CASE REPORT

Sokoto Journal of Veterinary Sciences
(P-ISSN 1595-093X/ E-ISSN 2315-6201)

http://dx.doi.org/10.4314/sokjvs.v14i1.11

Blood transfusion due to haemonchosis induced anaemia in a 4-year-old Kano brown doe

BY Kaltungo 1*, Il Onoja 2, M Babashani 1 & SO Okaiyeto 1

1. Veterinary Teaching Hospital, Ahmadu Bello University Zaria, Kaduna State
2. Department of Veterinary Medicine, Ahmadu Bello University Zaria, Kaduna State

*Correspondence: Tel.: +2348038884381, E-mail: docbilki@yahoo.com

Abstract
A 4-year-old Kano brown doe weighing 20kg from a flock of 5 does was presented to the Veterinary Teaching Hospital Ahmadu Bello University Zaria with complaints of unthriftness, emaciation inappetence, weakness and pasty diarrhea of two weeks duration. Thorough physical examination revealed pale mucous membranes with submandibular edema and puffy face which were indications of hypoproteinemia. Hematological results indicated a packed cell volume (PCV) of 12% on the day of presentation and 9% on the third day. Fecal culture revealed Haemonchus larvae. Blood (400mls) from a donor buck in the goat pen of the faculty was transfused on the third day of presentation through the jugular vein. Two days later a blood sample was collected and a hemogram was performed, the result indicated an appreciable PCV value (15%) and a hemoglobin concentration of 5g/dl. It can therefore be concluded that blood transfusion can be a life-saving procedure in haemonchosis induced anaemia.

Keywords: Blood transfusion, Doe, Goat, Haemonchus, Hypoproteinemia, Kano-brown

Received: 09-02-2015 Accepted: 05-02-2016

Introduction
In veterinary medicine, red blood cell transfusion forms an integral part of life-saving procedures which are used in critically ill animals (Weingart et al., 2004; Mamak & Aytekin, 2012). It is indicated in the treatment of anaemia caused by hemorrhage, hemolysis, ineffective erythropoiesis, African trypanosomosis and gastrointestinal helminths (Mudge, 2010). Oxygen in blood is mostly carried by hemoglobin (Hb) because it is poorly soluble in plasma. However, in anemic patients, this function is highly compromised leading to inadequate tissue perfusion. Blood transfusions increase the oxygen-carrying capacity of blood, therefore, inadequate delivery of oxygen to tissues with consequent tissue hypoxia are prevented or treated (Callan, 2010). Where there are no specific “transfusion triggers,” the choice of a veterinarian to do a transfusion, relies on the combination of physical examination and clinico-pathological parameters of the animal (Mudge, 2010). In emergency management of severe anemia, the decision to transfuse blood should be based on the prognosis of the underlying condition and the availability of a suitable donor (Ermilio & Smith, 2011). Treatment of the underlying cause of anemia should be highly considered, as transfusions are regarded as only temporary; with donor erythrocytes being cleared in an average of 8 days in goats (Smith & Sherman, 2009). Cross-matching small ruminant blood before an initial transfusion is not very necessary because of the minimal level of agglutinating antibody present in ruminant serum. However, it becomes necessary when multiple transfusions are to be performed (Divers, 2005; Mudge, 2010). Haemonchosis in small ruminants is caused by Haemonchus contortus which is a predominant, highly pathogenic gastro-intestinal parasite of major economic importance in sheep and goats (Mortensen et al., 2003). Estimated losses associated with H. contortus are higher than those due to peste des petits ruminants (PPR), a foremost disease of importance in goats (Akerejola et al., 1979). It can lead to severe anemia, poor growth rates, and reduced milk yield (Okaiyeta et al., 2010). Heavy infestation can lead to death (Allonby & Dargie, 1973; Thomas & Ali, 1983; Rowe et al., 1988; Githigia et al., 2001). Generally, gastrointestinal parasites substantially hinder the production and activation processes of the hemopoietic tissue leading to anemia, hypoproteinemia and thereby compromising the...
This paper reports the management of haemonchosis-induced anemia in a Kano Brown doe by blood transfusion.

Case Presentation and Management

A 4-year-old Kano Brown doe weighing 20kg from a flock of 5 does was presented to the Large Animal Clinic of the Veterinary Teaching Hospital (VTH), Ahmadu Bello University Zaria with complaints of severe diarrhea of two weeks duration, lassitude and puffy face (Plate 1). The goats were managed on a semi-intensive system and had no history of deworming. Physical examination revealed depression, pale mucous membrane (Plate 2), bilateral serous ocular discharge, and severe weakness, while rumen motility, assessed by placing a stethoscope in the left paralumbar fossa, was very weak and the body condition score was 2 on a scale of 5 (Detweiler et al., 2008). The rectal temperature was 38.8°C; pulse 108 beats per minute, and the respiratory rate 16 breaths per minute.

Blood and rectal fecal samples were collected and sent to clinical pathology and helminthology laboratories of the VTH for haemogramme and parasite screening respectively. The fecal sample was cultured for two weeks using the Baermann’s technique to obtain third stage larvae; these larvae were collected for further identification. The animal was treated after one week of presentation using Albendazole suspension at 7.5mg/kg live body (once) and 400 ml of whole blood was collected from a healthy buck in the goat pen of the faculty and was transfused intravenously. The donor buck weighed 30kg and screened for haemoparasites and other infectious agents like brucellosis. Four hundred milliliters of blood were drawn from the donor in a blood bag containing citrate phosphate and immediately transfused very slowly for the first 30 minutes through a blood filter set and sterile jugular catheter, after which the rate was increased due to absence of any adverse reaction. The hematological parameters were re-evaluated 2 days after the transfusion; and it was observed that the packed cell volume and the hemoglobin concentration showed some improvements (Table 2).

![Plate I: showing puffy face and Submandibular edema](image1)

![Plate II: showing paper white ocular mucous membrane](image2)

| Table 1: Clinical pathology and helminthology results before blood transfusion |
|---------------------------------|-------------|-----------------|-------------|
| | Haematology | Biochemistry | Helminthology |
| | Day 1 | Day 3 | Normal Range | Obtained values | Normal Range | Strongyle eggs |
| PCV % | 12 | 9 | 22-39 | Total protein g/dl | 4 | 6.4-7.9 |
| Hb g/dl | 4 | 3 | 8-14 | Albumin g/dl | 1.6 | 2.4-4.4 |
| WBC ×10^9/l | 7 | 13.9 | 4-13 | Globulin g/dl | 2.6 | 2.9-3.2 |
| Neutrophils % | 23 | 38 | 10-50 | | | |
| Lymphocytes % | 67 | 70 | 40-75 | | | |
| Monocytes % | 1 | - | 0-6 | | | |
| Eosinophils % | 5 | 5 | 0-10 | | | |
| Basophils % | 1 | - | 0-2 | | | |

Key: WBC- White Blood Cell, Hb- Haemoglobin, PCV- Packed Cell Volume
Results and Discussion

Clinical examination revealed a puffy face and submandibular edema; probably due to hypoproteinemia particularly hypoalbuminaemia (Table 1) as a result of continuous sucking of blood and the hemorrhagic gastritis caused by the adult parasites. Furthermore, disruption in the integrity of the abomasal mucosa might have also caused been caused by an increase in the globulin level due to acute phase proteins produced as a result of injury to the abomasal mucosa. Increase in globulin level as reported by Murata (2004) causes a reduction in albumin production by the liver. Furthermore, Holmes (1987) reported that, reduced energy and protein metabolism, coupled with anemia in severe cases of haemonchosis are accompanied by hypoproteinemia and edema. There was a continuous drop in PCV and Hb values through days 1-3 (Table 1) of clinical investigation of this goat which is a typical sign of infestation by Haemonchus parasites. This may have resulted owing to continuous loss of blood along with iron and protein due to invasion of the abomasum with the fourth stage larvae and the adult worms resulting in a non-regenerative anemia (Bastianetto et al., 2011). Furthermore, the parasite is capable of releasing hemolytic factors that may have resulted in erythrocyte lysis which promotes the anemia (Fetterer & Rhoads, 1998). In this report, the white blood cell values were within the reference range; this concurs with the reports of Rahman & Collins (1990) where it was stated that infection with H. contortus did not lead to significant changes in total white cell counts. Cross matching of the donor and recipient blood an increase in its permeability resulting in further loss of proteins due to leakage to the gastric lumen (Alba-Hurtado & Munoz-Guzman, 2013).

Another possible reason could be that, the effort by the host for a compensatory re-establishment of normovolemia may have resulted in haemodilution. Besides, hypoalbuminemia may also have was not done, this was not necessary because according to reports of Ermilio & Smith (2011), cross-matching of small ruminant blood before transfusion is not of significant clinical value because of the minimal level of agglutinating antibody present in ruminant serum. The recovered larvae were identified and differentiated at generic level by standard methods as described by Anonymous (1971). Gastro-intestinal nematodes can be controlled by generally decreasing the stocking density of pastures, reducing the contamination of pastures by infective larvae (e.g. pasture rotation), systematic and regular removal of manure from stalls and pens will reduces the risk of infection of housed livestock, and also by using anthelmintics. However, the indiscriminate use of anthelmintics to animals especially by local farmers has led to the appearance of parasite isolates with resistance to the major antiparasitic drug groups (Jackson & Coop, 2000). Due to the marked improvement in the health status and general well-being of the goat, it was discharged 4 days post transfusion. The client was advised to improve the nutritional plane of his animals and deworm them at regular intervals.

References

Bastianetto E, Melo MM & Leite RC (2011). Hemogram of Buffaloos (Bubalus bubalis)

