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ABSTRACT: The atticle gives the parametric solutions of xy = z(y - ¥*) over
any unique factorization domain. An application of the obtained characterization
to Diophantine equations is demonstrated.

1. INTRODUCTION
b = 5 and a = 2 are natural numbers such that the decimal representation of
b/a is (a.b),,. In an informal discussion, L. Kadosh® asks whether there are
other natural numbers b and a such that b/a = (a.b),,.

To fix notations, let a, b and g be natural numbers with g =2. Put

k n-i
a=Yag' adb = ijg’
i=0 =0

with 0 < a;, b, < g, k and n, whole numbers, n > 0 and ab,, # 0. The
expression

b k ) n-1 )
a=a + —-= Zaig’ + Ebj.g'"*’
g i=0 Jj=0

L. Kadosh says that he got the problem from a colleague. A reviewer has pointed out that the
problem is due to Michael S. Runge (1991).
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is called the representation of the rational number o= a+—b; in base g. For
simplicity, we denote this representation of « by (a.b),.
Thus a generalization of the above posed problem is whether

b/a = (a.b), 1)
holds for some other pair of natural numbers (b,a). Still more, the above

problem is contained in a question that looks for natural numbers a and b, b not
a multiple of a, such that

@

Qe
I
)
+

>

for some natural number h.

Our basic interest is on the solutions of (2) in natural numbers. On the other
hand, the arguments developed to solve (2) -in natural numbers also hold in
unique factorization domains. Evidently (2) is equivalent to

ab = n(b - 2% 3)

with ah # 0, b is not a multiple of a, which is the title of the article with x =
a,y = b and z = h over such domains. In the next two sections, we discuss (3)
in any unique factorization domain. Theorem 1 gives the parametric solutions
of (3). The particulars about natural numbers are indicated in the remarks.
The last section gives positive answer to (1). The base ten problem in (1) shall
be considered in a forthcoming article.

2. THE PRIMARY RESULTS

In the present article, D denotes a unique factorization domain (UFD) with 1 #0.
If a, b, A, BED\{0}, then a greatest common factor of a and b exists, denoted
by (a , b), and is unique up to associates. We write (a, b) = (A, B) to mean
that (a, b) and (A, B) are associates. Moreover (a, b) = 1 shall mean that a and
b are relatively prime.
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Suppose a, bED, b& aD such that

b g b @

— =g+ —

a h

for some heD. Then h is a non-unit in D and (4) is equivalent to (3) over D.
Putc =b-2a’and let d = (4, b). Thena = da, and b = db, witha,, b, € D
and (a,, b;) = 1. Therefore ¢ = dc¢, with ¢, = b, - da,”ED. It is then clear that
a; is a non-unit and relatively prime to b,c,. Unless otherwise stated, a, a,, b,
by, ¢, ¢,, d and h refer to the notations defined above. For a prime p&D and
x € D\{0}, ord,(x) is the largest integer n such that

x = 0 (mod p").
Lemma 1. Suppose a, b and h&€ D satisfying (4). Then, with the notations
defined above, ¢, divides d&°. If D is the ring of rational integers, then h is odd
iff ¢, is even and

ord, (¢,) = 2 ord,(d).
Proof. If a, b, heD satisty (4), then they satisfy (3).

Hence

2.3 2 2
h:ab=dal+a=adal+d 5)
1 ¢
1

Since (a,, ¢;) = 1, we conclude that d,=0 (mod c,).

To prove the second part, let a, b, h be rational integers satisfying (3).

2

Suppose h is odd. Then from (5), we conclude that a, is odd, hence d and d
9

"The fraction notation seems handicr for this problem and we continue to usc it.
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2 2

have opposite parity. If 4 were even, then d would be even. Hence — is
o) g

necessarily odd, and hence d is even. Therefore ord,(c,) = 2 ord,(d)=2.

Conversely, if ¢, is even and ordy(c,) = 2 ord,{d)=2, then d is even. But then
(a,, ¢;) = 1, hence a, is odd. Therefore

2
h = al(iaf+d) is odd.
G

Assume a, b, h€D satisfy (4). Then by Lemma 1, d> = qc, for some geD.
Using (5), we have h = ga,* + a = a,(ga,® + d).

On the other hand, b = & + ¢ = d%a; + d¢, = ¢,(qa,” + d).
Conversely, consider the following algorithm.

(2.1} Choose arbitrary but relatively prime a,, ¢, €D\{0}, a, non-unit and
d€D\{0} such that &> = qc, for some qED.

2.2) Put a = da,, ¢c = dc, so that d* = 0 (mod ¢).

i

(2.3) Set b =a +c = ¢(qa’ + d)
h =qa’® +a=a2 (qa’ + d)

Then a, b and h satisfy the relation

2l
il
Q
+

RN

Hence we have proved the following.

Theorem 1. Suppose a, b, h€D such that b & aD and b a+% . Then

a
b = c/(qa’ + d) and h = a(qa> + d), where &> = qc¢,. Conversely, the

solutions of b a +% are obtained by the algorithm (2.1) - (2.3).
a
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Remark |

(1.1)

(1.2)

(1.3)

(1.4)

Consider the partial ordering on D given by x < y iff y€ExD, and x<y
iff x < ybutx € yD. If ¢, in Theorem 1 is a unit, then, withu = ¢,
bu = ga?, + d. Thus the element h = a,(ga,” + d) = ua,b is such that
b < h, in the sense of the partial ordering just indicated. However, if
¢, is not a unit, it is immediate from the Theorem that neither h < b
nor b < h holds.

If a, b and h are natural numbers satisfying (4), it follows from
Theorem 1 thatb < hiff ¢, < a,, where < is the usual (natural) order
on the set of rational integers.

In the choice of parameters in the above algorithm, it could happen that
h = g" for some g€ D and natural number n > 1. If a,b and h are
natural numbers, then h=g", n> 1, could happen only if d=(a, b)> 1.
Indeed, otherwise d = 1 and c¢|d” gives thatc = 1. But thenb = a*> +
1 and ab = h = g" gives that b = A" and B" = a with natural numbers
A, B each greater than 1. Consequently 1 = b - & = A" - B®, which
obviously does not hold for n > 1.

If D is the ring of rational integers and ¢, in the above algorithm is odd,
then by Lemma 1, h is necessarily even. This in particular holds when
d = c¢. On the other hand, if ¢, is even such that ord,(c,) = 2 ord,(d),
then h is necessarily odd. For instance with ¢,=4, a,=7, d=2(5)=10,
we have a=70, ¢=40, b=4940, h=8645 and

Qﬂg = 70 + _4L40 .
70 8645

Corollary 1. If ¢,, a,, g and d are natural numbers with ¢, < a, and &> = qc,,
then a = da;, b = ¢(qa® + d) and h = a,(qa,;> + d) satisfy the relation

Q|

=qa +

>

= (a.b),
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Proof. By Theorem 1 and Remark (1.2),

b =c¢, (qa’> +d) < a (ga’ +d) =h
satisfy (4). Thus a and b are one digit natural numbers in base h, and the result
follows.

3. THE CASE h = ¢"

In this section for a, b, h satisfying (4), we formulate necessary and sufficient
conditions for h = g" for some g € D and natural number n > 1. We need the
following Lemma.

Lemma 2. Suppose e, f&D\{O}are relatively prime and for some g€D and
natural number n > 1, ef = g". Then

e =uB", f =u'A"and g = AB
for some u, A, BED, with unit u and (A, B) = 1.

Proof. The assertion is obvious if both e and f are units. Hence assume, without
loss of generality, that e is a non-unit. Then g is non-unit. Since D is a UFD,

%

g =wp'py... D

with primes p,, p,, ... P In'D; pairwise relatively prime, «;> 0 and unit w € D.
If need be by reindexing, let p,, p,, ..., p, be the only prime factors of e, up to
associates. If t = k, then f is a unit and we can set A = 1 and B = g.
Otherwise t < k. In any of the cases, put

B=wp...pand A = p7i...p
so that AB = g and (A, B) = 1. It follows that
ef = B"A"

Since (e, A) = 1 = (B, f), it is clear from the last equation that
e =uB"and f = u'A"
for some unitu € D.
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3.1 The case (a, b) is an associate of b - &

Suppose d = (a, b) is an associate of ¢ = b - &’. Then ¢ = dw for some unit
w € D. But then

hc = ab = a(a® + ¢) = da,(d%> + dw) implies that hw = da,(da]} + w).
Therefore g" = h = w'da, (da,” + w). Since (w'da,, da/ + w) = 1, by
Lemma 2, we get w'da, = uB" and da/ + w = u'A" for some unitu € D,
g = AB, A, B € D and (A, B) = 1. Multiplying the first equation by w and
the second by d, we respectively get

a=da, =wuB"and b = (da,)’ + dw = u'dA" 6)

with units u, w € D, A, B € D, (A, B)
a, non-unit in D and h = (AB)".

]

I,dw =c=b-a,d = (a, b),

3.2 The case (a, b) is not an associate of b - @’
Suppose (a, b) is not an associate of b - a>. Then ¢, is not a unit in D. Recall
that

4 _c _ b-a? b

 db,
h

™)

-a =

> e

4

Q

a a

As b, -da” = ¢, and (a,, b,) = [, it is clear that ¢, divides d iff ¢, divides b,.
We now consider two cases.

Case 1: Suppose ¢, divides d. Then d = c,d, and (7) reduces to
1 db

a, h ®

Since D is a UFD, set d, = d,,d,, such that every prime factor of d,, is a factor
of a, and (a,, d;,) = 1. Thus (8) reduces to

g = h = (ad;y) (d,b).
Since (a,d;;, d;,b;) = 1, by Lemma 2, we have

a,d;, = uB" and d,b, = u'A" 9)
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with g = AB, (A, B) = 1 and unit u € D. Multiplying the first equation in
equ. (9) by ¢,d,, and the second by ¢,d,;, we respectively obtain

a =da, = ¢,dpuB" and b = u'cd A" (10)

with (A, B) = 1, uunit, ¢ d,;d,, = d = (a, b), a, and ¢, non-units
de, =c¢ =b-a> and h = (AB)".

Case 2: Suppose ¢, does not divide d. Then, as remarked in the first paragraph
of the section, ¢, does not divide b, too. However from (7), since (a,, ¢,) = 1,
¢, divides db,. Then put ¢,=c¢,,c,, so that b;=c,b, and d=c,,d, with d, & ¢,,D
and b, &c,,D. Hence (7) reduces to

11)

Since b, is a factor of b, and (a;, b,)=1, we have (b,, a,)=1. Express d,=d,,d,,
such that every prime factor of d,; is a factor of a, and (d,,, a,)=1. Thus equ.
(11) is equivalent to g* = h = (a,d,)(b,d,,) with (a,d,;, b,d,;) = 1. By Lemma
2, we have

ad,, = uB* and dyb, = u'A® (12)

for some u, A, B € D unitu, g = AB and (A, B) = 1. Multiplying the first
in equ. (12) by c,,d,, and the second by c,,c,d,,, we respectively obtain
a,C, (dydp) = Cpdy UB" and (byc,)(dydy)ey, = (CiiCp)dyuAn,

But d,,dy, = d,, bye; = by, dycy, = d, da, = a, db, = b and ¢,,¢;, = ¢,. Thus
the above equations respectively reduce to

a = ¢pd,, uB® and b = cd, u'A® (13)

. b
for some unit u, (a, b)=d=c,,d,,dy, ¢;=¢; ¢y, dy =d,dy, E¢,uD, i b, ¢ ¢, D
11

and b-a’=c=dc,. Thus we have almost justified the following.
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Theorem 2. Suppose a, b, h € D satisfy (4). Then h = g* for some g € D
and natural number n > 1 iff the following respective cases hold with g = AB,
(A,B)=1,A,BED.

(2.1) When c is an associate of d, a and b are given by the relations in (6)
satisfying the condition ¢ = b - a’.

(2.2) Whend € c,D, ¢, non-unit, a and b are given by the relations in (10)
satisfying the condition ¢ = b - a’.

(2.3) Whend €& c,D, a and b are given by the relations in (13) satisfying
the condition ¢ = b - 2>,

Proof. The forward implications have already been shown in the subsections
(3.1), (3.2) case 1 and case 2, respectively.

The converses are immediate. For instance, if a and b satisfy (6) with c=b-a?,
then

o foe

a- wldA"-wh?B*™ ¢ (ewDuTA"  gyign

a uwB” B"A™ h

= 2
P

The other cases are similarly shown.
Of course the equations arising from (6), (10) and (13) with the condition ¢=b-
a* are not manageable in their generalities. One may set some additional
conditions on the parameters.
One such condition is to set u = w = 1, which necessarily holds if a, b and h
are natural numbers. So, if we set u = w = 1, the equations in (6), (10) and
(13), respectively reduce to
a=da, =B and b = (day))* + d = dA” (14
a =da, = ¢d,B® and b = d,,¢c,A" (15)

and
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a = da; = ¢,dpB" and b = ¢,d,;A" (16)
From the pair of equations in (14), we get
A"-aB" =1 (17

with B" € a,D, which we shall' use in the next section to exhibit solutions for

(1).

From the pair of equations in (15) and parameters defined under case 1 in (3.2),
¢ = b -a gives

d = cd,d, = d,A" - ¢d,,” B (18)

and from the pair of equations in (16) and parameters defined under case 2 in
(3.2), c = b - a* gives

(€€, = CiiCpdyidy = ¢ dyA” - cppdy” B (19)
Lemma 3. Consider the equation fe = k,k,A" - fB* for any natural number n
and indeterminates A, B, e, f, k;, k, over a commutative ring R with unity.
For any e, B € R, the equation has a solution in R.

Proof. Choose any two elements ¢, B € R and natural number n. Put

B” + ¢ = kA"

for some k;, A € R and natural number m<n. Then with f = k, A™™ for some
k, € R, we have

k kA" = (k,A")(k,A"™) = (B + e)f = B + ef.

Thus
k,k,A" - fB™ = ef,

completing the proof of the Lemma.
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Corollary 2

(2.1)  Suppose d;; = d;, = 1 in (18). Then d = ¢, and the equation has a
solution for any B € D and natural number n. In particular, for any
non-unit B € D\{0} and natural number n > 1 such that B* + 1 =
A™ for some A € D and natural number m < n,

a = B'A"™ b = A™" and h = (AB)" satisfy (4).

(2.2) Suppose d,, = dy, =1 and ¢, = qc,, for some q € D\{0} in (19).
Then the equation has a solution for any c,,, B € D and natural
number n. In particular, for any non-units c,;, B € D\{0}, (c,;, B)=1
and natural number n > [ such that B™ + ¢,, = A™ for some A € D
and natural number m < n,

a = A™BY(AP-B™) b = A®M(APB™)? and h = (ABY satisfy (4).

Proof. If d;;, = d,, = 1 in (18), thend, = d;d, = 1,d = ¢, d;, = ¢,. The
equation may be written as

A*-dB*® =d (20)

Withf = d, e = 1 =k, = k, in Lemma 3, for arbitrary natural number n and
B € D, (20) has a solution in D.

If we choose a non-unit B € D\{0} and n > 1 such that B> + 1 = A™ for
some A € D and natural number m < n, which is always a possible
construction, and set d = A™™, then A" - dB*® = d. For these choices, using
(10), we have

¢ =dc, = & = AX™

a = da, = ¢, d,uB” = A"™B" (21)
b = cld“u—lAn = AFMAD — A2n—m

h = (AB)"

with (A, B) = 1. Hence a, b, h given by (21) satisfy (4).
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To prove the second part, suppose d,; = | = dy, and ¢, = qc,; for some qED
holds in (19). Then the equation reduces to

qe,; = A" - qun (22)

Then, withe = ¢;;,, f = ¢, k; = k, = 1 in Lemma 3, the last equation has a
solution for any ¢,;, B € D and natural number n.

If we choose non-units ¢,;,B € D\{0}, (c,,, B) = 1 and natural number n> 1
such that B® + ¢;; = A™, A € D and natural number m < n, again always
possible, and set ¢ = A™™, then (22) holds. For these choices, using (13),

Cp = qcy = A" (A" - B?)

¢ = CCp = qcy° = AM(A" - B?)

a = cpdpuB® = A"™(A™ - B™)B" (23)
b = cd,u’A" = AMM(AR - B™)

h = (AB)"

with (A, B) = 1. Hence a, b and h given by (23) satisfy the relation in (4).
This completes the proof of the Corollary.

4. APPLICATION

One may impose additional conditions on the parameters in (17), (18) or (19).
Some of the resulting equations arising from such a process are challenging
Diophantine equations. This will be elaborated more in a forthcoming article.
In this section, we demonstrate two different situations.

Assume, henceforth, that a, b and h are natural numbers satisfying (2) and h =
g" for some natural number g > 1 and n > 1. In view of Remark (1.3), we
necessarily have (a, b) = d > 1. Moreover, u = 1 = w necessarily holds.
Consequently the equations in (6), (10) and (13) with ¢ = b - a® are respectively
equivalent to the equations in (17), (18) and (19). Besides, it is clear that the
parameters in these equations rgpresent natural numbers.

Corollary 3. For natural numbers a, b, h as above, suppose in (18), d,;=d,,=1
and ¢, =APF for some natural number 8. Then 3 = n-1and A = B™® + 1.
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Proof. Since d,; = d;, = 1 and ¢, = AP the equation in (18) reduces to
AY LB = | Q4

Ifn-6 > 1, it is evident that n - 8 is odd, hence n - 8 = 3. Moreover B is
even, hence B > 2. But then a result of V.A. Lebesgue (see Mordell, 1969)
shows that the Diophantine equation in (24) has no solution. Hence n - § <
1. Thereforen = 8 + 1 and A = B™® + 1.

Under the assumptions of Corollary 3, since ¢, = d, equation (10) yields
a=A"'B", b = A™! ¢ = dc, = A*™V and h = (AB)" satisfying (2). However,
since B < B + 1 = A < A", it is clear that h < b, for this case.

Remark 2. It was indicated in Remark (1.2) that for natural numbers satistying
(2), b < hiff ¢, < a,. Specially when (a, b) and b - a? are associates, hence
d =c,wehavec, =l and thusc, = 1 < 2 < a,. Thus all the solutions of (2)
under this case satisfy the relationc < a < b < h. Notice that these solutions
are related by the equations in (6) which are equivalent to (17) with the
condition ¢ = b-a’,

For natural numbers a, b, h satisfying (2), consider the equation in (17)
ie A"-aB" =1 (25)

with B" = 0 (mod a,). Inparticular 2 < a;, < B". Hence positive solutions
of (25) satisfyc, = 1 < a, < B

First of all the condition B* = 0 (mod a,) in (25) is quite restrictive. For
instance (x,y) = (3,2) is a solution of

x*-5y* =1 (26)
with 5 < 2¢. However the equation has no solution in natural numbers x and
y withy = 0 (mod 5). Indeed, Cohn (1965) has shown that (x, y) = (%1, 0),
{+3, £2) are the only solutions of the Diophantine equation in (26).

Assume now that a, in (25) is not a perfect square and n = 2. Adopting
standard techniques to construct the set of units of the ring of integers with
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norm 1 in the number field Q(/a,) (Borevich and Shafarevich, 1966), or using
the explicit result in Carmichael (1959) the Diophantine equation

X2 -ay = 1 27)
has a solution with natural numbers x and y.

Let a +B‘/Zz'1 be such a solution of (27). For each natural number m, let

%+ B8y = (o ﬁ\/z—i;)"'a’ with natural numbers o, and §,,. Evidently 3, is
a multiple of a, and hence a, < §,. Besides (x, y) = («,, 8,) satisties the
equation in (25) with n = 2.

For each natural number m, let

d:c=Bf"/a1>1.

Then

a:dal:B2

ms

b, =dal+1 = pLa +1 = o .

Consequently, the natural numbers

a=B,, b=db =p,+c, h=(a,B,)’

satisty the relation

ISR S
1

a

+

> o

In fact, since a, < 8, < b < (¢ Bw)’ = g = h.

Therefore,
b = b,g + b,

with 0 < by, b, < g. Hence
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;’3 - (@bby), = @h), .

The following Theorem is now immediate from the above illustration, thus
giving a stronger positive answer to (1).

Theorem 3. There are infinitely many triples of natural numbers (b,a,g) with
(a, b) = b-a> > 1, b not a multiple of a, and h = g, g a natural number,
g <b < g? such that
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