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Abstract 

The modern battlefield is a fast-paced, information-rich environment, where 
discovery of intent, situation awareness and the rapid evolution of concepts of 
operation and doctrine are critical success factors. A combination of the techniques 
investigated and tested in this work, together with other techniques in Artificial 
Intelligence (AI) and modern computational techniques, may hold the key to 
relieving the burden of the decision-maker and aiding in better decision-making 
under pressure. The techniques investigated in this article were two methods from 
the machine-learning subfield of reinforcement learning (RL), namely a Monte 
Carlo (MC) control algorithm with exploring starts (MCES), and an off-policy 
temporal-difference (TD) learning-control algorithm, Q-learning. These techniques 
were applied to a simplified version of the weapon assignment (WA) problem in air 
defence. The MCES control algorithm yielded promising results when searching for 
an optimal shooting order. A greedy approach was taken in the Q-learning 
algorithm, but experimentation showed that the MCES-control algorithm still 
performed significantly better than the Q-learning algorithm, even though it was 
slower. 

Introduction 

In his 2007 book, The Utility of Force – The Art of War in the Modern 
World, General Rupert Smith concludes that modern warfare will call for 

information technology to support operations 
by helping the commander to understand the 
actions of the opponent and to separate him 
from the people.1 Computational (software) 
agent systems are showing much promise in 
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this regard, allowing researchers to understand complex human interaction and 
decision-making paradigms. One of the key design-parameters for agent systems is 
finding the appropriate learning algorithms. 

One such a family of (machine) learning algorithms is RL. The latter is a 
branch of AI2 and uses a formal framework defining the interaction between a 
learning agent and its environment in terms of states, actions and rewards. It is 
concerned with how an agent should take actions in an environment to maximise 
some sort of long-term reward.3  

What sets RL apart from other machine-learning methods is the fact that the 
agent is not told which actions to take, but instead must discover by trial and error 
which actions yield the highest reward. All RL agents have explicit goals, can sense 
aspects of their environments, and can choose actions to influence their 
environments. The agent has to operate although it does not have exhaustive 
information or knowledge of the environment. This is particularly useful and 
important in applications such as WA where the necessary supervision and rules of 
engagement are known, but may be open to interpretation in the heat of battle. 

The WA problem, stated very simplistically, is the assigning of n weapons to 
m targets.4 As with the resource-allocation problem, the WA problem is also NP-
complete and as such, no exact methods exist for the solution of even relatively 
small-sized problems. WA decisions are considered more easily quantifiable than 
threat evaluation (TE), and thus the challenge lies more in the solution 
methodologies of the problem rather than in the formulation, as is the case with TE. 

In this article, we shall discuss whether RL was found to be suitable for 
solving the WA problem. A short overview of RL and related work is given, as well 
as an explanation where RL fits into the greater context. Command and control (C2), 
as well as threat evaluation and weapon assignment (TEWA), are discussed. Finally, 
the article explains how the WA problem was modelled and how the MCES-control 
algorithm and the TD-algorithm, Q-learning, were applied to the WA problem. The 
results are compared and we conclude with ideas for future study. 

Overview of reinforcement learning and related work 

In some of the latest research on RL applied to WA, the researchers Azak 
and Bayrak5 implemented learning agents for decision-making in TEWA problems 
of C2 systems. The goal was to optimise the performance in decision-making for 
TEWA problems of multi-armed platforms. They used Q-learning to solve the WA 
problem and, after training, the agents learned how to coordinate with other agents 
and how to select a threat to engage in any state of the defence system. 
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Most of the cognitive effort during the decision process resides in the orient 
phase, which consists of two sub-phases: destruction and creation. A decision-
making entity will attempt to destruct or decompose a problem until the sub-
problems are close to situations that were experienced before, and for which the 
decision-maker has a plan. Problems are matched with their respective emergency 
plans, which are then combined or created into an overall plan of action. 

If a decision-maker creates a single feasible plan (during the orientation 
phase), the decision phase is simply a question of whether or not to execute. The 
action node in Figure 3 represents the execution of a chosen course of action or plan. 
These actions may include a physical attack or movement, the issuance of an order, 
or a focus of effort on the sensor for a better observation during the next cycle of the 
process. 

Tactical C2 can be divided into the following high-level functions: 

 Target detection – mainly through sensors; 

 Target tracking – use data-fusion techniques; 

 Target identification – to determine true targets; 

 Threat evaluation – establish the intent and capability of potential threats; 

 Weapons assignment – target engagement.13 

Threat evaluation and weapon assignment 

The air defence (AD) operator assesses the tactical situation in real time and 
protects ground-based defended assets (DAs) against aerial threats. This is done by 
assigning available weapon systems to engage enemy aircraft.14 The responsibilities 
associated with this environment are typically divided between several operators and 
decision-support systems (such as threat evaluation and weapon assignment 
(TEWA) that assist these operators during the decision-making processes. TEWA 
assigns threat values to aircraft in real time and uses these values to suggest possible 
assignments between weapons and observed enemy aircraft. 

The TEWA process may be regarded as a dynamic human decision-making 
process aimed at the successful exploitation of tactical resources (i.e. sensors, 

weapons) during the conduct of C2 activities10. From this perspective, the role of 

humans is central to the TEWA functions as humans are responsible for any 
outcome resulting from their decisions. Hence, the type of support or aid to be 
provided is meant to assist, not replace, operators in their decision-making activities. 
As a result, the automation to be provided requires careful design. Consequently, an 



129 
 

approach is required that models the decision-making problem and captures the 
cognitive demands and information requirements. The local TEWA environment is 
defined for AD, with the initial focus on ground-based air defence systems 
(GBADS),13 and consists of two independent specialised subsystems in which the 
threat evaluation (TE) and weapon assignment (WA) computations are executed. 

WA is a resource-management process during which weapons are allocated 
to engage threats in the threat-ranking list. A WA system is required to provide the 
fire control operator (FCO) with a proposed assignment list containing weapon 
system-threat associations. A WA system takes as input threat information obtained 
from the TE system. The assignment problem is solved given the status of DAs, 
weapon-systems’ status and capabilities and the relevant threat information, 
resulting in a number of different weapon system-threat pairings. When the FCO 
authorises the assignment of a weapon system to a threat, the relevant weapon 
system must be informed. The output of the WA-model framework is a list of 
proposed assignments at the end of each time step. 

It would be advantageous to have a system that adapts as the operator 
becomes more proficient at evaluating threats and assigning resources. The system 
should in principle then improve as the operator gains experience.  

TE decision aids are suitable in addition to human cognition to make the call 
if an observed threat is indeed friend or foe, but with WA there is room for learning 
algorithms; algorithms are put in place to assist the FCO in making his/her 
decisions. 

Modelling the weapon assignment problem 

The object of the WA problem was to assign weapons effectively in order to 
defend a certain DA by engaging the threat as quickly or optimally as possible 
before it releases weapons. For our simple model, the DA was situated at the centre 
of the grid and was fixed. Four missile stations were used to defend the DA and, 
once these were placed, they also remained fixed. 

The threat flew in from one of the cells and flew in a straight line towards 
the DA. Each weapon got a turn to shoot at the threat while it was in a specific cell 
(granted that the previous weapon did not succeed in its goal), according to some 
strategy (the policy). If the threat was eliminated, success was claimed. If all four 
weapons missed, the threat moved one cell closer to the DA and again the weapons 
took turns to shoot at the threat. If the threat reached the DA, it eliminated the DA. If 
the threat was on any of the weapons' positions, no shots could be fired for fear of 
injuring or killing the soldiers operating the missiles. In this case, the threat moved 
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naturally into episodes – a threat flew in and was either shot down or shot down the 
DA. Lastly, the problem was finite because it was an MDP with finite state and 
action sets (there were 24 different actions).  

The system was encouraged to eliminate the threat as quickly as possible by 
varying the rewards given for certain cases. These different rewards are summarised 
in Table 1 

Case Reward

Weapon 1 eliminated threat +3

Weapon 2 eliminated threat 0

Weapon 3 eliminated threat 0

Weapon 4 eliminated threat 0

All four weapons missed -1

DA is reached -5

Table 1: Obtaining the rewards 

The analytical solution is that the weapon closest to the threat fired first, as 
we believed the first weapon to be of vital importance. For this model, we assumed 
that the probability of a hit was inversely proportional to the distance. The agent did 
not control this; therefore, it was part of the environment. We rewarded the first 
weapon for eliminating the threat, because we wanted to eliminate the threat as soon 
as possible. If the second, third or fourth weapon eliminated the threat, we did not 
penalise these weapons, because it was not “wrong”; it was just not what was 
expected. By rewarding only the first weapon, the algorithm was encouraged to use 
the weapon with the highest chance of eliminating the threat. If all four weapons 
missed, we penalised that particular state-action pair by giving it a reward of -1. 
When the DA was reached, a reward of -5 was given. Experiments were conducted 
with different reward schemes and it was found that it did not matter what the values 
of the rewards were; what mattered was the size of the rewards in relation to each 
other. Better results were obtained when the absolute value of the penalty for 
eliminating the DA was greater than the reward for eliminating the threat. 
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The policy 

In our investigations, the policy was a function of the state-action pair (s, a). 
Our initial policy was to assume the weapons shot in numbered ordering, from 1 to 
4. This was not a good policy, seeing that it did not take into account where the 
threat was located at that particular time. We wished to iterate and improve this 
policy until we had one that agreed with our intuition, which was that the weapon 
closest to the threat should fire (that weapon also had the highest probability to 
eliminate the threat). For this simple problem, the solution was known and this fact 
was used to evaluate the RL algorithm. 

Solving the problem 

Starting at the upper left point on the grid, an episode of WA was simulated. 
Starting at the next point on the grid, the following episode was simulated, and the 
next, until the end of the grid was reached, thus ensuring that all states were chosen 
as starting positions. This position was the current state of the threat. The distance 
from the threat to each of the four weapons was calculated, and based on that, a kill 
probability Pkill was assigned to each weapon using a lookup table. The calculation 
of Pkill was part of the formulation of the WA problem, and not of the RL algorithm. 

The action volume of a weapon can be represented as a circle around the 
weapon. If the threat is within this circle, it will be shot down according to some 
probability, e.g., in the circle and close to the weapon, it has a higher probability of 
being shot down than if it was on the edge of the circle.  

Shifting the parameters 

In the MC implementation, γ = 1 was used as a rule throughout all the 
simulations. If γ = 1 in the Q-learning environment, the Q-values diverged.16 This 
was confirmed experimentally, but the experiment itself will not form part of this 
discussion. Q-learning learns the expected action-values Q(s, a) of taking action a in 
state s, then continues by always choosing actions optimally.  

The learning rate parameter (α) limits how quickly learning can occur. In 
this specific algorithm, it directed how quickly the Q-values could change with each 
state-action change. A factor of 0 caused the agent not to learn anything, while a 
factor of 1 caused the agent to consider only the most recent information. If α was 
too small, learning was slow; and if α was too large, the algorithm might not 
converge.17 

A policy that always chooses the best action is known as a “greedy” policy. 
Following a greedy policy most of the time, but with a small probability ε  randomly 
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  Error % for various firing distances 

γ α 12 20

0.2 0.1 4.939% 11.287%

0.3 0.1 4.999% 11.645%

0.4 0.1 4.483% 11.168%

0.5 0.1 4.701% 9.919%

0.6 0.1 6.784% 10.137%

0.7 0.1 5.297% 10.950%

0.2 0.2 9.601% 18.231%

0.3 0.2 9.502% 16.425%

0.4 0.2 7.499% 15.314%

0.5 0.2 8.411% 16.128%

0.6 0.2 7.935% 14.779%

0.7 0.2 8.272% 14.204%

Table 2: Error percentages 

The minimum errors for the three firing distances occurred when 0.4 ≤ γ ≤ 
0.5 and α = 0.1. Using these parameter combinations, we obtained the following 
results. The same weapon layouts and firing distances were used as for the 71 × 71 
grids in the MC section. 

From Figure 7 it can be seen that learning for a 71 × 71 grid with firing distance 12 
was very slow. This could be due to the small α -value (learning rate). Figure 8(a)–
(d) also shows a slow learning rate for a firing distance of 20. 
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had not been found yet. Table 3 shows a comparison between the error percentages 
for both algorithms. 

 Error % for various firing distances 

 12 20

MCES 0.258% 1.508%

TD (Q) 4.483% 9.919%

Table 3: Error percentages 

Conclusion 

The aim of the study on which this article is based, was to evaluate and 
compare two RL algorithms to see which would yield promising results on the 
simplified version of the WA problem. An MCES control algorithm and the off-
policy TD-learning control algorithm, Q-learning, was applied to 71 × 71 grids. 

Simulations were run with firing distances of 12 and 20 grid units. It was 
found that the smaller the firing distance relative to the grid size, the longer the 
episodes were and the longer the simulations took. However, a smaller firing 
distance incurred a smaller error percentage. The bigger the firing distance, the 
greater the chance of overlapping between the weapons and the bigger the error 
percentage. 

For the MCES algorithm a fixed discount parameter of γ = 1 was used. This 
algorithm performed exceptionally well and incurred only minor error percentages. 
When applied to a 71 × 71 grid with 200 simulations per state, the MCES algorithm 
took nearly twice as long as the Q-learning algorithm with a firing distance of 12, 
and nearly three times as long with a firing distance of 20. 

Setting the discount parameter to γ = 1 caused the Q-values to diverge in the 
Q-learning algorithm. A greedy policy was followed while the learning rate (α) and 
the discount parameter (γ) were varied. It was determined experimentally that 0.1 ≤ 
α ≤ 0.2 yielded better results than larger α-values. These α-values were used with 
different γ-values and it was found that medium to large γ-values worked best. It 
was found that with a greedy policy, α = 0.1 gave adequate results when applied 
along with 0.4 ≤ γ ≤ 0.5. 

Even though the MCES algorithm was considerably slower, it outperformed 
the Q-learning algorithm in all examples considered. The problem of simulation 
time could be rectified by code and hardware optimisation. We thus conclude that 
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RL, especially the MCES algorithm, is a promising field to consider in the solving 
of the WA problem. Combining the techniques investigated and tested in this work 
with other techniques in AI and modern computational techniques may hold the key 
to solving some of the problems we now face in warfare. 

Future work 

The problem of considering both TE and WA within the context of OODA is 
non-trivial and future work must focus on bringing these elements together and 
considering the computational burden that would result. The obvious question that 
comes to mind then is how one could find optimal policies that are developed in 
timely fashion to support the commander during an operation.  

Another suggestion for future work would include designing a more 
complicated grid by including different terrains and “obstacles” such as mountains 
and valleys. Time delays for weapons could also be added, or even the constraint 
that certain weapons have limited ammunition. Another constraint could be that 
certain weapons can shoot further than others can, where we currently have a 
constant firing distance across the board in a given problem. Another suggestion 
would be to consider the case where multiple weapons shoot at the same time. 

A possible improvement on the Q-learning algorithm would be to follow an 
ε-greedy policy and vary ε along with γ and α, as opposed to only using a greedy 
policy. 
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