Characterization and antifungal susceptibility of *Trichophyton mentagrophytes* isolated from a goat presented with severe dermatophytosis in Zaria, Nigeria

**JS Dalis**<sup>1</sup>*, HM Kazeem<sup>1</sup> & KF Chah<sup>2</sup>

<sup>1</sup>Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria

<sup>2</sup>Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria

*Correspondence: Tel.: +234 806 929 9910; E-mail: dalisjemes280@yahoo.com

**Abstract**

Dermatophytosis is a contagious skin disease affecting domestic and wild animals with considerable zoonotic significance. The disease is caused by fungi known as dermatophytes in the genera *Trichophyton*, *Microsporum* and *Epidermophyton*. A goat was observed with circumscribed alopecic, highly inflammatory, thickly crusted skin lesions on the head region, especially around the eyes. Skin scraping, including hair pullouts, was aseptically obtained and processed for direct examination, isolation and microscopic identification of etiologic agent and supplemented with urease test. The isolate was tested for its susceptibility to fluconazole, griseofulvin, itraconazole and ketoconazole. Direct examination revealed hyaline, septate hyphae in skin scales and chains of endothrix spores within hair shafts, suggesting *Trichophyton* infection. Colonies on Sabouraud’s dextrose agar were white, flat and granular. Microscopic examination of the isolate revealed many oval micro-conidia arranged in grapelike clusters with multi-septate, club-shaped, thin, and smooth-walled macroconidia typical of *Trichophyton mentagrophytes*. The isolate was urease-positive and sensitive to itraconazole and ketoconazole but resistant to fluconazole and griseofulvin. It was concluded that *T. mentagrophytes* was the cause of the severe skin lesions in the goat. The need to perform antifungal susceptibility testing on dermatophytes isolated from clinical specimens for effective management of dermatophytosis was emphasized.

**Keywords**: Dermatophytosis, Goat, *Trichophyton mentagrophytes*, Zaria

**Introduction**

Dermatophytosis, also known as tinea or ringworm is one of the most frequently encountered dermatologic problems in veterinary practice (Moretti *et al.*, 2013; Burstein *et al.*, 2020). It is an infection of the superficial layers of the skin, nails, and hair of wild and domesticated animals, and humans. The causative agents of dermatophytosis are classified into three anamorphic genera: *Microsporum*, *Trichophyton* and *Epidermophyton* (Weitzman and Summerbell, 1995). While the genus *Epidermophyton* consists of only one pathogenic species, *E. floccosum*, and infects only humans, the...
genera *Trichophyton* and *Microsporum* contain several pathogenic species and infect both humans and animals (Weitzman and Summerbell, 1995). The dermatophytes are also grouped into three categories based on their host preference as anthropophilic (human-adapted but rarely transmitted to animals), zoophilic (animal pathogens but do infect humans) and geophilic (soil-associated but may cause both human and animal infections) (Hubka et al., 2018; Burstein et al., 2020).

Dermatophytosis can be transmitted directly between susceptible and infected hosts or indirectly through contact with contaminated fomites (Weitzman and Summerbell, 1995). Specialized pathogens of animals (zoophilic species) and humans (anthropophilic species) are primarily associated with one or few related host species but can potentially cause infection in a broad spectrum of animals. *Trichophyton verrucosum* is the most common species affecting cattle, sheep and goats, while *T. mentagrophytes* and *Microsporum canis* are occasionally isolated (Segal and Elad, 2021). Dermatophytes are located in the stratum corneum within the keratinocytes. For this reason, it has been suggested that antifungal agents should have the ability to penetrate the stratum corneum cells and remain there to suppress the fungus (Al-Khikani & Ayit, 2020). Most antifungal agents are fungistatic. When these drugs are applied topically, with concentrations achieved in the skin, the growth of dermatophytes is delayed and these are shed with the skin when renewal and healing are achieved (Al-Khikani & Ayit, 2020).

There are three general mechanisms of action for the antifungal agents: inhibition of cell wall formation, cell membrane disruption, and inhibition of cell division (Owens et al., 2010). Antifungal resistance has been defined as the non-susceptibility of a fungus to an antifungal agent by *in vitro* susceptibility testing, in which the minimum inhibitory concentration (MIC) of the drug exceeds the susceptibility breakpoint for that organism (Kanafani & Perfect, 2008). Microbiological resistance can be primary (intrinsic) or secondary (acquired). Primary resistance is found naturally among certain fungi without prior exposure to the drug and this emphasizes the importance of accurate identification of fungal species from clinical specimens (Kanafani & Perfect, 2008).

The causative agents of dermatophytosis lack the ability to penetrate into organs or deeper tissues of immunocompetent individuals; hence the disease is usually confined to the superficial keratinized layers of the epidermis, hair and nails (Sardana et al., 2021). In animals, serious consequences are uncommon and infection can be self-limiting with spontaneous regrowth of hairs (Burstein et al., 2020). This paper reports the isolation and identification of *T. mentagrophytes* from skin lesions of a goat affected by severe highly inflammatory dermatophytosis.

**Case Management**

**Case history**

A 2-year-old male goat was presented with skin lesions on the ears and face, suggesting dermatophytosis. In this report, four other female goats in the same pen aged between one and five years, including the animal’s dam. All the animals in the pen were physically examined but none of the goats showed any visible skin lesions except the male goat in this study. The husbandry practice was semi-intensive whereby the animals were released from the pen in the morning and allowed to roam about and search for feed on their own but usually supplemented with maize bran when they returned to the pen in the evening. After physical examination, a skin scraping including hair pullouts was aseptically collected from the edge of the lesions into a clean envelope for mycological studies at the Department of Veterinary Microbiology Laboratory, Ahmadu Bello University, Zaria, Nigeria.

**Laboratory investigation**

A small part of the specimen was placed in two drops of 20% potassium hydroxide (KOH) on a microscope slide and held over a heat source for a few seconds to clear the sample. The heated specimen was covered with a cover glass and examined microscopically using the x10 and x40 objectives of a light microscope for the presence of fungal structures suggestive of dermatophytes (Robert & Pihet, 2008). The remaining portion of the sample was inoculated onto a plate containing Dermasel agar (Oxoid) and incubated at room temperature for 14 days. The culture was examined twice a week for fungal growth. Colony features such as pigmentation, topography, texture and growth rate were noted. Microscopic identification of the dermatophyte isolate was performed using the cellophane tape method described by Gohar et al. (2019). Briefly, a piece of transparent cellophane tape was looped back on itself with the sticky side out using forceps. The loop was gently pressed to the surface of the fungal growth from the middle out to the edge of the colony to ensure that the various ages of the colony were
sampled (younger growth on the outer edge). The tape, containing fungal structures, was removed from the colony and placed onto a clean, grease-free glass slide containing a drop of lactophenol cotton blue stain. Another drop of lactophenol cotton blue was added directly on top of the cellophane tape and covered with a cover slip. The coverslip was pressed down gently to remove air bubbles and then examined with x10 and x40 objectives of a light microscope. The dermatophyte was identified based on the shape, size and arrangement of macroconidia and microconidia (Frias-De-Leon et al., 2020).

Urease test: The Philpot (1967) method was used to determine the urease reaction of the isolate. Briefly, a port of mycelium from the isolated dermatophyte was placed on Christensen’s urea agar slant in a universal bottle and incubated at room temperature for 7 days. A change in colour of the medium from orange to pink was considered positive.

Antifungal disk diffusion susceptibility testing for T. mentagrophytes isolate: The antifungal susceptibility test was conducted as described by Agarwal et al. (2015). Mycelium and spores were scraped from a 10-day-old subculture of the isolate and suspended in 3mls of sterile water in a centrifuge tube and the turbidity was adjusted to 0.5 McFarland standards. The suspension was agitated on a vortex mixer to ensure homogeneous solution. A sterile cotton tip swab was dipped into the suspension and excess fluid was removed from the swab by pressing it against the side of the tube above the fluid level. Using the swab, the organism was inoculated onto a plate containing Sabouraud’s dextrose agar (150mm) by streaking back and forth in three directions to cover the entire surface of the medium. The inoculated plate was allowed to dry for 15 minutes. Antifungal sensitivity disks containing itraconazole 8µg/disk, fluconazole 25µg/disk, griseofulvin 25µg/disk, ketoconazole 10µg/disk, were applied to the inoculated medium using a pair of sterile forceps and the disks were pressed down lightly to ensure complete contact with the medium. The plate was incubated at room temperature for 3 days. The zones of inhibition diameters were measured to the nearest whole millimeter for each antifungal agent and interpreted as susceptible, intermediate or resistant.

Result and management
Physical examination of the animal revealed highly inflammatory, discrete, circular, alopecic, thickly crusted periocular lesions (Plate I). Direct examination of the sample showed hyaline septate hyphae in skin scales and endothrix spores in affected hairs (Plate II).

The colony of the isolate on Sabouraud’s dextrose agar was flat, white, and granular with a yellow reverse (Plate III). Microscopically, many oval microconidia arranged in grapelike clusters with multi-septate, club-shaped, thin, and smooth-walled macroconidia typical of T. mentagrophytes were seen (Plate IV). The isolate hydrolyzed urea indicated by a color change of the medium from yellow to pink (Plate V) and sensitive to ketoconazole (26 mm) and itraconazole (17 mm) but resistant to fluconazole (0mm) and griseofulvin (0mm) (Plate VI).

Plate I: A goat severely affected by dermatophytosis caused by T. mentagrophytes. Note the circumscribed alopecic, highly inflammatory, thickly crusted peri-ocular lesions (arrow)

Plate II: Trichophyton mentagrophytes infected hair (A) and skin scales (B) cleared in 10% KOH (x400). Note the chains of hyaline circular spores inside the hair shaft and in skin scales (arrows)
Discussion

*Trichophyton mentagrophytes* was isolated from a goat affected by severe, highly inflammatory dermatophytosis. The organism was sensitive to ketoconazole and itraconazole but resistant to fluconazole and griseofulvin. The diagnosis was based on clinical signs, direct microscopic examination of the clinical specimen, isolation and microscopic identification of etiologic agent supplemented with a urease test. The clinical signs in this report were more severe than those reported by Abd-Elmegeed *et al.* (2020), who observed superficial circumscripted areas of hair loss, crusts and scales. This variation may be due to differences in the virulence of the infecting dermatophyte strains and the immune status of the hosts (Hubka *et al.*, 2018). According to Burstein *et al.* (2020), immunocompromised individuals, especially those that suffer from cell-mediated immune deficiency are particularly susceptible to dermatophytosis, showing extensive superficial lesions that are often unresponsive to conventional antifungal therapy. Since the lesions on the animal in this study were unusually highly inflammatory, it was expedient that a detailed microbiological study be conducted to confirm the tentative diagnosis. For this reason, the results of the different stages of microbiological tests, including direct microscopic examination, colony and microscopic morphology, and urease test which are characteristic of the isolated dermatophyte were documented with clear, unambiguous photographs to prove that the organism isolated from the clinical lesion was indeed *Trichophyton mentagrophytes*. This explains the large number of results generated and presented in this study, although from a single case.

The presence of chains of arthroconidia inside the affected hair shaft was suggestive of *Trichophyton* infection. According to Chermette *et al.* (2008), the dimension and disposition of arthroconidia may vary depending on the infecting dermatophyte species. While *Microsporum* species produce clusters of arthroconidia, spores of the genus *Trichophyton* occur in chains. Most dermatophyte species are typical in outgrowth and could be readily identified based on their colony appearance in primary culture on Sabouraud’s dextrose agar as well as their characteristic...
Plate V: 5 day-old culture of *T. mentagrophytes* on urease agar. Note the pinkish colour of the test medium compared to the control.

Plate VI: Agar disk diffusion test for *T. mentagrophytes*. Note the susceptibility to ketokonazole (A) and itraconazole (C) and resistance to fluconazole (B) and griseofulvin (D).

Microscopic morphology such as shape, size, and arrangement of macro- and microconidia (Kane et al., 1997). The colony morphology of *T. mentagrophytes* in this study was consistent with the report of Frias-De-Leon et al. (2020), who described the colony of *T. mentagrophytes* as white, flat and powdery. The colony appearance of primary cultures on SDA as well as host preference has been cited as useful criteria for differentiating between *T. mentagrophytes* and *T. interdigitale*. Whereas *T. mentagrophytes* (zoophilic) produces powdery or granular colonies, *T. interdigitale* (anthropophilic) forms cottony colonies (Kane et al., 1997). In contrast, colonies of *T. verrucosum*, are glabrous, raised at the center, and have flat periphery with some submerged growth (Kane et al., 1997).

In this study, the presence of multisepate, thin, smooth-walled macroconidia and many oval microconidia arranged in loose grape-like clusters typical of *T. mentagrophytes* is consistent with the reports of Nenoff et al. (2007), Zhang et al. (2019) and Frias-De-Leon et al. (2020) who reported that the macroconidia of *T. mentagrophytes* originate laterally in the hyphae or in short pedicles of thin or thick walls and are club-shaped or fusiform, with a size that varies from 4–8 to 8–50 μm. There appears to be a consensus among researchers that the most consistent feature of *T. mentagrophytes* is the production of abundant globose microconidia arranged in groups (Zhang et al., 2019; Frias-De-Leon et al., 2020; Dalis et al., 2020).

Although *T. mentagrophytes* and *T. interdigitale* present microscopic features that are not distinguishable from each other, they can however, be differentiated based on their macroscopic morphology on SDA (Dhib et al., 2017). Frias-De-Leon (2020) was able to identify 46 isolates of *T. mentagrophytes* and nine isolates of *T. interdigitale* which were genotypically identical on the basis of their colony morphology on SDA. Similarly, Dhib et al. (2017) found that the amplification reactions of a fragment of the ITS1-5.8S-ITS2 regions of the ribosomal RNA (rRNA) gene did not provide a powerful alternative for the identification of *T. interdigitale* and could only be identified as *T. mentagrophytes* complex at the molecular level. Hence, they concluded that, since the morphological analysis of colonies on SDA led to their preliminary identification, it should not be ruled out for the identification of species in this complex.

*Trichophyton verrucosum* is easily differentiated from *T. mentagrophytes* by its formation of large clavate to pyriform microconidia which are borne singly and laterally along the hyphae. Macroconidia are rarely produced, but when present, they are sinuous (having many curves) with a characteristic tail or string bean shape (Kane et al., 1997).

The hydrolysis of urea by the *T. mentagrophytes* isolated in this study confirms the report of Philpot (1967), who studied 70 isolates of *T. mentagrophytes*, 104 isolates of *T. rubrum* and eight isolates of *T. erinacei* for their ability to split urea. He found that...
92.8% of *T. mentagrophytes* were positive within seven days but no isolates of *T. rubrum* and *T. erinacei* split urea, and comparing the urease and hair perforation tests, he concluded that the urease test offers a rapid and reliable method of separating these two species.

Dermatophytes can vary in their susceptibility pattern to antifungal agents; hence, relative or absolute resistance may occur (Agarwal et al., 2015). The resistance of *T. mentagrophytes* to fluconazole and griseofulvin in this study is similar to the report of Robertson et al. (1982) who demonstrated the efficacy of ketoconazole in the treatment of patients who failed to respond to griseofulvin therapy and, that of Fattah et al. (2020) who reported a multidrug-resistant *T. mentagrophytes* genotype VIII in an Iranian family with generalized dermatophytosis. This genotype was found to exhibit resistance to terbinafine, itraconazole, and fluconazole. Although it has been observed that dermatophyte species are closely related to each other phylogenetically, and drugs that are effective against one species are also effective against others (Gupta et al., 1999), however, the findings in this study suggest the need to perform antifungal susceptibility testing on dermatophytes isolated from clinical specimens for proper management of dermatophytosis.

**Funding**

No funding was received.

**Conflict of Interest**

The authors declare that there is no conflict of interest.

**References**


