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 ملخص

غشاس اسخعمال عاسضت جُفاء بذعم اسحكاص  َعهّ .إن انخصمٕم الأمثم نعاسضت سافعت بأقم َصن ممكه مه شأوً أن ٔخفض مه حكانٕف انخصىٕع َانخشغٕم

بسٕطت، ٌَزا انخصمٕم مقٕذ بمساحت مقطع انعاسضت كذانت مُضُعٕت َكزنك بانقُٕد انمفشَضت نهصفائح انمجٍذة َانكهم َانخشُي انمقبُل انىاشئ عه 

بحٕث حم إدماج أسبع حعذٔلاث عهّ انخُاسصمٕت انجذٔذة نضٔادة كفاءحٍا َسفع . انمقٕذة-  الاوبعاج، ٔمكه حم انمسأنت انمحصم عهٍٕا بانخُاسصمٕت انجذٔذة 

نقذ بشٌىج انخُاسصمٕت انجذٔذة عه فعانٕت َقُة َوجاعت، َكزنك .  نهمقاسوت نخمكٕه انخُاسصمٕت الأخز بعٕه الاعخباس الاجٍاداث عهّ انعاسضتمسخُِ 

انخٓ حم انحصُل عهٍٕا ٌٓ أفضم مه  انمُجُدة فٓ انذساساث انىظشٔت َاسخعمال انفُلار انعانٓ انمقاَمت ٔؤدْ الأبعاد انمثهّ نخجُٔف انعاسضت انمهحُمت 

%. 30إنّ اقخصاد فٓ انُصن ٔصم إنّ 

:كلمات مفتاحيه  

 فُلار عانٓ انمقاَمتخُاسصمٕت جذٔذة ، مسخُِ انمقاسوت ، سافعت عهُٔت، عاسضت جُفاء، 

 

Abstract 

An optimal design for minimum weight crane girder can reduce the manufacturing and operating costs. The box-

girder is modeled as a simply supported beam, and the constrained optimization problem was formulated with cross-

section area of the box-girder as objective function, and restrictions on plates' stress, fatigue, buckling and allowable 

deflection. The resulted problem is solved with constrained new bat algorithm. Four modifications have been 

embedded to the standard bat algorithm to increase its performances, and the level of comparison was introduced 

so that the new bat algorithm can handle constraints. Results show that the constrained new bat algorithm is 

efficient, robust and reliable and the obtained optimal crane dimensions are better than those they exist in the 

literature. The use of higher strength steel leads to a mass saving up to 30%. 

Keywords: Overhead crane - Box-girder - New bat algorithm -level of comparison -  Higher strength steel. 

 

Résumé 

Une conception optimale pour un poids minimal de la poutre principale d'un pont roulant peut réduire les coûts de 

fabrication et de fonctionnement. La poutre en caisson est modélisée comme une poutre simplement appuyée et le 

problème d'optimisation sous contrainte est formulé avec la considération de l'aire de la section transversale du 

caisson comme fonction objective, et des restrictions sur la contrainte des plaques, la fatigue, le flambement et la 

déformation admissible. Le problème résultant est résolu par le nouvel algorithme de chauve-souris sous 

contrainte. Quatre modifications ont été intégrées à l'algorithme de chauve-souris standard pour augmenter ses 

performances et le niveau de comparaison e est introduit afin de permettre au nouvel algorithme de chauve-souris de 

prendre en considération les contraintes. Les résultats montrent que le nouvel algorithme de chauve-souris est 

efficace, robuste et fiable ainsi que les dimensions optimales du caisson soudé obtenues sont meilleures que celles 

qui existent dans la littérature. L'utilisation des aciers à haute résistance peut conduire à des économies en poids de 

plus de 30%. 

Mots clés: Pont roulant - poutre en caisson - Le nouvel algorithme de chauve-souris -  Niveau de comparions  - 

acier à haut résistance.  
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INTRODUCTION 

For moving and handling materials, cranes are widely used in modern industries. The archaeological 

record shows that the cranes were invented by the ancient Greeks 500 years BC [1]. The first modern 

crane was designed by William George Armstrong in 1838 [2] using water powered hydraulic jigger. In 

these days, three main types of cranes that are used in industries, fixed cranes such as the tower crane, 

mobile cranes such as truck-mounted crane and the overhead cranes, also known as a bridge crane.   

Electrical overhead traveling cranes (EOT crane) are very popular due to their operation simplicity and the 

free floor space. Since the main girders are the principle structure that maintains most of the load, careful 

attention should be devoted to their design. They exist several types of girder, such as pipe girder, plate 

girder,  truss girder and the typical box-girder which has many advantages such as the reduced overall 

weight, the high torsional rigidity and low manufacturing time [3]. 

Several studies have been carried out on the numerical optimization of the crane girder. Rao [4] 

formulated  the crane girder problem as a minimum weight design problem with restrictions on the 

maximum allowable deflection, stress, overall stability and rigidity as well as the shock absorbing 

capacity during accidental collision. The problem was solved using the interior penalty function method. 

Farkas [5] used the combinatorial discrete backtrack programming method to solve the crane girder 

optimization problem. He showed that the use of higher strength steel can produce lighter girder. In 

addition the weight minimization, Jarmai [6] add other criterion to be optimized such as fabrication cost, 

welding and painting costs. The resulting multi-objective problem was solved with a decision support 

system which contains several optimization algorithms such as the min-max method. Pavlovic et al. [7] 

optimized the box-section of the main girder with the rail placed at the middle of the upper flange, with 

consideration of the lateral stability and local stability, using the Lagrange multipliers' method. With the 

same method, Savkovic et al. [8] did the same work but the rail is placed above the web plate. 

Recently, some important optimization algorithms were inspired by observing animal or insect groups 

carrying out a collaborative work, such as particle swarm optimization method (PSO) [9] which was 

inspired from the social and cognitive behavior of birds or fishes. Ant colony optimization algorithm 

(ACO) is based on the collaborative work of ants when they look for food [10]. The cuckoo search 

algorithm (CS) introduced by Yang and Deb [11] was inspired from the parasitic breeding behavior of 

cuckoo birds. 

The bat algorithm (BA) proposed by Yang [12] was inspired from the echolocation behavior of micro-

bats. When flying, bats emit a pulse of sound to the environment. The sound waves travel across the air 

until they hit an object or a surface and come back as an echo. Bats hear the echo, and by analyzing the 

time delay they can build a precise mental image of their surrounding and determine precisely the 

distance, shapes and objects’ direction. The capability of echolocation of micro-bats is fascinating, as 

these bats can find their prey and discriminate different types of insects even in complete darkness [12]. 

The earlier studies showed that BA can solve constrained and unconstrained optimization problems with 

much more efficiency and robustness compared to the genetic algorithm (GA) and PSO [12-14]. 

Despite the fact that BA is very powerful algorithm and can produce robust solutions on low dimensional 

problems, its performance diminishes significantly when the problem dimension increases due to the 

phenomenon of premature convergence problem. In this study, A new modifications and idealized rules 

have been embedded to BA to improve its performance and exploitation / exploration abilities. The 

proposed new bat algorithm (NBA) has been tested on several benchmark problems and compared with 

varieties of  swarm   and   evolutionary algorithms.  

Algorithm 1. The standard bat algorithm. 

1. Define the objective function  

2. Initialize the bat population -Lbi  ≤ xi  ≤ Ubi (i=1,2,..,n) and vi 

3. Define frequencies fi at xi 

4. Initialize pulse rates ri and loudness Ai 

5. While (t ≤  tmax) 

6.  
min max min

( )
i

f f f f rand  
                 

%Adjust frequency  



Rev. Sci. Technol., Synthèse 35: 187-203 (2017)   A. Chakri & al 
 

©UBMA - 2017 

189 

7.   1 *t t t

i i i i
v v x x f


  

     
%Update velocities  

8.  
1 1t t t

i i i
x x v

 
 

    
%Update locations/solutions  

9.  if (rand > ri) 

10.   
1t

new old
x x A


           %Generate a local solution around  

 % the selected best solution 

11.  end if 

12.  if  (rand < Ai & F(xi) < F(x
*
)) 

13.   Accept the new solutions 

14.    1 0
1 exp( )

t

i i
r r t


  

   
%Increase ri   

15.   
1t t

i i
A A




   
%Reduce Ai  

16.  end if 

17.  Rank the bats and find the current best x
*
 

28. end while 

29. Results processing 

 

The level of comparison is introduced the NBA as a constraint handling technique so that the NBA 

can solve constrained optimization problem. We will use the NBA to solve the crane girder 

optimization problem. 

In the next section we present a brief overview of the standard bat algorithm. In section three, we 

introduce the new bat algorithm. The level of comparison is described in section four. the crane girder 

optimization problem is detailed in section five, and finally results and discussions are in section six. 

 

2. THE STANDARD BAT ALGORITHM 

The standard Bat algorithm was inspired from the echolocation process of bats. By observing the behavior 

and characteristics of the micro-bats, Yang [12] proposed the standard BA in accordance to three major 

characteristics of the echolocation process of the micro-bats. The used idealized rules in BA are:  

a) All bats use echolocation to sense distance and they also know the difference between food/ prey and 

barriers in some magical way [12]. 

b) Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying wavelength  and 

loudness A to search for prey. They can automatically adjust the wavelength (or frequency) of their 

emitted pulses and the rate of pulse emission r depending on the proximity of the target [12]. 

c) Loudness varies from a large positive A0 to a minimum constant value Amin [12]. 

 

Algorithm 1 presents the pseudocode of the standard bat algorithm. For each bat (i), its position (xi) and 

velocity (vi) in a N-dimensional search space should be defined. xi and vi should be subsequently updated 

during the iterations. The rules for updating the position and velocities of a virtual bat (i) are presented in 

Lines 6-8, where rand[0, 1] is a random vector drawn from a uniform distribution. 

Here x
*
 is the current global best location (solution) which is located after comparing all solution among 

all the n bats. A new solution for each bat is generated locally using random walk presented in Line 10, 

where [1,1] is a random number while 
1t

i
A


   is the average loudness of all the bats at this time step.  

 

The loudness Ai and the rate of pulses emission ri are updated as the iteration proceed. The loudness 

decrease and the pulse rate increase as the bat get closer to its prey. The equation for updating the pulse 

rate and the loudness are defined in Line 14 and 15 respectively, where 0 < < 1 and > 0 are constants. 

As t→tmax, we have Ai
t
→0 and ri

t
→ri

0
. The initial loudness A0 can typically be A0[1, 2], while the initial 

emission rate r
0
[0, 1]. 
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3. THE NEW BAT ALGORITHM  

The new bat algorithm has the same flowchart as the standard bat algorithm. Four modifications have been 

introduced to the standard BA with aim to enhance its exploitation and exploration abilities.  

3.1. The 1
st
 modification 

We suppose that the bats can know their surroundings. Therefore, we introduction the position of 

randomly selected bat to the formulas of the bats movements as its is shown in Algorithm 2 Line 6-12 

where 
t

kx  is the location of randomly selected bat (k ≠ i) and x
*
 is the best solution. F(.) is fitness function. 

f1 and f2 are the frequencies. rand1 and rand2 are two random vectors drawn from a uniform distribution 

between 0 and 1. 

3.2. The 2
nd

 modification 

The second modification concerns the local search part. We permit to the bats to move from their current 

position to a new random position with equations described in Algorithm 2 Line 14 where <A
t
> is the 

average loudness of all bats and [1,1] is a random vector. wi is a parameter applied to reduce the space 

search while the iterative process proceed. It starts from a large value about a quarter of the space length 

and it decrease to around 1% of the quarter of the space length (Algorithm 2 Line 15). wi0 and wi∞ are the 

initial and final value that wi can take over the iteration procedure. In general we set w0 and w∞ as follow: 

0
( ) / 4

i i i
w Ub Lb        (1) 

0
/100

i i
w w


        (2) 

 t is the current iteration and tmax is the maximum number of iterations. Ubi and Lbi are the upper and lower 

bounds. 

3.3. The 3
rd

 modification 

Equations proposed by Yang [12] (Algorithm 1, Line 14 &15) to update the pulse rate and loudness reach 

their final value during the iterative process very quickly, thus reducing the possibility of the auto-switch 

from the random walk to the local search due to a higher pulse rate, and the acceptance of a new solution 

(low loudness). Therefore we propose to use these monotonically increasing, decreasing, pulse rate and 

loudness (Algorithm 2, Line 19 & 20), where the index 0 and ∞ stand for the initial and final value. 

3.4. The 4
th

 modification 

The final improvement we made to the original BA is to allow the bats to update the pulse rate and 

loudness, and to accept a new solution if their movement produces a solution better than the old one 

instead of the global best solution as it’s in the original algorithm. This modification was also suggested 

by [15]. In addition, the acceptance of a new solution requires the fulfilling of two conditions. First, the 

solution has to produce a fitness value lower than the actual. Second, a randomly  generated  number  has  

to be lower than 

 Algorithm 2. The new bat algorithm. 

1. Define the objective function  

2. Initialize the bat population -Lbi ≤ xi  ≤ Ubi (i=1,2,..,n)  

3. Evaluate fitness Fi( xi) 

4. Initialize pulse rates ri loudness Ai and wi 

5. While (t ≤ tmax) 

6.  Select a random bat (k ≠ i)  

7.  
1 min max min

2 min max min

( ) 1

( ) 2

f f f f rand

f f f f rand

  

  



    

%Generate frequencies  

8.   If ( ) ( )
t t

k i
F x F x        %Update locations/solutions  

9.       
1 *

1 2
( ) ( )

t t t t t

i i i k i
x x x x f x x f


      
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10.   else 

11.    
1 *

1
( )

t t t

i i i
x x x x f


    

12.   endif 

13.  if (rand > ri) 

14.   
1 1t t t t

i i i
x x A w

 
   

 
  %Generate a local solution around the  

%selected solution  

15.     0

max

max
1

t i i

i i

w w
w t t w

t






  



 
 
 

  %Update wi 

16.  end if 

17.  if (rand < Ai & F(
1t

ix 
) < F(

t

ix )) 

18.   Accept the new solutions 

19.    0

max

max
1

t r r
r t t r

t






  



 
 
 

     % Increase ri   

20.    0

max

max
1

t A A
A t t A

t






  



 
 
 

  %Reduce Ai Eq. (14)  

21.  end if 

22.  if (F(
1t

ix 
) < F(

*x )) 

23.   Update the best solution x
*
 

24  end 

25. end while 

26. Results processing 

 

The current corresponding loudness. There exists a probability that the movement of the bat produces a 

solution better even to the global best solution and cannot be accepted because the randomly generated 

number is higher than the current loudness, especially at the end of the iterative process where the value of 

loudness is lower. Therefore, we allow to the algorithm to update the global best position whenever the 

bat's walk produce a solution with better fitness value even if it was not accepted to update the bat's 

position. The pseudo-code of the new bat algorithm is illustrated in Algorithm 2. 

 

4. CONSTRAINT HANDLING METHOD 

Consider the following constrained optimization problem: 

( )

( ) 0, 1,...,

( ) 0, 1,..., ,

, 1,...,

j

j

i i i

Minimize F x

subject to g x j q

h x j q m

l x u i n

 

  

  
 

(3) 

where F(x) is an objective function ( the fitness function), h(x) and g(x) are the equality and inequality 

constraints, x = (x1, x2,…,xn) is an n dimensional vector of decision variables. ui and li are the upper and 

lower bounds of xi, respectively. The upper and lower bound define the search space , while the equality 

and inequality constraints define the feasible region . 

To solve the upper constrained optimization problem, the -constraint method[16] was adopted to handle 

the equality and inequality constraint. The main idea of this method is to define an level comparison as 

an order relation on the set of (F(x), (x)) where (x) is the constraint violation function which is defined 

as the following: 
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1 1

( ) max{0, ( )} ( )
q m

p

j j

j j q

x g x p h x
  

     (4) 

where p is a positive number. (x) indicates by how much a point x violates the constraint. The constraint 

violation function (x) has the following property: 

( ) 0 ( )

( ) 0 ( )

x x

x x





 

 





(5) 

The e level comparisons are defined by a lexicographic order in which (x) precedes F(x), because the 

feasibility of x is more important the minimization of F(x)[16] 

Consider two point x1 and x2 with their corresponding fitness and constraint violations values F1,F2 and 

). Then, for any  ( ≥ 0), the level comparisons < between (F1,1) and (F2,2) is defined as 

follows: 

1 2 1 2

1 1 2 1 1 2 1 2

1 2

, if ,

( , ) ( , ) , if

, otherwise

F F

F F FF


  

   

 

 

   









 (6) 

The level is updated until the iteration counter t reaches the control iteration Tc. After the iteration 

counter exceeds Tc, the  level is set to zero to obtain a solution with no constraint violation.  

 

0

0

( )

1 ( / ) , 0

0,

cp

t c c

c

x

t T t T

t T


 






  








(7) 

where x is the top th individual and cpϵ[2,10]. In this study cp = 5. 

Therefore theconstraint new bat algorithm (NBA) is built with the replacement of the ordinal 

comparison with the level comparisons which is introduced in Line 17 and 22 of Algorithm 2 as follows 

respectively: 

17.if (rand < Ai ) &  

       (F(
1t

ix 
),(

1t

ix 
)) <  (F(

t

ix ),(
t

ix )) (8) 

22.if  (F(
1t

ix 
),(

1t

ix 
)) <  (F(

*x ),(
*x ))  (9) 

 

5. MATHEMATICAL FORMULATION OF THE CRANE GIRDER OPTIMIZATION 

PROBLEM 

5.1 Objective function 

The cross-sectional area is taken as the objective function to be minimized (Fig. 1): 

1 2 1
( ) 2

w w f
A h t t b t  

     
(10) 

5.2 Constraint functions 

The following constraints are in accordance with the BS2573[17], BS5400[18], and the works of 

Farkas[5] and Jarmai[6]. 

5.2.1. Constraint on the static stress in the lower flange 

The normalized constraint on the static stress in the lower flange at mid-span due to biaxial bending is: 

1
1 0

yx

d s x d s y

MM
g

PW PW 
  

 
 

 
    (11) 
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Figure 1. Crane girder configuration and dimensions of the cross-section. 

 

where Mx and My are the bending moment, Wx and Wy are the section moduli, Ys is the yield stress and d 

is the duty factor. Ps is the allowable stress which is Ps=0.59Ys where Ys is the yield stress. The 

approximate formulas for moments of inertia are: 

 
 

3
211 2

12 2

fw w

x f

b th t t
I h t


  

            
(12) 

   
3

2 21 12

1 2
2

6 2

f f

y w s w s s

b t b t
I ht x ht b x b x     

   
(13) 

where 

 1 2

1

1

2

w w

s w

t t
x b t hb

A


  

  
  
              

(14) 

The section moduli are: 

   

2
;

yx

x y

f s

II
W W

h t b x d
 

  
                    

(15) 

and the bending moment: 

 
22

1 05
8 2 2

x r s

L F k
M A p p g L

L
     

 
 
        

(16) 

 
22

0 15 1 05
8 8 2

t

y r s

GL k
M A p p g L

L
      

  
  

       

(17) 

where   / 4
d t

F H G   is the wheel load, d is the impact factor. The factor of 1.05 expresses the mass 

of diaphragms. pr+ps is the linear weight of the rail and the sidewalk 

5.2.2. Constraint on fatigue stress 

the restriction on the  

2
1 0

xf y

ft x ft y

M M
g

P W P W
  

 
 

                              

(18) 

Mxf is the moment due to fatigue expressed as follow: 
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 
2

²
1.05

8 8 2

p d f

xf r s

K H GL h
M A p p g L

L





    

 
 
   

(19) 

where Kp is the spectrum factor. 

Pft is the permissible fatigue stress. The approximate formulas to calculate Pft are presented in section 6.2. 

  

5.2.3. Constraint on local flange buckling 

The constraint on the local buckling of the upper flange is as follows: 
2
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where 
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The calculation of the coefficients K1f and Kbf depends on the slenderness ratio of the upper flange:  
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1.3 0.0027
bf f
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5.2.4. Constraint on the local buckling of the main web 

The local buckling constraint of the main web is: 
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The approximate formula for the compressive stress may be written as: 

1
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The superposition of shear stresses is: 
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a is the distance between diaphragms. 

The slenderness ratio of the upper part of web for local compression is as follows: 
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Therefore, the coefficient K2w is calculated as the following: 
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         (34)                         

The slenderness of the upper part of web for bending is as follows: 
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(35) 

The coefficients Kbw, K1w and Kq are: 

1.3 0.0027
bw w

K  
                                         

(36) 
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The ratio /
d

a h  is approximately 2. 

 

5.2.5. Constraint on the local buckling of the secondary web 

Limit state on the local buckling of the secondary web 
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 (39) 

To evaluate g5, we use the same equations and coefficients used in g4 calculation (Eqs. (26-38)), but we 

have to use tw2 instead of tw1 and we neglect the local compression, so cw=0. 

 

5.2.6. Constraint on static deflection 

Restriction on the static deflection due to the wheel loads: 
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 (40) 

where wp is the permissible deflection. 

6. RESULTS AND DISCUSSIONS 

6.1. Minimization of benchmark functions 

In the this section, we examine our algorithm (NBA) in running benchmark functions and comparing the 

results with those obtained with some standard algorithms, namely, particle swarm optimization (PSO)[9], 
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genetic algorithm (GA)[19], differential evolution (DE)[20], harmony search (HS)[21] and in addition to 

the standard bat algorithm (BA)[12]. The considered benchmark functions are: 
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Ackley’s function 
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The optimization aim for all these test function is to minimize the outcome. The parameters settings of 

each algorithm are: 

 NBA: An extensive analysis was performed to carryout parameter settings of NBA, for best practice 

we recommend the following settings r0 = 0.1, r∞ = 0.7, A0 = 0.9, A∞ = 0.6, fmin = 0 and  fmax = 2.    

 BA: The standard bat algorithm was implemented as it is described in [12] with r0 = 0.1, A0 = 0.9, = 

 = 0.9,  fmin = 0 and  fmax = 2. 

 PSO: A classical particle swarm optimization model has been considered [9]. The parameters setting 

are c1 = 1.5, c2 = 1.2 and the inertia coefficient w is a monotonically decreasing function from 0.9 to 

0.4. 

          Table 1. Comparison between algorithm on benchmark functions 

Function NBA BA PSO HS GA DE 

Sphere 2.256E-01 4.920E+04 2.852E+03 9.618E+03 1.678E+03 4.411E+01 

Griewank 1.405E-01 5.816E+02 7.481E+01 8.040E+01 1.900E+01 2.303E-01 

Rastrigin 1.193E+02 3.086E+02 2.599E+02 1.580E+02 5.746E+01 1.551E+02 

Ackley 3.191E+00 1.996E+01 1.474E+01 1.540E+01 5.920E+00 5.839E+00 
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Figure 2. Convergence rate of the best run, the median and the worst run as well as the mean of 25 runs. 
 

 GA: standard genetic algorithm [19] with Crossover probability = 0.95 and Mutation probability = 

0.05. 

 DE: The classical differential evolution as described in [20] with “DE/rand/1/bin” strategy is 

considered. The parameters setting are CR = rand[0.2, 0.9] and F = rand[0.4, 1].  

  HS: The considered harmony search algorithm is the standard one described in [21] with the following 

setting BW = 0.2, HMCR = 0.95, PAR = 0.3. 

For the common parameters, each algorithm was run 25 times, the population was fixed to N = 30, and the 

maximum number of iteration tmax = 500 and the dimension of each benchmark functions is D = 30. The 

mean of the minimum obtained after each run are presented in Table 1. As the results show, the 

optimization performances of the NBA are better than the other algorithm. 

6.2. Optimization of the crane girder 

To illustrate the performance of theNBA in the optimization of the crane girder, we performed the 

computations with the following data proposed by Farkas [5]: H = 200kN, L = 22.5m, Gt = 42.25kN, k = 

1.9m, hr = 70mm, a = 2.25m, pr + ps = 190kg/m, E = 210GPa. 

Three states of loading are considered, namely, light, moderate and heavy where their characteristics are 

the following: 

- Light: Kp = 0.50, d = 1, d = 1.1, wp = L/500 and Pft = 169+145(R0.1); 

- Moderate: Kp = 0.63, d = 0.95, d = 1.3, wp = L/600 and Pft = 155+135(R0.1); 

- Moderate: Kp = 0.80, d = 0.90, d = 1.4, wp = L/700 and Pft = 142+125(R0.1). 

R represents the ratio between the minimum and the maximum stress. It can be calculated with the 

following formulas: 

   min max 1x x
R M M   (45) 
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The list of discrete value of the variables is as follows: 

- h: from 500 up to 2500 in steps of 1mm; 

- b: from 100 up to 1500 in steps of 1mm; 

- tw1, tw2 & tf: 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 22 and 25mm. 

The parameters setting of NBA are the same as those of NBA listed in section 6.1. 
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In the first test, we apply the NBA to search for the values of h, b, tw1, tw2 and tf which minimize  the  

area  of  the  cross-section  of  the  

Table 2. Statistical results for different pairs (N, tmax). 

tmax 
N 

10 30 50 75 100 

500 

Best 21666 21666 21666 21666 21666 

Medain 21692 21666 21666 21666 21666 

Worst 22620 22360 22226 21670 21669 

Mean 21931 21803 21690 21666 21666 

SD 324.12 233.77 109.49 0.7838 0.5879 

Mean(G) 0 0 0 0 0 

1000 

Best 21666 21666 21666 21666 21666 

Medain 22054 21666 21666 21666 21666 

Worst 22478 22194 22194 21669 21666 

Mean 21932 21687 21691 21666 21666 

SD 265.29 103.40 103.77 0.8139 0 

Mean(G) 0 0 0 0 0 

1500 

Best 21666 21666 21666 21666 21666 

Medain 21668 21666 21666 21666 21666 

Worst 22450 21670 21669 21668 21666 

Mean 21744 21666 21666 21666 21666 

SD 205.63 1.0151 0.8139 0.3919 0 

Mean(G) 0 0 0 0 0 

2000 

Best 21666 21666 21666 21666 21666 

Medain 21666 21666 21666 21666 21666 

Worst 22441 21666 21666 21666 21666 

Mean 21858 21666 21666 21666 21666 

SD 265.77 0 0 0 0 

Mean(G) 0 0 0 0 0 

 

 

Table 2. Success rate for different pairs (N, tmax). 

tmax 
N 

10 30 50 75 100 

500 16% 52% 76% 81% 85% 

1000 43% 72% 89% 98% 96% 

1500 52% 86% 98% 97% 100% 

2000 64% 93% 99% 99% 100% 

 

Crane girder with consideration of light loading state and steel grade Ys = 230MPa. The bat population was 

set to N = 25 and the maximum number of iterations was fixed to tmax = 500. The algorithm was run 25 

times. At each run, the minimum of the objective function was recorded every single iteration. The best 

run was selected as the run where the algorithm achieved the best minimum of the objective function 

among the 25 runs. The same analogy was used to select the worst and the median. The convergence rate 

of the objective function of the best run the median and the worst run are depicted in Figure 2, in addition 

to the mean which represents the mean of the objective function at each iteration for 25 runs. As it can be 

seen, each run converge to a different solution because NBA is a stochastic algorithm, which depends 

on random generation of solution. To increase the reliability and the robustness of the algorithm, an 

analysis of the effect of the population size and number of iterations is conducted.  



Rev. Sci. Technol., Synthèse 35: 187-203 (2017)   A. Chakri & al 
 

©UBMA - 2017 

200 

Table 4. Optimization results of the crane girder for various steel grade and state of loading. 

 

N Ys h tw1 tw2 b tf A Saving Static Stress Fatigue stress Deflection Ref 

Light 

wp=L/500 

230 
1050 6 6 400 14 23800 

 
130< 136 95< 193 29.8< 45.0 [5] 

1206 6 5 420 10 21666 8.97% 136< 136 99< 191 23.7< 45.0 BA 

355 
950 5 5 375 14 20000 

 
159< 209 116< 191 40.0< 45.0 [5] 

914 5 4 448 10 17186 14.07% 187< 209 134< 188 45.0< 45.0 BA 

450 
1050 5 5 375 10 18000 

 
174< 266 125< 189 43.2< 45.0 [5] 

1014 5 4 417 8 15798 12.23% 202< 266 144< 187 44.3< 45.0 BA 

Moderate 

wp=L/600 

230 
1150 7 7 375 14 26600 

 
129< 129 102< 175 25.2< 37.5 [5] 

1194 6 5 466 12 24318 8.58% 126< 129 99< 174 19.9< 37.5 BA 

355 
1050 6 6 325 14 21700 

 
165< 199 130< 173 35.5< 37.5 [5] 

1023 6 5 375 10 18753 13.58% 196< 199 153< 171 37.5< 37.5 BA 

450 
1000 5 5 325 16 20400 

 
170< 253 133< 172 36.1< 37.5 [5] 

1022 5 4 412 10 17438 14.52% 194< 252 151< 170 37.3< 37.5 BA 

Heavy 

wp=L/700 

230 
1150 7 7 450 14 28700 

 
119< 122 105< 160 21.7< 32.1 [5] 

1292 7 5 519 10 25884 9.81% 121< 122 107< 158 17.1< 32.1 BA 

355 
1000 6 6 325 18 23700 

 
157< 188 139< 158 31.7< 32.1 [5] 

1125 6 5 393 10 20235 14.62% 177< 189 156< 156 29.1< 32.1 BA 

450 
1050 5 5 425 14 22400 

 
149< 239 131< 157 29.0< 32.1 [5] 

1111 5 4 437 10 18739 16.34% 176< 239 155< 155 29.6< 32.1 BA 

 

 

 
Figure 3. Optimal cross-section area according to 

the steel yield stress. 

 
 

Figure 4. Percentage of weight saving according to 

the steel yield stress. 

 

Table 2 presents the statistical results of 25 runs of the NBA with different population sizes and 

maximum number of iterations. The results present the best, the median and the worst solution in addition 

to the mean and the standard deviation. As it can be seen, by increasing the bat population and the number 

of iterations, the best, the median, the worst and the mean have a tendency to converge to the same 

solution and the standard deviation tends to zero (i.e. N = 100 and tmax = 1500). That means when the 

values of the pair (N, tmax) increase, the robustness and reliability of the results increases. In addition, the 

analysis of the constraint violation shows that the use of the level of comparison for constraint handling 

leads the algorithm to find feasible solutions with no constraint violation. 
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Figure 5. Behavior of the normalized constraints according to the steel yield stress. 

 

To analysis of the success rate so that NBA converge to the optimal solution, several pairs of (N, tmax), 

were considered. The algorithm was run 100 times, and each time the run was successful it was recorded.  

A run is considered successful if the obtained minimum is A = 21666mm² (which is from Table 1 is the 

optimal solution). Each times the algorithm achieve this value it was recorded and the success rate 

represent the ratio of the number of the successful runs over the total number of runs, which is in this case 

100. As it can be seen, the success rate increase as the value of the pair (N, tmax) increases, and for N ≥ 100 

and tmax ≥ 1500, the success rate is 100%. That means with the precedent parameters’ setting, there is a 

probability of 100% that the algorithm converge toward the optimum. 

We consider three states of loading (light, moderate and heavy) and three steel grade (Ys = 230, 355, 450). 

We fix the bat population to N = 100 and the maximum number of iterations to tmax = 1500. Table 4 

presents a comparisons between the optimal solutions obtained with NBA and the results of Farkas [5] 

obtained using the combinatorial discrete backtrack programming method. As it can be seen, the solution 

obtained with NBA are much better to those of Farkas [5] with economization in the girder weight 

between 8% and 16%  according to the loading state and the steel grade. 

The use of higher strength steels may result in saving in mass, manufacturing cost and operating energy. 

Figure 3 presents the optimal cross-section area of the box-girder for different steel grades (the yield stress 

varies between 230 and 550MPa). As the yield stress increases the optimal area decreases. In case of 

heavy loading, we observe some steadiness in the optimal area evolution around 350 and 375MPa, this is 

250 300 350 400 450 500 550

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Y
s
 (MPa)

N
o

rm
a
li

z
e
d

 c
o

n
st

ra
in

te
s 

g
i

 g
1
  g

2

 g
3
  g

4

 g
5
  g

6

LightNon-active constraint

Active constraint

250 300 350 400 450 500 550

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Non-active constraint

Y
s
 (MPa)

N
o

rm
a
li

z
e
d

 c
o

n
st

ra
in

te
s 

g
i

 g
1
  g

2

 g
3
  g

4

 g
5
  g

6

Moderate

Active constraint

250 300 350 400 450 500 550

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Y
s
 (MPa)

N
o

rm
a
li

z
e
d

 c
o

n
st

ra
in

te
s 

g
i

 g
1
  g

2

 g
3
  g

4

 g
5
  g

6

HeavyNon-active constraint

Active constraint



Rev. Sci. Technol., Synthèse 35: 187-203 (2017)   A. Chakri & al 
 

©UBMA - 2017 

202 

an effect of the discrete optimization. The Figure 4 presents the saving percentage according to the yield 

stress. We observe that the loading state has an effect on the saving but not as much as the yield stress. 

Figure 5 present the constraints status of the optimal configuration according the yield stress. Three cases 

of loading states are considered. The constraints have been normalized and if the value of a constraint is 

low then 0.01, it is considered to be active, and if it is negative, the constraint is violated. From the results, 

we observe that constraint of the fatigue stress in the lower flange at mid-span (g2) is passive for light and 

moderate loading, and it become active in case of heavy loading for higher yield stress. In most cases the 

constraint on local buckling of the main and secondary (g4 & g5) web are active. The constraint on the 

local buckling of the upper flange (g3) varies between passive and active due to the discrete values of the 

design parameters.  For the three loading cases, we observe that the constraint on static stress of the lower 

flange (g1) is active for low yield stress values and active for high yield stress value, the same remark for 

the static deflection constraint (g6).  

 

7. CONCLUSION    

In this study, we presented a methodology for the optimization of the main girder of an overhead 

travelling crane with double box-girder, based on a new bat algorithm. Due to the premature convergence 

problem, four modifications have been embedded to the standard bat algorithm in the aim to increase its 

exploitation / exploration abilities. The resulted new bat algorithm was tested on unimodal / multimodal 

benchmark functions and compared with other classical algorithms. The results show that NBA can 

surpass some standard algorithms such as the genetic algorithm and particle swarm optimization. To solve 

constrained optimization problems, level of comparison was introduced to NBA to formulate the 

NBA which can handle constrained problems.  

The crane-girder problem was formulated with the area of box-section as the objective function. 

Constraints have been imposed on the local buckling of the upper flange and main and secondary web, the 

static and fatigue stress of the lower flange, in addition to the permissible maximum deflection. Three 

states of loading were considered. The crane-girder optimization problem was solved with NBA. 

Results show that the proposed algorithm can achieve better results to those exist on the literature. By 

varying the steel yield stress, we observe that the use of higher strength steel leads to a much lighter crane 

girder, which can reduce the cost of manufacturing and operation.  
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