempty. Let $\left\{r_{m, n}\right\} \subset(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{m, n}=$ r_{m} for some $0<r_{m}<\infty$ and for each $m=$ $1,2, \ldots, N$, and let $\left\{b_{n}\right\}$ and $\left\{d_{m, n}\right\}$ be sequences in $(0,1)$ such that
i) $\lim _{n \rightarrow \infty} b_{n}=0, \quad \sum_{n=1}^{\infty} b_{n}=\infty$;
ii) $\sum_{m=1}^{N} d_{m, n}=1$ and $0<c \leq d_{m, n} \leq 1$

Let $\left\{x_{n}\right\}$ be a sequence generated from an arbitrary $x_{1}, v \in C$ by
$\left\{\begin{array}{l}F_{m}\left(y_{m, n}, z\right)+\left\langle A_{m} y_{m, n}, z-y_{m, n}\right\rangle \\ \quad+\frac{1}{r_{m, n}}\left\langle z-y_{m, n}, y_{m, n}-x_{n}\right\rangle \geq 0, \forall z \in C, m=1,2, \ldots, N, \\ w_{n}=\sum_{m=1}^{N} d_{m, n} y_{m, n}, \\ x_{n+1}=b_{n} v+\left(1-b_{n}\right) w_{n},\end{array}\right.$
for all $n \geq 1$. Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\theta}(v)$.

Remark 3.9. Theorem 3.2 extends the results of Tesfalem Hadush et al. (2016), Habtu Zegeye et al. (2017), Razani and Yazdi (2012), Нао (2011), Wang et al. (2007), Ceng et al. (2010), Huang and Ma (2014) in the sense that our iterative algorithm provides strong convergence to a common element of the set of common solutions of a finite family of generalized equilibrium problems and the set of fixed points of a Lipschitz hemicontrac-tive-type multi-valued mapping. We have used the demiclosedness principle in the proof of our Theorem 3.2 which makes a little simpler than using Assumption 1.1.

ACKNOWLEDGEMENTS

This work was completed with the financial support of Simons Foundation based at Botswana International University of Science and Technology. The authors are thankful to the anonymous reviewers for their valuable suggestions to enhance the quality of our research paper.

REFERENCES

1. Agrawal, R.P., O'Regan, D and Sahu, D.R. (2009). Fixed Point Theory for Lipschitzian-type Mappings with Application. Springer, New York.
2. Ali, B. (2009). Fixed points approximation and solutions of some equilibrium and variational inequalities problems. International Journal of Mathematics and Mathematical Sciences, 17 pages, doi: 10.1152/2009/656534.
3. Berinde, V. and Păcurar, M. (2013). The role of Pompeiu-Hausdorff metric in fixed point theory. Creat. Math. Inform. 22(2):143-150.
4. Blum, E. and Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. Math. Stud. 63:123-145.
5. Browder, F.E. and Petryshyn, W.V. (1967). Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20:197-228.
6. Ceng, L., Petrusel, A. and Wong, M. (2010). Strong convergence theorem for a generalized equilibrium problem and a pseudocontractive mapping in a Hilbert space. Taizan J. Math. 14:1881-1901.
7. Chidume, C.E., Chidume, C.O., Djitte, N. and Minjibir, M.S. (2013). Convergence theorems for fixed points of multi-valued strictly pseudocontractive mapping in Hilbert spaces. Abstr. Appl. Anal., 10 pages, doi: 10.1155/2013/629468.
8. Cholamjiak, W., Cholamjiak, P. and Suantai, S. (2015). Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems. J. Nonlinear Sci. Appl. 8:1245-1256.
9. Combettes, P.L. and Hirstoaga, S.A. (2005). Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6:117-136.
10. Habtu Zegeye and Shahzad, N. (2011a). A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems. Nonlinear Anal. 74:263-272.
11. Habtu Zegeye and Shahzad, N. (2011b). Convergence of Manns type iteration method for generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 62:4007-4014.
12. Habtu Zegeye and Shahzad, N. (2012). Strong convergence of an iterative method for pseudo-contractive and monotone mappings. J. Glob. Optim. 54:173-184.
13. Habtu Zegeye, Tesfalem Hadush and Mengistu Goa (2017). Algorithms of common solutions for a fixed point of hemicontractive-type mapping and a generalized equilibrium problem. International Journal of Advanced Mathematical Sciences 5(1):20-26.
14. Hao, Y. (2011). A strong convergence theorem on generalized equilibrium problems and strictly pseudocontractive mappings. Proc. Eston. Acad. Sci. 60:12-24.
15. Huang, C. and Ma, X. (2014). On generalized equilibrium problems and strictly pseudocontractive mappings in Hilbert spaces. Fixed Point Theory Appl., 11 pages, doi: 10.1186/1687-1812-2014-145.
16. Isiogugu, F.O. and Osilike, M.O. (2014). Convergence theorems for new classes of multi-
valued hemicontractive-type mappings. Fixed Point Theory Appl., 12 pages, doi: 10.1186/-1687-1812-2014-93.
17. Kamraksa, U. and Wangkeeree, R. (2011). Generalized equilibrium problems and fixed point problems for nonexpansive semigroups in Hilbert spaces. J. Glob. Optim. 51:689-714.
18. Mainge, P.E. (2008). Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-valued Anal. 16:899-912.
19. Mongkolkeha, C., Cho, Y.J. and Kumam, P. (2013). Convergence theorems for k-demicontractive mapping in Hilbert spaces. Math. Inequal. Appl. 16(4):1065-1082.
20. Nadler, S.B. Jr. (1969). Multi-valued contraction mappings. Pacific J. Math. 30:475-487.
21. Panyanak, B. (2007). Mann and Ishikawa iteration processes for multi-valued mappings I Banach spaces. Comput. Math. Appl. 54:872-877.
22. Razani, A. and Yazdi, M. (2012). A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings. Bulletin of the Malaysian Mathematical Sciences Society 35(4):1049-1061.
23. Sebsibe Teferi, Mengistu Goa and Habtu Zegeye (2015). Strong convergence theorems for a common fixed point of a finite family of Lipschitz hemicontractive-type multi-valued mappings. Adv. Fixed Point Theory. 5(2):228253.
24. Shahzad, N. and Habtu Zegeye (2008). Strong convergence results for nonself multimaps in Banach spaces. Proc. Amer. Math. Soc. 136(2):539-548.
25. Takahashi, S. and Takahashi, W. (2007). Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331:506-515.
26. Takahashi, S. and Takahashi, W. (2008). Strong convergence theorem for a generalized equilibrium problem and nonexpansive mapping in Hilbert space. Nonlinear Anal. 69:1025-1033.
27. Tesfalem Hadush, Mengistu Goa and Habtu Zegeye (2016). Iterative methods for a fixed point of hemicontractive-type mapping and a solution of a variational inequality problem. Creat. Math. Inform. 25(2):183-196.
28. Wang, S., Zhou, H. and Song, J. (2007). Viscosity approximation methods for equilibrium problems and fixed point problems of nonexpansive mappings and inverse-strongly monotone mappings. Method Appl. Anal. 14:405420.
29. Xu, H.K. (2002). Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65:109-113.
30. Yu, Y., Wu, Z. and Yang, P. (2012). An iterative algorithm for hemi-contractive mappings in Banach spaces. Abstr. Appl. Anal. 11 pages, doi: 10.1155/2012/264103.
31. Zhang, L. and Hao, Y. (2016). Fixed point methods for solving solutions of a generalized equilibrium problem. J. Nonlinear Sci. Appl. 9:149159.
