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Fig. 1. Typical cross-sections of steel-concrete 
  composite columns. 
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ABSTRACT: High quality moment-axial -force interaction diagrams have been developed for 
hexagonal and octagonal steel-concrete composite columns subjected to uniaxial bending. Comparative 
discussion with the procedures stipulated in relevant building code standards has been presented. A 
unified approach has been presented for the procedure of establishing design charts for concrete-filled 
steel tubes under uniaxial bending and valuable charts have been prepared for hexagonal and 
octagonal shape composite columns. This paper also outlines procedures that will enable preparation of 
similar design charts for other shapes and material types. 
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INTRODUCTION 
 
Hexagonal steel columns and to a limited extent 
octagonal columns are used to impart aesthetic 
values to building structures and bridge piers 
besides their structurally improved buckling 
properties as compared to rectangular or circular 
shapes with regard to the steel component of the 
cross sections. They are also used as flood-light 
poles and in communications as well as 
transmission structures. Their strength and other 
structural properties are enhanced by making 
use of steel-concrete composite form of these 
columns. 
 Composite construction lies between steel-only 
and concrete-only constructions. It is the most 
important and most frequently encountered 
combination of construction materials with appli-
cations in multi-storey buildings, industrial 
buildings and in a variety of large-span building 
systems. They are also employed in large-span 
bridge piers and towers. 
 Composite steel-concrete columns are structural 
elements that can assume a variety of shapes and 
compositions depending on, among other things, 
the loading type and magnitude. Typical cross 
sections of such columns are shown in Fig. 1. 
 These structural elements make use of the 
attractive structural and non-structural features of 
each of the constituent materials while they 
minimize their undesirable features and properties 

as a result of which their use is enhanced in the 
construction industry. With respect to their 
structural properties, the two materials are 
completely compatible and complementary to each 
other in that they exhibit an ideal combination of 
strengths and enhanced stiffness and ductility 
(Hajjar, 2000; Johansson and Gylltoft, 2001). In this 
regard, the efficiency of concrete in compression 
and that of steel in tension is made use of. 
Furthermore, the restraining feature of concrete to 
local or lateral-torsional buckling of slender steel 
elements is also another attractive feature 
especially in concrete-filled tubes. It has also been 
shown that such type of columns maintain 
sufficient ductility when high strength concrete is 
used (Lahlou et al., 1999). Regarding their non-
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structural behaviour, their combined use in 
composite construction exhibits minimized 
potential differential deformation under the low 
temperature ranges in which steel-concrete 
composite structural elements are assumed to 
operate. While the present case of CFT does not 
benefit from it, the other attractive feature of 
concrete in composite construction is the fact that it 
also gives corrosion protection and thermal 
insulation to the steel at elevated temperatures 
(Eurocode Notes, 2001). 
 Further benefits of composite construction are 
attributed to the structural planning aspect of the 
design process (Ermiyas Ketema and Shifferaw 
Taye, 2006). In this respect, the concept of 
composite construction has given engineers ample 
opportunity to design steel-concrete composite 
structural systems to produce more efficient 
structures when compared to designs using either 
material alone.  
 As in all design undertakings, the economy of 
resulting structures is of great concern. CFT 
columns can effectively replace other commonly 
used structural columns such as ordinary 
reinforced concrete, structural steel with reinforced 
concrete or structural steel alone with superior 
performance while at the same time reducing 
material costs to a minimum especially when both 
structural and non-structural features are 
considered in an integrated manner (Viest et al., 
1997).  
 Unlike other forms of steel-concrete composite 
columns, concrete-filled steel tubes of all shapes 
may not require additional reinforcement steel 
especially when the structural action is not signifi-
cantly large. While generally higher concrete 
grades provide better results, no concrete grade 
below C20/25 shall be used in these columns. 
Likewise, hot-rolled steel tubes are used while 
cold-formed and welded sections are generally 
avoided in practice. 

 There are generally four types of hexagonal and 
octagonal concrete-filled steel tube columns as 
shown in Fig. 2 depending on the relative 
magnitude of moment/axial-force combination to 
which the member is subjected. In general, larger 
concentration of the steel component is desirable to 
resist mainly axial-load systems while distributed 
placement of the steel component is required in 
those cases where the dominance of the flexural 
moment is significant. 
 Design of composite columns, as in all types of 
compression members, calls for a procedural 
approach in which the effects of both axial and 
flexural stresses are taken into consideration in 
order to assess the capabilities of the particular 
member. To this effect, interaction diagrams have 
been proposed for a variety of structural column 
systems–concrete (see, for example, EBCS 2 Part 2, 
1997) and steel (see, for example, Hofmann, 2002) 
under various loading conditions including 
procedures to produce such diagrams for steel-
concrete composite columns (EBCS 4, 1995; 
Eurocode 4, 2002; Bode and Bergmann, 1985). 
 The purpose of this paper is to propose high 
quality interaction chart procedures the outcome 
of which will have dual purpose–enable easy 
determination of the necessary cross-sectional 
dimensions and material requirement for a CFT 
column under a specified set of loads on one hand 
and to assist in the determination of the capacity 
of a given cross-section when the size and relevant 
material properties of concrete and steel are 
known in advance. The proposed charts may be 
used both for short and long columns. Utilization 
of the proposed charts will be facilitated and 
generalized for any cross-sectional shape if their 
development is based on non-dimensional para-
meters. Towards this goal, the capacity equations 
to be developed and subsequently used to estab-
lish the charts will be made non-dimensional. 

 
 
 
 
 
 
 
 
 
 
 
 
 

axial force N 

moment    M 

e = M/N 
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Fig. 2.  Possible arrangement of composite polygonal tubular columns with reference to loading. 
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Fig. 3. M-N interaction curve for uniaxial bending. 
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Fig. 4. Development of stress blocks at different points 
on  the interaction diagram. 
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COLUMN LOAD CAPACITY 
 
The cross-sectional resistance of a composite 
column under axial compression and uniaxial 
bending is given by an M-N (moment-axial force) 
interaction curve. The interaction curve can be 
determined point by point by considering different 
positions of plastic neutral axis in the principal 
plane under consideration (Hofmann, 2002). The 
concurrent values of moment and axial resistance 
are then found from the stress blocks. Fig. 4 
illustrates this process for four particular positions 
of the plastic neutral axis corresponding, respec-
tively to the points A, B, C, D marked in Fig. 3. While 
the subsequent presentation will be given by 
referring to hexagonal-shaped columns, the discus-
sion is indeed applicable to any shape and, thus, 
octagonal columns are also covered by the 
presentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Point A: Axial compression resistance alone: 

Rd.plA NN =  0M A = ...................... (1) 

 
Point B: Uniaxial bending resistance alone: 

0NB =  Rd.plB MM = ............. (2) 

 
Point C: Uniaxial bending resistance identical to 

that at point B, but with non-zero resultant 
axial compressive force: 

Rd.pmC NN =  Rd.plC MM = ............. (3) 

where Npm,Rd  = Ac fcd    compressive resistance 
of the concrete section. 

 
Point D:  Maximum moment resistance 

 fA50N50N cdcRdpmD .. . == ..................(4a) 

cdpcydpaD fW50fWM .+= ........................(4b) 

in which Wps and Wpc are the plastic moduli of the 
steel section and the concrete, respectively. Point D 
corresponds to the maximum moment resistance 
Mmax,Rd  that can be achieved by the section. This is 
greater than Mpl.Rd because the compressive axial 
force inhibits tensile cracking of the concrete, thus 
enhancing its flexural resistance (Petersen, 2001). 
 
 Point E:  Situated midway between A and C. 
 

The enhancement of the resistance at point E is 
only insignificantly more than that given by 
direct linear interpolation between A and C, and 
determination of this point can therefore be 
omitted. 

 
 The concurrent values of moment and axial 
resistance for establishing the M-N interaction 
diagram of Fig. 3 are then found from this set of 
stress blocks. Code standards usually substitute 
the linearized version AECDB (or the simpler ACDB) 
shown in Fig. 3  for the more exact interaction 
curve, after carrying out the calculations to 
determine these points. However, the results tend 
to be approximate since the entire curve is based 
only on four control points. 
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Fig. 5. Notations, orientations and regions of composite cross-section for computing 
section capacity. 
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 This paper outlines and develops a refined 
uniaxial interaction chart procedure based on exact 
formulation of a set of concurrent points. 
 
 

CHART DEVELOPMENT 
 
Calculation method and scope 
The structural engineering practice calls for a 
variety of cross-sectional types to be used as 
compression members and as beam-columns. 
While the procedure to be proposed in this work 
is general and may easily be modified for 
adaptation to other shapes, the cross-sections 
considered are those that fulfill the criteria for 
simplified method of analysis given in the EBCS 4 
(1995) and Eurocode 4 (2002). 
 From the permissible steel ratios ω stipulated in 
the EBCS 4 (1995), those for which ω ≤ 4.0 have been 
selected for drawing the chart as this range utilizes 
comparatively less amount of steel, thus resulting 
in more economical sections (compared to those 
with higher steel ratios). 
 The national code standard EBCS 4 (1995) 
recommends applicable structural steel and 
concrete grades for use in steel-concrete composite 
constructions. For the purpose of this paper, Steel 
Grade Fe360 with cross-sectional thickness of up to 
40mm and concrete Grade C30 have been 
implemented. However, the procedure for 
establishing improved interaction charts and 
diagrams are fairly general and can, thus, be used 
to deal with other material properties as well. 
 
Fundamental equations 
 The fundamental equations to be used for the 
development of these charts with respect to typical 

composite cross-section as shown in Fig. 5 are the 
following: 
 
Steel ratio ω: 

cdc

yds

fA

fA
=ω ..............................................................  (5a) 

 
Moment capacity Mu: 

2
)()( cd

pcnpcydpsnpsu
f

WWfWWM −+−= .......  (5b) 

 
Axial capacity Nu: 

ydnet,scdccu fAfAN += ...................................... (5c) 

 

where: 

 As and Ac  total cross-sectional area of the steel 
and con crete sections, respectively 

Wps and Wpc  plastic section modulus of the total 
steel and concrete section parts, 
respectively 

Wpsn and Wpcn  plastic section moduli of the steel 
and concrete sections, within the 
shaded region (Region b, see Fig. 
5), respectively 

Asc  and Acc  cross-sectional areas of the portion 
of the steel and concrete sections in 
compression, respectively 

Ast cross-sectional area of the portion of 
the steel section that is subjected to 
tension 

As,net   = Asc - Ast 
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 Equations (5) form the basis for the 
establishment of interaction diagrams and will be 
referred to frequently in subsequent sections. It 
will be noted that especially the six parameters 
Wps, Wpc , Wpsn, Wpcn, Asc and Acc in Eqs. (5) will 
play the central role as sources of variation in the 
establishment of the various components of the 
interaction diagrams as they are dependent upon 
the positions of the neutral axis. 
 
Computing section capacity for a given neutral 
axis position 
 In hexagonal composite columns, structural 
response to external actions–direct compression 
and bending moment–are influenced by the 
orientation of the axis about which bending takes 
place. This is due to the fact that the cross-sectional 
properties of such sections about all possible 
orthogonal axes may not be similar. In this context, 
therefore, the determination of section capacity 
will be carried out separately for bending moment 
about x and y axes, shown in Fig. 5a. 
 On the other hand, the perfect symmetry of 
octagonal sections about any two orthogonal axes 
as shown in Fig. 5b facilitates the formulation to be 
carried out only about a single axis. 
 Formulation of interaction equations will be 
facilitated by employing non -dimensional parame-
ters. To this goal, we adapt the following relation-
ships between the outer side dimension s of the 
entire column cross section and the thickness t of 
the steel component as shown in Figs . 5 (a &b): 

t
s=α ............................................................ (6) 

 
 As will be shown in subsequent sections, the 
term th , where h is the distance of the neutral 
axis relative to the centroidal axis of the cross 
section and t are shown in Fig. 5 appears 
frequently as a result of substitutions and 
simplifications. For the sake of brevity, we replace 
this term as follows:  

t
h=β ............................................................ (7) 

 

 The procedure for establishing the interaction 
diagrams is enhanced by employing two 
non-dimensional parameters. To this end, 
expressions for two non-dimensional parameters ν 
and µ, corresponding to the axial force Nu and the 
bending moment Mu, respectively, are formulated 
through normalization as follows:  
 

cdc

u

fA
N

=ν ......................................................(8a) 

'sfA
M

cdc

u=µ ..................................................(8b) 

where the various terms have been defined earlier 
along with Eqs. (5) and s' is as shown in Fig. 5. 
 
 Details for the determination of Nu and Mu for 
the implementation of Eqs. (8) will be presented 
subsequently. Those equations will then be used to 
establish ν and µ  in terms of cross-sectional and 
material properties and, subsequently, to produce 
high quality uniaxial bending-axial force interaction 
diagrams in terms of ν and µ for hexagonal and 
octagonal composite sections. 
 
Uniaxial chart procedures for hexagonal sections 
 Based on the principles discussed this far, the 
uniaxial chart procedure for hexagonal CFT will be 
presented in detail subsequently. 
 
Determining value of  α  for a particular steel ratio ω 
 In Eq. (5a), for a given steel ratio and material 
properties, the only unknown quantity is the 
variable α  as given by Eq. (6). One can also see that 
for a hexagonal section, Ac=2.598s'2, As=2.598(s2-s'2) 
and s'=s-1.156t are valid where all terms are defined 
in Eqs. (5) and the various terms shown in Fig. 5.  
 Substituting these relationships given into the 
equation for ω and dividing the numerator and 

denominator by 2t5982. , one obtains:  

 cd
2

yd
22 f1551f1551 ).(]).([ −αω=−α−α  

 
This can be explicitly solved for α after a series of 
simplifications and re-arrangement as: 
 

 
 

[ ]
cd

ydcdcd
2

cdydcdyd

f2

fff3335ff312ff312

ω

+ωω−ω++ω+
=α

)(.)(.)(.
...............................................(9) 

 
This is applicable irrespective of the axis of bending. 
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Fig. 6. Hexagon of side lengths. 
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'598.2
2/)}2'()'(155.1{)2'()'(155.1)2()(155.1 −−+−−−−−

=µ

Cross-sectional capacities for different neutral-axis 
positions–bending about X-axis 
 While the general expressions given by Eqs. (5) 
are valid, one needs to establish major cross-
sectional properties when refereeing to bending 
stresses about different axes. Thus, referring once 
again to Fig. 6: 
Total cross-sectional area  A=2.598s2........... (10a) 
Net area of concrete Ac=2.598s'2 ........ (10b) 
Net area of steel As=2.598(s2–s'2) (10c) 
Area of the shaded region DEFG hs4643A .' =  .....(10d) 
Area of region ABC ( )2'732.1 hsAabc −= ...(10e) 

Total section modulus 3s011W .= .......... (10f) 
Section modulus of the shaded region DEFG  
  2hs7321W .' =  ..... (10g)  
Section modulus of region ABC 

 )'()'(. h2shs5770W 2
abc −−= ..........(10h)  

Section modulus of concrete portion in the 
shaded region      2'

c h's732.1W = ........ (10i) 
 
 
 
 
 
 
 
 
 
 
 
 
 h’  is the distance between the neutral axis X and the line A-B. 
 
 
 
 The position of the neutral axis varies depending 
on the relative size of the bending moment and the 
associate axial force. To establish the desired 
relationships as was presented in Sec. 2, five 
different cases of neutral axis position are selected; 
these cases will be dealt with separately. 
 
Case i: When the entire cross-section is under 

direct compression 
 

a. Moment capacity 
 This is the case when only the direct axial force 
exists and, thus, the whole part is subjected to 
direct (not flexural) compression. Consequently, no 

moment-resistance capacity is needed. Under this 
circumstance,   
  Mu = 0 
 
Thus, in this particular instance,  
 0=µ  ..............................(11a) 
 
b. Axial load capacity 
 rd,plu NN =  where  ydscdcrd,pl fAfAN +=  

 
 Taking into account Eqs. (10b) and (10c), and 
carrying out appropriate substitution into: 

  
cdc

ydscdc

fA

fAfA +
=ν  

one gets: 

cd
2

yd
22

cd
2

f1551

f1551xf1551

).(

}).({).(

−α

−−α+−α
=ν ......(11b) 

 
Case ii: More than half the area under 

compression (Fig. 7) where the position of 
the neutral axis is given by t1551sh

2
s

.−≤≤  

 
 
 
 
  
 
 
 
 
 
 
 
a. Moment capacity 
 Referring to Eq. (5b) and taking the relationships 
and associated description of the notations 
involved, the following relationships hold for this 
particular case:  
 

)h2's()h's(155.1W2WW

)h2's()h's(155.1)h2s()hs(155.1W2WW

2
iabcpcnpc

22
abcpsnps

−−=×=−

−−−−−=×=−  

 
 Appropriate substitution in Eq. (8b) yields the 
required relationship for µ as: 

 
 
 
 

 Now, dividing the numerator and denominator by t3, the non-dimensional parameter µ  in terms of 
the cross-sectional dimensions and material properties becomes: 

cd
3

cd
2

cd
3

yd
22

f15515982

2f2155115511551

f15515982

f215511551155121551

).(.

/)}.().(.{

).(.

).().(.)()(.

−α
β−−αβ−−α

+
−α

β−−αβ−−α−β−αβ−α
=µ

...............................(12a) 
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Fig. 8. Location of neutral axis 
for Case (iii). 

b. Axial load capacity 
 The size of the axial force is established by Eq. (5c) taking the following relationships in this case: 

})'(){(.)'(.

)'(.'.

2222
abcsstscsnet

22
abcccc

hshs4643ss5982A2AAAA

hs7321s5982AAA

−−−−−=−=−=

−−=−=
 

it can be seen that ν  assumes the following form: 

cd

yd
2222

cd
2

fs5982

fhshs4643ss5982fhs7321s5982

'.

}])'(){(.)'(.[})'(.'.{ −−−−−+−−
=ν  

 
 Dividing equation by t2, the non -dimensional parameter ν will attain its final form in terms of the 
cross-sectional dimensions and material properties as: 

 

cd

cd

f
fx

2

22

)155.1(598.2
})155.1(732.1)155.1(598.2{

−
−−−−=

α
βαν  

cd

yd

f

f
2

2222

)155.1(598.2

}])155.1(){(464.3})155.1({598.2[

−

−−−−−−−
+

α

βαβααα ....................(12b) 

 
c.  Values of β used 

In order to sketch the interaction diagram in the given range of the neutral axis, for the various steel 
ratios  ω, four values of β are used: 0.5α, 0.6α, 0.8α and α-1.155. 
 
Case iii: In this case, too, more than half the area under compression (Fig. 8); 

however, the possible range of neutral axis will be different from 
that assessed in Case (ii) above. In this particular case, the depth of 
the neutral axis will vary as 

2
sh0 '≤≤ . 

 
a.  Moment capacity 
 In this situation, the general expression for Mu as given by Eq. (5b) 
can be established by substituting the following cross-sectional values: 

 

23

2233

'732.1'01.1

2)'(732.1)'(01.1

ipcnpc

iipanpa

hsWsW

thhssWssW

==

=−=−=  

 Thus, taking the relationships in Eq. (8b) and associated description of the notations involved, and after 
appropriate substitutions and simplifications, one obtains the final form of the non-dimensional 
parameter in terms of cross-sectional and material properties as:  

cd

cdyd

f

ff
3

23233

)155.1(598.2

2/})155.1(732.1)155.1(01.1{]2})155.1({01.1[

−

−−−+−−−
=

α

βααββα
µ ....(13a) 

 
b.  Axial load capacity 
The following relationships hold in this particular case: 

ht4Ahs7321s2991A snet
2

cc =+= '.'.  
Referring to Eq.(5c) and carrying out appropriate substitutions, the axial load is given by: 

 ydcdu htffhtstshssN 62.4}]866)}{.155.1()155.1'2{(5.0'598.2[ 2 +−−−+−−=  

The non-dimensional parameter ν  is then given by: 
cd

2
ydcd

2

fs5982

htf4fhs7321s2991

'.

)'.'.( ++
=ν  

 
Dividing the above equation by t2, ν  will attain its desired form as function of cross-sectional variables, 
parameters and material properties as: 

 

cd
2

ydcd
2

f15515982

f4f1551732115512991

).(.

}).(.).(.{

−α

β+β−α+−α
=ν .........................................................(13b) 
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for Case (iv). 
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Fig. 10. Location of neutral axis for 
Case (iii). 

c. Values of β used 
 Values of β used are 0α, 0.1α, 0.3α and (α-
1.155)/2 

 
Case iv: Less than half the area under compression 

(Fig. 9) where the neutral axis position 
with 

2
s

h0
'

≤≤  

 
 
 
 
 
 
 
 
 
 
a. Moment capacity 
 The moment capacity is given by the same 
expressions developed for Case (iii) above and, 
consequently, the non-dimensional parameter µ 
will be given by: 

cd

yd

f
f

3

233

)155.1(598.2
]2})155.1({01.1[

−
−−−

=
α

ββα
µ  

cd

cd

f
f

3

23

)155.1(598.2
2/})155.1(732.1)155.1(01.1{

−
−−−

+
α

βαα  

 .............................................................................. (14a)  
 
b. Axial load capacity 
In this case, the following relationships hold: 

htAhssA snetcc 4'732.1'299.1 2 −=−=  
 
 The value-4ht, obtained as the area of steel 
under compression minus that under tensile 
stress, will be used in the computational 
algorithm. 
 The axial-force will then attain the following 
form: 

)155.1'2{(5.0 hsNu −=  

ydcd htffhtsts 62.4)866.0()}155.1( −−−−+  

 The non-dimensional parameter ν  will then 
become:  

cd
2

ydcd
2

fs5982

htf4fhs7321s2991

'.

)'.'.( −−
=ν  

 
 Now, dividing the above equation by t2, one 
obtains the desired expression for ν : 

cd
2

ydcd
2

f15515982

f4f1551732115512991

).(.

}).(.).(.{

−α

β−β−α−−α
=ν

 .................................................................................. (14b) 
 

c. Values of β used 
 Values of β used are 0α, 0.1α, 0.3α and (α-
1.155)/2 

 
Case v: In this case, too, less than half the area 

under compression (Fig.10), but with 
position of the neutral axis being given 

by 'sh
2
s ≤≤ . 

 
 
 
 
 
 
 
 
a. Moment capacity 
 The moment capacity is the same as that given 
in Case (ii) and the non-dimensional parameter µ 
will be given by: 

cd

yd

f

f
3

22

)155.1(598.2

)2155.1()155.1(155.1)2()(155.1

−

−−−−−−−
=

α

βαβαβαβα
µ

cd

cd

f
f

3

2

)155.1(598.2
2/)}2155.1()155.1(155.1{

−
−−−−

+
α

βαβα  

 ..................................................................................(15a) 
 
b. Axial load capacity 
Again, the axial-load capacity is given by: 

ydsnetcdccu fAfAN +=  

 In this case, the following relationships hold 
with regard to cross-sectional properties: 

2)'(732.1 hsAA tricc −==  

})'(){(464.2)'(598.2 2222 hshsssAsnet −−−−−=
 

The non-dimensional parameter ν   will then 
be given by: 

cd

cd

fs
ssfhs

2

222

'598.2
)'(598.2[)'(732.1 −+−

=ν  

cd

yd

fs

fhshs
2

22

'598.2

}])'()({464.3 −−−
−  

 Dividing equation by t2 and making appropriate 
substitutions, ν will attain its final desired form as: 

cd

cd

f
f

2

222

)155.1(598.2
))155.1((598.2[)155.1(732.1

−
−−+−−

=
α

ααβα
ν

cd

yd

f
fx

2

22

)155.1(598.2
}])155.1(){(464.3

−
−−−−

−
α

βαβ  

 ..................................................................................(15b) 
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t 

Fig. 11. Hexagonal section: bending 
about Y axis. 

reg. a 

reg. b 

reg. c 

h 

h 

s 

s' 

Y 

u 

Neutral 
axis 

Fig. 12. Location of neutral 
axis for Case (i). 

h 

c. Values of β used 
 Values of β used are 0.5 α, 0.6α, 0.8α and α-1.155 
Equations (11) through (15) will be used to 
establish the uniaxial interaction chart for 
hexagonal section as shown in Fig.19a for various 
ω values. 
 
Cross-sectional capacity for different neutral axis 
positions–bending about Y-axis 

Following the similar procedure adopted to 
establish the various parameters for bending about 
x-axis as presented earlier, corresponding 
quantities will be derived for bending about the y-
axis. The cross-sectional properties of these 
columns frequently referred to in subsequent 
developments are summarized hereafter. Thus, 
again, referring to Fig. 11: 
 
 
 
 
 
 
 
 
 
 
• Cross-sectional area of the entire section  
 A=2.598s2........................................................(16a)  
• Cross-sectional area of the concrete portion 
 Ac=2.598s'2......................................................(16b)  
• Cross-sectional area of the steel portion 
 As=2.598(s2-s'2)..............................................(16c)  
• Total area of the shaded region 
 ).)(.(.' h1551s2hs7321s4643A 2 −−−= .... (16d)  
• Section modulus of the whole section  

 3sW = ............................................................(16e)  
• Total section modulus of the shaded region 

)667.577.0)(155.12)(732.1(2' 3 hshshssW +−−−=  
 ............................................................................(16f) 
 
 As was noted earlier, the position of the neutral 
axis varies depending on the relative size of the 
bending moment and the associated axial force. 
To establish the desired relationships as was 
presented in Sec. 2, four different cases of neutral 
axis position are selected; these cases will be 
dealt with separately. 
 
Case i: When the entire cross-section is under 

direct compression. 
 

a. Moment capacity 
 This is the case when only the direct axial force 
exists and, thus, the whole part is subjected to 
direct (not flexural) compression. Consequently, 

no moment-resistance capacity is needed. Under 
this circumstance,  
 Mu=0 
 Thus, in this particular instance, the non-
dimensional parameter µ of Eq. (8b) turns out to be 
zero. Thus,  
 0=µ  (17a) 
 
b. Axial load capacity 
 rd,plu NN =  

where  ydscdcrd,pl fAfAN +=  
 

 Now, applying Eq. (8b) and considering the 
relationships expressed by Eqs (16b) and (16c), one 
gets: 

 
cd

2
y d

22
cd

2

f1551

f1551f1551

).(

]).([).(

−α

−α−α+−α
=ν ...........(17b) 

 
Case ii:  When some part of the flange of the steel 

section is in tension while other parts of 
the cross-section are in compression and 
the neutral axis will assume any position 

in the range given by 
2
3

2
3 s

ht
s

≤≤−  

(Fig. 12). 
 
 
 
 
 
 
 
 
 
 
 
 In this case, the moment- as well as axial-load 
capacities are established as follows: 
 
a.  Moment capacity 
 Referring to Eq. (5b) and nothing in this case 
the fact that only the steel portion of the 
composite column contributes for the moment 
capacity of the cross-section, Eq. (5a) modifies to: 
 
 ydpsnpsu f)WW(M −=  
 
 In this case, one can see that the following 
relationships hold with respect to cross-sectional 
properties: 

3sWps =  

)667.577.0)(155.12)(732.1(2 3 hshshssWpsn +−−−=  
 
Thus, applying Eq. (8b): 
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neutral 
axis 

Fig. 13. Location of neutral 
axis for Case (iii). 

h 

Neutral 
axis 

hi 

Fig. 14. Location of neutral axis 
for Case (iv). 

'sfA
M

cdc

u=µ  

cd

yd

fs
fhshshsss

3

33

'598.2
)}]667.577.0)(155.12)(732.1(2{[ +−−−−

=

 
 Diving both the numerator and denominator 
by t3 one obtains the non-dimensional parameter 
µ  in terms of the cross-sectional dimensions and 
material properties as: 
 

cd
3

yd
33

f15515982

f667057701551x273212

).(.

)]..().()}.({[

−α

β−αβ−β−α−α−α
=µ

 .................................................................................. (18a) 
 
b. Axial load capacity 
 The size of the axial load in this case is given 
by:  

+= cdu fsN 2'598.2

ydfshshss ]'598.2)}155.12)(732.1(464.3[{ 22 −−−−
Applying Eq. (8a): 

+=
cdc

cd

fA
fs 2'598.2

ν  

cdc

yd

fA
fshshss ]'598.2)}155.12)(732.1(464.3[{ 22 −−−−

Dividing equation by t2 one obtains the 
non-dimensional parameter ν in terms of the 
cross-sectional dimensions and material 
properties as: 

( )
( ) +

−
−

=
cd

cd

f
f

2

2

155.1598.2
155.1598.2

α
α

ν  

( ) ( )
( ) cd

yd

f

f
2

22

155.1598.2

]155.1598.2)155.12(}732.1464.3[{

−

−−−−−−

α

αβαβαα    

 .................................................................................. (18b) 
 
c. Values of β used 
 Values of β are 1.732α-1, 1.732α -2/3 and 
1.732α -1/3  
 
Case iii: When more than half of the cross-section 

is under compression while the neutral 
axis assumes any position in the range 
given by t

2
s3

h0 i −≤≤  (Fig. 13). 

 
 
 
 
 
 
 
 
 

a. Moment capacity 
 Referring to Eq. (2) and based on Eq. (5b), one 
can see that the following relationships are 
applicable for this particular case,: 

33 )155.1( −−= ssWpa

 
thWpan

231.2=  
3'sWpc =  

)}667.0'557.0)(155.1'2)('732.1{('2 3 hshshssWpcn +−−−=  
 Now, making appropriate substitutions into 
Eq. (8b), the expression for non-dimensional 
parameter µ  in terms of the cross-sectional 
dimensions and material properties will finally 
become: 

+
−

−−−
=

cd

yd

f
f

3

233

)155.11(598.2
}31.2)155.1({ βαα

µ
 

cd

yd

f

f

3

3

)155.11(598.2
2

}]667.0)155.1(577.0}{)155.1(732.1{)155.1([

−

+−−−+−− βαβαα  

 ..................................................................................(19a) 
 
b. Axial load capacity 
 Appropriate substitution and re-arrangement 
shows that Nu in Eq. (5c) will be given by: 

+= ydu fthN 62.4  

cdfhtstshss )]866.0)}(155.1()155.1'2{(5.0'598.2[ 2 −−−+−−  
 Subsequently, using Eq. (8a) for the non-
dimensional parameter ν, substituting appropri-
ate cross-sectional dimensions and material prop-
erties and, finally, after a series of simplifications, 
the desired expression for ν becomes: 

cd

cdyd

f
ff

2

2

)155.1(598.2
])155.1(598.2[62.4

−
−+

=
α

αβ
ν  

cd

cd

f
f

2)155.1(598.2
}]1866.0{)}155.1()155.1)155.1(2{(5.0[

−
−−−+−−

−
α

βααβα

 ..................................................................................(19b) 
 
c. Values of β used 
 Values of  β used are 0, 0.2α, 0.4α, 0.6α, 0.8α, α, 
1.3α and 1.5α. 
 
Case iv:  When less than half the cross-sectional 

area is under compression and the 
neutral axis assumes any position in the 
range given by 1

2
s3

h0 i −≤≤  (Fig. 

14). 
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a. Moment capacity 
The moment capacity given by the corresponding 
expression in Case (iii) above and, consequently, 
the expression for the non-dimensional parameter µ 
is identical that given by Eq. (19a). 
 

+
−

−−−
=

cd

yd

f

f
3

233

)155.11(598.2

}31.2)155.1({ βαα
µ

 

cd

yd

f

f

3

3

)155.11(598.2
2

}]667.0)155.1(577.0}{)155.1(732.1{)155.1([

−

+−−−+−− βαβαα

 ...................................................................................(20a)  
 
b. Axial load capacity 
The general expression for axial load for this 
position of neutral axis is: 

cdu fhtstshsN )866.0()]155.1()155.1'2[(5.0 −−−+−=

ydfth62.4−  

 Subsequently, using the expression for the 
non-dimensional parameter ν, the desired 
expression  becomes: 

cd

yd

f

f
2)155.1(598.2

)]1866.0)(155.1(}155.1)155.1(2[{5.0

−

−−−+−−
=

α

βααβα
ν

cd

yd

f
f

2)155.1(598.2
62.4
−

−
α

β  

  ..................................................................................(20b) 
 
c. Values of β used 
 Values of β used are 0, 0.2α, 0.4α, 0.6α, 0.8α, α, 
1.3α and 1.5α. 
 Equations (17) through (20) will be used to 
generate the uniaxial interaction curves for 
bending about Y axis for different values of ω; 
this will be given in Fig. 19b. 
 
Uniaxial charts for octagonal sections 
Determining value of  α  for a particular steel ratio ω 
 In Eq. (5a), for a given steel ratio and material 
condition, the only unknown is the variable 

quantity α as given by Eq. (8). but, 2
c s8284A '.= , 

)'(. 22
s ss8284A −=     where t8280ss .' −= .  

 Substituting the above equation in equation of  

ω  and dividing both equations by 2t8284.   

 cd
2

yd
22 f1551f1551 ).(]).([ −αω=−α−α  

 Simplifying the above equation and solving for 
α: 

cd

cdyd

f
ff

ω
ω

α
2

)(656.1 +
=  

cd

ydcdcdcdyd

f

fffff

ω

ωωω

2

)(744.2)}(656.1{ 2 +−+
+

  ....................................................................................(21) 
 

Cross-section capacities for different neutral axis 
positions 
 Fig. 5b shows the dimensional parameters used 
to describe the section and these will be em-
ployed subsequently to develop the moment-
axial force interaction diagrams. 
 The following cross-sectional properties will be 
referred to in subsequent developments: 
 
• Cross-sectional area of the entire section  

 2s8284A .= ..................................................(22a) 
• Area of polygon ABCD 

 22
abcd )h2s414.3(5.0s328.5A −−= .....(22b)  

• Area of the shaded region ABEF  
 ).().(. hs2071h2s414450A abef −−= ...(22c)  
• Section modulus of the entire cross-section  

 3s5452W .= ............................................. (22d)  
• Section modulus of  the shaded region ABEF 

)}..().(..{ h6670s5690h2s4143250s61612W 23 +−−=
 ...........................................................................(22e)  
 
 
Case i: The whole cross-section is under 

compression. 
 
a. Moment capacity 
 This is the case when only the direct axial force 
exists and, thus, the whole part is subjected to 
direct (any, net, not flexural) compression. 
Consequently, no moment-resistance capacity is 
needed. Under this circumstance,  
 Mu = 0 
 
Thus, in this particular instance,  
 
 0=µ .............................................................(23a)  
 
b. Axial load capacity 

Noting that 2
c s8284A '.= and c

2
s As8284A −= . , 

and substituting these parameters into Eq. (5c) 
and subsequently into Eq. (8b), one gets: 

 
cdc

ydscdc

fA

fAfA +
=ν  

 
 Dividing the above equation by t2 and 
simplifying 
 

cd
2

yd
22

cd
2

f8280

f8280f8280

).(

]).([).(

−α

−α−α+−α
=ν  

 ...........................................................................(23b)  
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neutral 
axis 

h 

Fig. 15. Location of neutral axis for 
Case (ii). 

Case ii:  More than half the area under compression (Fig. 15) wherein the 
neutral axis can assume any position within the range given by 

tsh
s

−≤≤ 207.1
2

  

 
 
a. Moment capacity 
 In this situation, the general expression for Mu as given by Eq. (5b) can 
be established by substituting the following cross-sectional values: 
 

)'(545.2 33 ssWpa −=  

pcnpan WhshssW −+−−= )}667.0569.0()2414.3(25.0616.1{2 23  
3'545.2 sW pc =  

)}667.0'569.0()2'414.3(25.0'616.1{2 23 hshssWpcn +−−=  

 
 Thus, taking the relationships in Eq. (2) and associated description of the notations involved, and 
after appropriate substitutions and simplifications, one obtains: 
 

cd

yd

cd

yd

cd

yd

f

f
f

f

f

f

3

233

3

2

3

23333

)828.0(828.4
2

}]667.0)828.0(569.0{}2)828.0(414.3{25.0)828.0(616.12)828.0(545.2[

)828.0(828.4

}]667.0)828.0(569.0{}2)828.0(414.3[{5.0

)828.0(828.4

)]667.0569.0()2414.3(25.0})828.0({61.12})828.0({545.2[

−

+−−−−−×−−
+

−

+−−−×
+

−

+−−−−×−−−
=

α

βαβααα

α

βαβα

α

βαβααααα
µ

 

 
 ..........................................................................................................................................................................................(24a) 
 
b. Axial load capacity 
 To establish the axial force Nu, it is important to note that the following relationships hold with 
regard to cross-sectional properties: 
 

})'.().{(.)'(.

).)(..(.'.

2222
snet

stscsnet

2
traccc

h2s4143h2s414350ss3285A

AAA

hts2071t6563h2s414450s8284AAA

−−−−−=

−=

−−−−−=−=

 

 
The non-dimensional parameter ν will then be given by after a series of substitutions and 
simplifications: 
 

cd

yd

cd

cd

f
fh

f
f

2

2222

2

2

)828.0(828.4
}])2)828.0(414.3()2414.3{(5.0})828.0({328.5[

)828.0(828.4
)}1207.1)(656.32414.4(5.0)828.0(828.4{

−
−−−−−−−

+

−
−−−−−−

=

α
αβααα

α
βαβαα

ν

 

 
 ..........................................................................................................................................................................................(24b) 
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neutral 
axis 

h 

Fig. 16. Location of neutral axis for Case 
(iii). 

neutral 
axis 

h 

Fig. 17. Location of neutral axis for Case (iv). 

c. Values of β used 
 Values of  β used are 0.5α, 0.6α, 0.8α, α and 
1.207α -1 
 
Case iii:  This is also another case where still 

more than half the area under 
compression (Fig. 16). The neutral axis 
will have the following position with 

t4140s50h0 .. −≤≤   
 
 
 
 
 
 
 
 
 
 
 
a. Moment capacity 
 To establish the Mu as given by Eq. (5b), it is 
important to note the following relationships for 
this particular case: 
 

 thWssW panpa
233 2)'(545.2 =−=  

 23 )2414.2('545.2 htsWsW pcnpc −==  

 
 After a series of substitutions and simplifica-
tions, the non-dimensional parameter in its final 
form becomes: 
 

cd

yd

f
f

3

233

)828.0(828.4
]2})828.0({545.2[

−
−−−

=
α

βαα
µ  

cd

cd

f
f

3

23

)828.0(828.4
2/})2414.2()828.0(545.2{

−
−−−+

α
βαα  

 
 ...........................................................................(25a)  
 
b. Axial load capacity 
 In this case, the following relationships hold 
for the establishment of Nu: 
 )207.1(2'414.2 2 tshsAcc −+=  thAsnet 4=  
 The final form of the non-dimensional 
parameter ν becomes: 
 

cd
2

ydcd
2

f82808284

f4f12071h282804142

).(.

)}.().(.{

−α

β+−α+−α
=ν

 
 ...........................................................................(25b) 
 
 

c. Values of β used 
Values of β used are 0, 0.2α, 0.4α and 0.5α -

0.414. 
 
Case iv:  When less than half the area is under 

compression (Fig. 17) and the neutral 
axis can take any position within the 
range t4140s50h0 .. −≤≤   

 
 
 
 
 
 
 
 
 
 
 
a. Moment capacity 
Expressions for moment capacity and those of 
the non-dimensional parameter µ are similar to 
those for Case (iii). Thus, 
 

cd

yd

f

f
3

233

)828.0(828.4

]2})828.0({545.2[

−

−−−
=

α

βαα
µ  

cd

cd

f
f

3

23

)828.0(828.4
2/})2414.2()828.0(545.2{

−
−−−

+
α

βαα  

 ...........................................................................(26a)  
 
b. Axial load capacity 
 In order to arrive at the desired result for the 
non-dimensional parameter ν, we will take the 
following relationships into consideration for this 
case: 

htAtshsA snetcc 4)207.1(2'414.2 2 −=−−=  
 
 Now, making appropriate substitutions into 
Eq. (8a), ν will attain the following form: 
 

cd
2

ydcd
2

fs8284

htf4fts2071h2s4142

'.

)}.('.{ −−−
=ν  

 
 Dividing equation by t2, the desired expression 
for ν  becomes: 
 

cd
2

ydcd
2

f82808284

f4f12071h282804142

).(.

)}.().(.{

−α

β−−α−−α
=ν

 
 ...........................................................................(26b)  
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neutral 
axis h 

Fig. 18. Location of neutral axis for Case (v). 

c. Values of β used 
 Values of β used are 0, 0.2α, 0.4α and 0.5α -0.414. 

 
Case v: This is the other case where less than half the area under compression (Fig. 18). Here, the 

neutral axis may take up any position in range ts2071h
2
s

−≤≤ . . 

 
 
 
 
 
 
 
 
 
 
 
 
a. Moment capacity 
Moment capacity is same as in Case (ii). Thus: 
 

cd

yd

cd

yd

cd

yd

f

f
f

f

f

f

3

233

3

2

3

23333

)828.0(828.4
2

}]667.0)828.0(569.0{}2)828.0(414.3{25.0)828.0(616.12)828.0(545.2[

)828.0(828.4

}]667.0)828.0(569.0{}2)828.0(414.3[{5.0

)828.0(828.4

)]667.0569.0()2414.3(25.0})828.0({616.12})828.([{545.2

−

+−−−−−×−−
+

−

+−−−
+

−

+−−−−×−−−
=

α

βαβααα

α

βαβα

α

βαβααααα
µ

 
 ..........................................................................................................................................................................................(27a) 
 
b. Axial load capacity 
 The following relationships hold in this range: 
 

}])'.().{(.)'(.[

).)(..(.

2222
snet

stscsnettracc

h2s4143h2s414350ss3285A

AAAhts2071t6563h2s414450AA

−−−−−−=

−=−−−−==
 

 
 Substituting these into Eq. (8a), dividing the resulting equation by t2, the final form of the 
non-dimensional parameter ν becomes: 

cd

yd

cd

cd

f
fh

f
f

2

2222

2

)828.0(828.4
}]}2)828.0(414.3{)2414.3{(5.0})828.0({328.5[

)828.0(828.4
)}1207.1()656.32414.4(5.0{

−
−−−−−−−−

+
−

−−−−
=

α
αβααα

α
βαβα

ν

  

 
 ..........................................................................................................................................................................................(27b) 
 
c. Values of β used 
 Values of β used are 0.5α, 0.6α, 0.8α, α and 1.207α -1 
All the above relationships will now be used to establish the interaction diagram for concrete-filled 
steel tubes. 
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Fig. 19b. Uniaxial interaction diagram for hexagonal section with bending about y-axis. 
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Fig. 19a. Uniaxial interaction diagram for hexagonal section with bending about x-axis. 

UNIAXIAL INTERACTION CHARTS 
 
Based on the various relationships developed for the non-dimensional parameters ν and µ in the 
preceding sections, interaction diagrams have been provided both for hexagonal and octagonal section 
and these are given in Fig. 19 and Fig. 20, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These charts can be used to assess the validity of hexagonal or octagonal uniaxial steel-concrete 
composite columns of established cross-sectional and material properties or may be used to propose 
an appropriate design for a given set of axial compression and/or uniaxial moment. 
 
 

CONCLUSION 
 
Concrete-filled steel tubes used as structural columns have significant economic, structural and 
functional advantages. However, their design procedures stipulated in various code standards have 
been computationally demanding as they need development of interaction curves for each trial cross-
section considered in the design process. 
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C 30   Fe 360 octagonal section 

Fig. 20. Uniaxial interaction diagram for octagonal section. 
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 To alleviate this problem, normalized charts 
have been produced that simplify the design 
calculation. The charts can be used to directly 
compute the amount of steel required for a given 
cross-section without resorting to the code-based 
trial-and-error procedure. In addition to this, 
they can also be effectively employed to propose 
a design capable of withstanding a given set of 
loads. Besides being computationally efficient, 
the produced charts also provide more accurate 
results than using the method stipulated in 
EBCS4(1995). 
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