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Introduction

1. The theory and practice of regression analysis,
and the principle of least-squares on which it is
based, is frequently encountered in Mathematics
and particularly  Statistical Mathematics, but less
well known are some very useful applications in a
military environment. It is therefore the aim of this
article to firstly give a general description of the
theory of regression analyses, and secondly to
highlight some military applications of the theory.

Theory of regression analysis

2. Let the relationship between the x- and y-

values of a set of N (x, y)-data pairs be of the form
y = al + a2f2(x) + a3f3(x) + a4fa(x) +

+ amfm(x) m
¥
I
Figure
where the fk(x) are either known or a~sumed
functions of th~ independent variable x. Then a

regression analysis on a set of at least m=+1 (x, y;-
data pairs will determine the best values - in the
"least-square™  sense - of the m coefficients al, a2,

, am in equation (I). The term "best values"
above physically implies those values for which the
smooth curve described by (I) comes closest to
going through all the experimental points on the
scatter diagram in figure I, where for clarity the
experimental point (X5, Y5) is merely denoted by 5.

Quantitatively  stated the condition to be satisfied
by the choice of the coefficients al, a2, ... , amis
that the sum of the squares of the vertical distances
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~aj. (). de ViUien*
from the smooth curve to the experimental points
must be a minimum, i.e. that
N
S=1L 8
1~1 |
= L [YI - al-a2f2(xI)-a3f3(xi) -
I _ amfm(Xi)J2 2)
be a minlmum. Since S = S(al, a2, ... , am) a

necessary, and in fact sufficient condition for S to

be a minimum is that
S as S as
aﬁ|~=aa;=aﬁ|;= ..... =dd~=0.. (3

Application of the conditions (3) to (2) gives rise to
a system of m so-called normal equations in the m
unknowns al, a2, ... am; and this system can then
of course be solved for al, a2, ... , ambmo standard
matrix methods. In writing down the normal equa-
tions the following simple, and obvious rule proves
very helpful: to obtain the i-th normal equation,

which is derived from @S = 0, multiply both sides
aul

of (I) by the coefficient of al in (I) - fl(x) in the
above case - and sum over N. Note that ft(x) is in
fact the partial derivative of the right hand side of
() wrt ai, from which the truth of the mechanical
rule immediately follows.
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3. If the system of normal equations is written in matrix form as ~
N ~ f2(XI) ~ fa(XI) ~ fm(X1) al Yl
~ f2(XI) ~ f~(XI) ~ f2(xI)fa(xI) ~ f2(X1)fm(XI) a2 ~ ylIf2(XI)
~ fa(XI) ~ fa(X1)f2(X1) ~ n(XI) ~ fa(X1)fm(XI) aa ~ Ylfa(XI)
~ YIf4(XI)
~ i~~~ i)~ (mR) ~ A () ~~() Lt~ Al K [.~~. . .
“ImXI) ~ fm(XDf2(X1) ~ fm(XI)fa(XI) ~ f~(X1) am I"Tlfm(XI)
or in abbreviated form as 6. An alternative, and preferable approach, is to
cC*A=08B 4) calculate the standard error of estimate of each of
then the regression coefficients al, as standard errors are
A=cC-1*B 5 easier to interpret quantitatively. It is in fact fairly
where C-l is the inverse of C. Note that C is a simple since the variance (or square of the standard
symmetrical matrix, a fact which considerably re- deviation) of the i-th regression coefficient al is

duces the still lengthy calculation of C for large
sets of (X, y)-data pairs. But as the accuracy of the
regression analysis increases with the size of the
data set, this greater computational effort is well
worth the extra work.

4. A very important point to remember in con-
nection with a regression analysis is that in spite of
the fact that it does determine those values of the
coefficients or parameters al which guarantee the
best fit of the smooth curve (1) to the given or
experimental data set, it does not in fact guarantee

that (1) will fit the data very well. For example, if
you try to fit a straight line to a quadratically

related data set, the regression analysis will deter-
mine the best-fitting stralght line, even though the
straight line won't fit the data very well. The actual
example in figure 2 illustrates this point quite
clearly!

Figure

5. There are basically two ways of measuring the
‘goodness  of fit' quantitatively.  Firstly, one can
calculate the coefficient of correlation between the
experimental y-values and those calculated from (1)
with the regression coefficients - this is of course
identical to calculating the correlation index be-
tween y and x - and use this coefficient as a
quantitative estimate of the goodness of fit. But as
it is possible to get an r-value very close to unity
for a relatively poor fit, this is a fairly insensitive
method which should only be used to choose
between two different assumed relationships.

If
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given by Cj} * 0-2, where Cj/ is the i-th diagonal
element of the inverse matrix C-1 and o2 is the
variance of the residuals (y!XP- y~h). As the best
estimate of o2 is provided by

S2 = —(Y{xP - yh)2j(N -1)

for one independent variable, it follows from the
definition of standard error that the standard error
of estimate of the regression coefficient al is given
by the expression

Sm(al) = [C:l-lf '1~(y—1~XP- ytth)2j{N (N-1)}H1. .(6)

7. Fairly popular forms of the functions
(1), which also work well in practice, are

xk; exp(xkx);  cos (kx); sin (kx)
The trigOnometric  functions are particularly useful
for periodic data, but then one must remember to
stretch/compress ~ the independent x-coordinates to

fk(x) in

ensure that the period - be it 24 hours, 365 days of

560 meters - corresponds to 2t or 360°!
8. As a final remark it must be stressed that the
theory as outlined above is applicable only to

regression analyses of yon x, i.e. where the x-values
are either exact or subject to errors negligible in
comparison  with the errors in y. Fortunately, this
is normally the case, but even when both variables
are subject to errors the same principle can still be
applied by merely demanding that the sum of the
squares of the perpendicular distances from the
points o'n the scatter diagranl to the regression
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curve be a minimum. This approach will in fact be

adopted in the first two applications dealt with in
the sequel.

Application I: MPP on a map from bearings to
beacons

9. In any elementary course in Map Reading one
is taught how to determine your position from the
back-bearing  lines from two or more beacons at
known positions, and as the distances used are
usually so small the error made in assuming your
correct position to be at the midpoint of the
(ideally) small error triangle or polygon is negligible.
But for larger distances or greater accuracy this
simple method will obviously not be good enough,
and the method of least squares must then be used
to determine the most probable position (MPP)
mathematically.  This theory is outlined below.

10. Since the observer's position should be some-
where on the back-bearing line from a beacon at
known position, let us refer to these back-bearing
lines as position Jines (PjL's). Figure 3(a) shows a
typical error triangle enclosed between three PjL's,
and figure 3(b) illustrates exactly what is meant by
the term MPP in the least-square sense, viz. that

point for which the sum of the squares of the
perpendicular distances Oi from it to the various
PjL's
Ph..3
o3
Figure 3(a)
PAJ.3
Figure 3(b)

For this statement to be translated
into mathematical form we therefore require an
expression for the perpendi::ular distance from a
point (X, y) to a straight line, and the simplest
expression for this can be expressed into the per-

is a minlmum.
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distance p from the origin of a rectangu-
system to a straight line whose
the origin makes an angle a with
From figure 4 it will be clear

pendicular
lar coordinate
normal through
the positive x-axis.
that

‘to

Figure 4
p = OR
=0Q * QR
=0Q t+sP
= xcos a Tysina 0
where (X, y) is any point on the straight line.

(7) can now be used to express the per-
distance from the arbitrary point (X, y)
(X1, Y1) as the difference between
distances from the origin of two
the points (X, y) and (Xi, yd

Equation
pendicular
to the line through
the perpendicular
parallel lines through
respectively, i.e.
0J= (xi COS a + vjsina - xcosa - vsin ad
Il. At this stage the calculation of the x- and y-
coordinates of a beacon from its 6- or 8-digit grid
reference, and the calculation of a from the bearing
to the beacon warrant some discussion. A grid
reference of 562 147 implies that the X coordinate
of the beacon is 56200 (meters), and y is 14700-
both being measured wrt the Universal Transverse
Mercator grid which is superimposed on the Gauss
Conformal  Projection used for all Service maps.
But with this projection, as with most others, a
straight line on a map corresponds to a straight line
on the earth's surface over only a limited distance,
so one would be ill-advised to use an origin as far
away from the area covered by the map as is the
case in some South African maps where the origin
is at 40°S, 12°E. To minimize this change in scale
with distance from the origin an ideal origin must
be somewhere in the vicinity of the beacons, and
the logical choice ap'pears to be the point (X, y),
where

X = fi|.ZxI'jN; y = :!.Zy;jN

and x;, y; are the (Mercator) coordinates of the i-th

beacon. The coordinates in (8) are therefore
Xi=X-Xv=y -y 9)
In connection with al it must be remembered that

navigational bearings are measured clockwise from
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North, whereas rectangular coordinate angles are
measured  counterclockwise ~ from the positive x-
axis, i.e. 'last’, and the transformation between
the two is

o - o - C

6RECT = %0 GNAV" NAV 90" - I‘]k!:OCT"(lO)

And since OR is .1 the P/L with bearings {3, it
follows that
al = 90° - ({31 :J: 180° :J: 90°)
= 180°- {3lor - {31 ... )
Corrections  for compass error and magnetic varia-
tion (or declination as it is sometimes called) can
obviously be incorporated in (11) as well.
12. Finally, then, for the MPP at the point (X, y)
the quantity
S=~ 1)
I I
= ~ (Xlcos ar F Yisin ar - Xcos al - y sin al)Z
I

must be a minimum. And since S= S(xvy), a
necessary condition for this is that

82 = Bi = 0. The con d‘I'trOn
S = " _ 2 cos ai(Xlcos a F Yisin ar -
ux ' Xcosa - Ysina’=
can be written as
X ~ COSzalt y ~ cos al sin a =
~ (X1COSzal* Ylcos al sin ay .. "(12(a»

Similarly the condition =S = 0 can be rewritten in
the form y
X ~ cos ai sin ar + Y ~ sinzai =
~ (XIcos al sin ar + Yisinzai) ... (12(b»
Writing (12) in concise form as
cnX + Cizy= bl
Clzxt czzy = bz
the solutions are
X= (bICZZ bzClz)lcnC2z- C1Z)
Y= (bzCll- bICIz)!(cnczz - G1Z)... (13)

where
cn = ~ coszai; ClZ= ~ cos Ulsin ai;
Cz2= lsinzal |
bl = —I~ (X1COSzalt Ylcos ai sin a;);
bz = : (Xlcos at sin Ul Ylsin2al)

I
As these MPP coordinates are calculated wrt the
transformed  origin they must still be converted
back to x' and y' via the inverse of (9), and hence
into a 6- or 8-digit grid reference.

Application 2: MPP from a multi-sight fix in astro-
navigation

13. A very similar application, which is in fact
currently being introduced in the SAN, is to deter-
mine the MPP from a multi-sight fix as accurately
as possible. Using the Marc St-Hilaire method

(which will not be described here) each individual
star sight yields a P/L on which that particular sight
indicates the observer to be, and the MPP is again
obtained from the solution of the error triangle or
polygon ('cocked hat' as it is frequently referred
to) enclosed by the various P/L's. As in paragraph
10 the MPP is once more defined to be that point

for which ~ I)~is a minimum, where 1)1 has the

1

same meaning as before. So the only difference
between this case and the previous one is in the
expression for 8;. Since each P/L is specified ito
an azimuth (AZ), i.e. the bearing towards the star
from the observer, and an intercept (IC) which
indicates the distance of the P/L from the dead
reckoning position (DRP), the I)'s must obviously
be expressed ito these two variables as well. From
figure 5 it is clear that

X (E" st

N CO((fin)
IFI..
le 1 :: TowQ. «Js
IC.~ : Awuo-
~ (~d:~)
Figure 5
)=MD

= OP - OB - BA
= OP - OB - CM
= IC - Xsin (AZ) - Ycos (AZ)

S=~z
|

= ~ [ICI - xsin (AZl) - Ycos (AZI)}2
I
In identical fashion to the previous case the condi-

trOns$§: 0 and a‘? =0 can be Written Irl?t e 1orm

X ~ sinZ (AZ;) + Y~ cos (AzZI) sin (AZI) =
~1C * sin (AZI)

x I: cos (AZi) sin (AZl) + Y~ cosZ (AZi) =
~1C* cos (AZI)
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or when expressed as
Cll x + CI2Y = bi
Cix + c22v = b2
the solutions are once more

O LAT (h m) - y = (b2CIl - bICI2)/(CIICI2- C12)
DEP (nm) _ x = (b1C22- b2ci2)/(Clici2 C12)
so that finally
MPP LAT = DR LAT + O LAT/60
MPP LONG = DR LONG * DEP/60/

cos (DR LAT)
where O LAT and Departure (both in nautical
miles since the intercepts are specified in these units)
are the differences in Latitude and 'Longitude’
between the DRP and MPP. Although it will not
be described here it is fairly simple to compensate
for the motion of the navigation officer's own ship
between individual sights. This correction, obviously
calculated from the ship's course and speed, is
described in detail in the NAV PAC notes issued
by the Military Academy to all students doing
navigation courses there.

The role of calcalators

14. In both the applications dealt with so far the
computational  effort required is so large as to make
these methods completely impractical for manual,
logarithmic  table or even slide rule calculations.
But with modern hand-held, pocket-sized electronic
calculators  with the additional facilities of storage
and even programmability, computational ~ com-
plexity ceases to be an obstacle. Instead, the price
of such calculators - ::I:R550 at the time of writing,
and decreasing! - becomes the limiting factor. So
ultimately the accuracy and/or speed required must
be weighed against the inevitable calculator cost
entailed by the mathematically correct methods
described above.

Application 3: Regression analysis on tabular data
15. Conventionally a plotting board is used to
convert a correction from the observation post into
an updated bearing and range for an 81-mm mortar,
and then the weapon's range tables are used to
obtain a charge-elevation combination which gives
the required range. If one has access to a program-
mable calculator, particularly one with facilities
for converting from rectangular to polar coordi-
nates and vice versa, it is fairly simple to calculate
updated bearings and distances from OP correc-
tions, but if the range tables are then again used to
convert distances to charge-elevation combinations
the capability of the (expensive) calculator is not
fully utilized. The problem is thus to derive an
expression for charge and elevation as function of
range from the range tables, and this is where a
regression analysis is called for.

16. Table 1 in Appendix A below is an extract

54

from the range tables of 81-mm mortar for charges
1 and 4, which are representative of all 7 charges.
The ranges are still in yards, but the metric equi-
valent will be very similar. Before discussing the
regression analysis on this data it is perhaps neces-
sary to point out that no simple, closed-form
expression for the elevation angle as function of
range and muzzle velocity (i.e. charge) does exist.
As a brief motivation of this statement the follow-
ing: If the frictional resistance of a mortar in flight
is neglected its range can easily be shown to be
Range R = v~sin 2alg

Where Vois the muzzle velocity, a the elevation
angle and g the acceleration of a freely falling body
9,8 ms-2). But if a realistic expression for the
friction or drag is included (it is roughly propor-
tional to the square of velocity for non-compressible
flow) no closed-form expression for the range ito
Voand a can be found. The range or firing tables
from which table 1 is extracted are in fact drawn
up from numerical solutions of the second order
differential equations for the x- and y- coordinates
separately, and not from actual firings - not only
would the cost of the experimental approach be
prohibitive, but actual measurements of all the
parameters normally included in a firing table
would also be extremely difficult. With the know-
ledge that no closed-form expression for elevation
ito range and muzzle velocity exists one is therefore
left with complete freedom to find any function
that successfully reproduces the data in table |
bmo regression analyses. The two different charges
will be discussed separately.

Charge 1

17. A plot of elevation vs range for charge | shows
that the data frum R = 400X to R = | 100Xlies
exactly along the straight line

a =905 - 0,025R [400:;: R ;01 100] ... (14)
Above | I0Ox the deviation of the plotted curve

from the straight line (14) increases roughly quad-
ratically or cubically with range. Assuming the
relationships between these deviations 8and R to be
8=at al*R + a2* R2.... (15(a»
a regression analysis on these 9 data pairs yields
ao = -40,32762; al = 0,07216;
a2 = -3,24675.105 .. - (15(b»
Combining (14) and (15) then gives the formula
applicable for ranges larger than | 100 yards:
a = 50,17238 + 0,04716R - 3,24675.10-5R2 .. (16)
A comparison of the elevations predicted by (16)
with those in table | shows that (16) is in error by
a maximum angle of 0,25° for R = 1 450x; from
the third column in table | this means that the use
of (16) instead of the range tables will introduce a
maximum range error of 6,26X, which compares



Scientia Militaria, South African Journal of Military Studies, Vol 7, Nr 3, 1977. http://scientiamilitaria.journals.ac.za

favourably with the probable error of 6% in the
fourth column, and (16) is thus an acceptable
formula to use: It is interesting to note that if (15(a»
is replaced by the cubic or third degree relation

8 = ao + alR + a2r2 + a3R3

Then a regression analysis on the deviations gives
the following equivalent of (16), viz.
a = 217,20646-0,32820R +
2,47085.10-4 R2:-6,90252R3 17
Predictions from (17) have a maximum error of
0,12° for R = 1 350%, which corresponds to a maxi-

mum range error of JX arising from the use of (17)
instead of the range tabl~s. Equation (17) is thus
more accurate than (16), but will require a lo~r
programme if a is to be computed on a progra~~
mabie calculator. For completeness it must be
added that if the relationship between a and R is
assumed to be linear or a polynomial of degree
higher than 3, one obtains a poorer fit than with
(16) or (17).

Charge 4

18. In this case a graph of elevation vs Tange has
an approximately parabolic shape, so it once more
seems reasonable to assume a polynomial relation-
ship between a and R. Regression analyses on the
data show that polynomials of degree 2, 3 and 4
give acceptable fits, while any higher degree does
not. The respective regression formulae are:

a = 50,26638 + 0,02396R - 7,11766.10-6R2 .. (18)
a = 101,24140 - 0,02829R + 1,05910.10-5R2-

1,98420.10-9R3 (29)
a = -87407 + 1,30625R - 6,70150.10-4R2 +

1,51455.10-7R3-1,28949.10-UR4 (20)
For these 3 formulae the maximum errors are

respectively 0,63° at 3550X; 0,16° at 2400X and
0,34° at 3200x, which.correspond  to range errors
of 15,60X; 17,00xand 17,16X. All three of these
range errors are at least smaller than the probable
range errors of 19,5X; 18X and 19X as shown
in the fourth column of the charge 4 data, and

55

fortunately the simplest equation (18) is the best
one to use! As a final remark concerning the regres-
sion analyses on these 2 data sets it must be noted
that the input data is fairly inaccurate as all eleva-
tions are only given to the nearest quarter degree.
If more exact data is used the regression formulae
will of course be correspondingly more accurate.

Two or more independent variables
19. Although the theory in the first section was
only developed for one independent variable X, its
extension to 2 or more independants s straight-
forward. For example, if there are 4 independent
variables XIl, X2, X3, X4then the generalized theory
starts from the following equivalent ~f equation (I):
y = al + a2f2(XI) + a3f3(X2)+ a4f4(x3)+
asfs (x4) (21)
and is identical to the single-variable case in all
other respects. But for best results the y-dependence
on the 4 x's must, be fairly simple, such as linear or
at most quadratic or exponential. An illustrative
example of this point is the fuel consumption of an
aircraft which obviously depends on the aircraft's
weight, speed and altitude. But as the fuel con-
sumption is such a complicated function of weight
(f = al + a2ew), height (f = al + a2e-N + a3e-2h)
and particularly  velocity or mach number (f =
al + a2m2 + a3m4 + adme + a5ms + a6mlO)that a
regression analysis on all 3 variables simultaneously
doesn't give very good results.

Conclusion

20. As can be seen from the preceding paragraph

and the first section the theory of regression analysis,
and the least-squares principle on which it is based,
is in fact very simple, but lends itself to many ex-
tremely useful applications in the military sphere.
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Appeodix A
Table 1: Extract from an 81-mm mortar's Range Tables
qharge 1 (‘_Iharge 4
Variation for [ Probable Variation for [ Probable
Range Elevation SOx_in range [ range error Range Elevation SOx in range | range arror
(yards) (degrees) (degrees) (yards) (yards) (degrees) (degrees) (yards)
350 81,50 - 3,0 2400 66,75 - 18,0
400 SO,50 1,00 3,0 2450 66,25 0,50 18,0
450 79,25 1,25 3,0 2500 65,75 0,50 18,0
500 78,00 1,25 3,5 2550 65,25 0,50 18,0
550 76,75 1,25 3,5 2600 64,50 0,75 18,5
600 75,50 1,25 3,5 2650 63,75 0,75 18,5
650 74,25 1,25 3,5 2700 63,00 0,75 18,5
| 700 73,00 1,25 4,0 2750 62,25 0,75 18,5
750 71,75 1,25 4,0 2800 61,50 0,75 19,0
800 70,50 1,25 4,0 2850 60,75 0,75 19,0
850 69,25 1,25 4,0 2900 60,00 0,75 19,0
900 68,00 1,25 4,5 2950 59,00 1,00 19,0
950 66,75 1,25 4,5 3000 58,00 1,00 19,0
1000 65,50 1,25 4,5 3050 5700 1,00 19,0
1050 64,25 1,50 4,5 3 100 56,00 1,00 19,0
1100 63,00 1,50 50 3 150 55,00 1,00 19,0
1150 61,50 1,50 50 3200 54,00 1,00 19,0
1200 60,00 1,50 50 3250 53,00 1,00 19,0
1250 58,25 1,75 50 3300 52,00 1,00 19,5
1300 56,50 1,75 55 3350 51,00 1,25 19,5
1350 54,50 2,00 55 3400 49,75 1,25 19,5
1400 52,50 2,00 55 3450 48,50 1,25 19,5
1450 50,50 2,00 6,0 3500 47,00 1,50 19,5
1500 48,00 2,50 6,0 3550 45,00 2,00 19,5
1550 45,00 3,00 6,5
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