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 ملخص

ْزا انُٕع يٍ انخٓدٍٛ . (HEV)انًٕاصٚت -انًخٕانٛت ْزِ انذساست حشكض بشكم خبص عهٙ انخحسٍٛ ٔانخحكى فٙ انًحشك انخبص ببنسٛبساث انٓدُٛت

اخخٛبسَب كبٌ  نٓزا فئَُب بحبخت إنٗ دقت أكثش صشايت عهٗ حقشٚب انًُٕرج،. يثٛشة نلاْخًبو يٍ حٛث الأْذاف ٔنكٍ يعقذة عهٗ يسخٕٖ ححسٍٛ الأداء

ثى سٛخى , انخحكى انخُبؤ٘ أسخعًم كًثبج نسشعت يحشك الاحخشاق. SUBSPACEطشٚقت انخعشف  انًُٕرج انخطٙ انز٘ ححصهُب عهّٛ ببسخعًبل

اٌ .  انضبسة ببنبٛئتNOxحطبٛق اسخشاحٛدٛت انخحكى الإخًبنٙ عهٗ يسخٕٖ انًُظ انًُطقٙ نخحسٍٛ اسخٓلاك ٔقٕد انسٛبساث ٔكزا انحذ يٍ اَبعبثبث 

ٔ اسخشاحٛدٛت انخحكى أدٖ , "Hybrid Electrical  Vehicle  Model Balance Fidelity and Speed (HEVMBFS) "اسخخذاو انًحبكٙ 

. نهحصٕل عهٙ َخبئح يشدعت نهغبٚت

 - يحبكٙ  - ًَٕرج يحشك الاحخشاق– يحشك انذٚضل - انًُٕرج انلاخطٙ - انًُٕرج انخطٙ - انًٕاصٚت - سٛبسة انٓدُٛت انًخٕانٛت:الكلمات المفتاحية

HEV ٘اسخشاحٛدٛت انخحكى- انخحكى انخُبؤ . 

Résumé 

Cette étude porte essentiellement sur l‟optimisation et la commande du moteur thermique conçu pour les 

véhicules hybrides séries-parallèles (HEV), ce type d‟hybridation est intéressant au niveau des objectifs mais 

complexe au niveau de l'optimisation des performances. Pour cela on impose une rigueur des plus sévères quant 

à l‟approximation du modèle, Notre choix s'est porté  sur un modèle linéaire obtenu par la méthode 

d'identification SUBSPACE. La commande prédictive est utilisée comme un régulateur de vitesse du moteur 

thermique, ensuite une stratégie de commande globale sera appliquée au niveau du mode logique permettant 

d‟optimiser la consommation du carburant du moteur à combustion et par-delà réduire les émissions NOx 

nuisible à l‟environnement. L‟utilisation du simulateur «Hybrid Electrical  Véhicule  Model Balance Fidelity and 

Speed (HEVMBFS)» ainsi que la stratégie de commande ont permis de dégager des résultats assez encouragents. 

Mots clés: Série-Parallèle hybride véhicule - Modèle non linéaire - Modèle linéaire - Moteur diesel - 

Modélisation du moteur - Simulateur HEV - Commande prédictive - Stratégie de commande. 

Abstract 

The main purpose of this work is the optimization and control of Series-Parallel Hybrid Vehicles (HEV) engines. 

This type of hybridization is interesting to achieve, but complex when the performance optimization is involved. 

The latter requires that the approximation of the model must be done with big care. The proposed model is a 

linear type obtained by SUBSPACE identification method. The engine speed controller uses predictive strategy, 

and the control law will be applied to optimize the engine fuel consumption and to reduce the environmentally 

harmful NOx emissions.  The use of the simulator “Hybrid Electrical Vehicle Model Balances Fidelity and 

Speed (HEVMBFS)” and the global control strategy make it possible to achieve encouraging results. 

Key words: Series parallel hybrid vehicle - nonlinear model - linear model - Diesel engine - Engine modelling - 

HEV simulator - Predictive control - Control Strategy. 
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1. INTRODUCTION  

The aim of this study is to improve the performance of hybrid electric vehicle (HEV), by reducing the 

energy consumption. Many research have applied the classic control tools to exploit the fuel economy 

potential, such as PID and LQR controllers. As example, the engine speed control used in HEVMBFS 

simulator is a PI controller (see website in reference). The latter produces unnecessary efforts that can 

cause the engine untimely accelerations; this may strongly undermine the engine performance in the 

long run. Moreover, the LQR controller is used for controlling idle speed only [1]; the authors have 

not tested the LQR controller in the New European Driving Cycle (NEDC). There is no ability In the 

PID and LQR controllers, to anticipate future events and to take control actions accordingly, as model 

predictive control (MPC). A large number of implementation algorithms have been presented in 

literature such as extended prediction self-adaptive control (EPSAC) [2], generalized predictive 

control (GPC) [3] and unified predictive control (UPC) [4]. Most of these control algorithms use an 

explicit process model to predict the future behaviour of a plant and because of this, the term model 

predictive control (MPC) is often employed. To overcome the weakness of the classical PID and LQR 

controllers, we use a model predictive controller (MPC). 

The physical engine model, based on both thermodynamics and mechanics principles, is strongly 

nonlinear, which is very difficult to control. Though, there exist several methods for the identification 

of nonlinear systems, in the present study subspace methods for identification are used. The MPC 

controller will be tested under NEDC, with the aim of maintaining the necessary power level for a 

comfortable driving of the hybrid electric vehicle, by eliminating unnecessary effort which is produced 

by classic controllers and optimizing the consumption quantity. Finally, given the choice of the control 

being established to reach an appreciable level of performance, it will be necessary to improve the 

optimization strategy of the operating modes in order to obtain the lowest possible level of 

consumption, [5, 6, 7]. 

 

2. ARTITECTURE OF HYBRID VEHICLE: 

Unlike the traditional cars which run on fuel, the hybrid car runs with thermal and electric engine; it 

thus calls upon two storages of distinct energies: storage of electrical energy (battery) and storage of 

fossil energy (fuel). The hybrid car is also an ecological car which aims to limit the polluting 

emissions in order to protect our environment [8]. Three main architectures are distinguished: series, 

parallel and series-parallel architectures. In this paper we focus on the series parallel hybrid vehicle 

with a structure represented in figure 1. 

  

 

 

 

 

 

The series-parallel system in figure 1 is composed of an electrical motor, a thermal engine and a 

generator, a control module of the supply (reverser/converter) and a distributer of energy. This 

structure combines both the advantages of series and parallel structures. In fact the system is 

characterized by the possibility of operating in series and parallel [9]. 

Figure 1 : Structure of series-parallel HEV. 
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Figure 2 : The HEV simulation diagram. 

The used is simulator HEVMBFS Shown in Figure 2 which describes the flowchart between different 

parts for modelling the HEV engine. The simulator contains a model of Series-Parallel Hybrid 

Vehicle, by SimElectronics, SimDriveline, Simscape and SimPowerSystems tools [10]. This can be 

downloaded for free from the official website of Matlab software. 

In spite the advantages that this type of architecture offers, it will be necessary to control the total 

consumption of the engine. This objective will be reached by the design of a model which best 

approaches the process behaviour. 

 

3. SUBSPACE-BASED IDENTIFICATION METHODS 

In the early 1990‟s, a new type of system identification algorithms, called subspace methods, was 

introduced to the automatic control engineering community for the identification of multivariable 

linear time-invariant (LTI) systems. Mostly, these methods present a good alternative to the classical 

nonlinear optimization-based prediction error methods [11]. Subspace methods do not require an 

explicit parameterization of the system; this makes them numerically attractive and especially suitable 

for multivariable systems. Subspace methods can also be used to generate an initial starting point for 

the iterative prediction-error methods. This combination of subspace and prediction-error methods is a 

powerful tool for determining an LTI system from input and output measurements [12, 13]. 

Linear subspace identification methods are concerned with systems and models of the following form: 

x𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘                (1) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘                  (2) 

With 

𝐸 =   
𝑤𝑝

𝑣𝑝
  𝑤𝑞

𝑇 𝑣𝑞
𝑇  =  

𝑄 𝑆

𝑆𝑇 𝑅
 𝛿𝑝𝑞 ≥ 0  (3) 

 The vectors ukR
m×1

and ykR
l×1 

are the measurements at time instant k of m inputs and l outputs 

of the process. The vector xk is the state vector of the process at discrete time instant k, vkR
l×1 

and wk

R
n×1 

are unobserved vector signals, vk is called the measurement noise and wk is called the process 

noise. It is assumed that they are zero mean, stationary white noise vector sequences and uncorrelated 

with the inputs uk. AR
n×n

 is the system matrix, BR
n×m

 is the input matrix, CR
l×n

 is the output 

matrix while DR
l×m

is the direct feed-through matrix. The matrices QR
n×n

, SR
n×1

 and RR
l×1 

are 

the covariance matrices of the noise sequences wk and vk. 

 

4. MODEL PREDICTIVE CONTROL 

Model predictive control (MPC) techniques have been recognized as 

efficient approaches to improve operating efficiency and profitability [14, 15]. This advanced method 



Rev. Sci. Technol., Synthèse 35: 233-243(2017)  M. B. Harida & al 
 

©UBMA - 2017 
236 

has the ability to anticipate future events and can take control actions accordingly. LQR and PID 

controllers do not have this predictive ability. Model Predictive Control is multivariable control 

algorithm that relies on dynamic models of the process [16], most often linear empirical models 

obtained by system identification [17, 18]. A cost function J is minimized in order to obtain the 

optimum control input [19]. The optimization cost function is given by: 

 

J(zk) =     eY
T k + i Qey(k + i) +  eu

T k + i Rueu(k + i) +  ∆uT(k + i)R∆u∆u(k + i  + ρ k2p−1
i=0  

(4) 

 

Without violating constraints (low/high limits), with: 

 

ey i + k = Sy
−1 r(k + i + 1|k) − y(k + i + 1|k)  (5) 

eu i + k = Su
−1 utarget (k + i|k) − y(k + i|k)  (6) 

∆u k + i = Su
−1 u(k + i|k) − u(k + i − 1|k)  (7) 

𝑧𝑘
𝑇 =  𝑢(𝑘|𝑘)𝑇  𝑢(𝑘 + 1|𝑘)𝑇 … 𝑢 𝑘 + 𝑝 − 1 𝑘 𝑇

𝑘   (8) 

The effectiveness of this method is mainly due to the fact that, for a known or pre-calculated reference 

trajectory (at least on a certain horizon), it is possible to fully exploit information of preset trajectories 

located in the future. 

 

 The aim of the predictive strategy is to make the fitting between the process output and the 

predetermined reference trajectory on a finite horizon in the future, as illustrated on the diagram of 

figure 3. Thus, this method appears very suitable to deal efficiently with the problems of reference and 

especially trajectory tracking. 

5. PID CONTROLLER 

The HEV simulator uses PID controller to control the engine speed, then the simulation results will be 

compared with those of the proposed model predictive control. 

Figure 3 : A discrete MPC scheme. 
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Figure 4 : Engine speed controller. 

In figure 4, when the speed demand is set to zero, the idle speed is at 800 rpm. The PID controller 

parameters are tuned to give the optimal performance: KP = 0.02, Ki = 0.01, kd = 0. These parameters 

were obtained from HEVMBFS simulator. 

 

6. SIMULATION RESULTS 

Simulation tests were conducted in Matlab/Simulink environment. The results of PID controller are 

represented in figure 5 and 7. Whereas the results of the model predictive control are shown in figure 6 

and 8. 

 

Figure 5 : PID controller 

simulation results in urban 

driving cycle (UDC standards). 

 

Figure 6 : model predictive 

control simulation results in 

urban driving cycle (UDC 

standards). 
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Figure 5 and 6 represent the reel engine speed (rpm), the engine speed target, the engine torque (Nm), 

the engine power (W), and the throttle, using PID controller, and model predictive control 

respectively. Tested on cycle 1 which is an urban driving cycle (UDC standards) repeated four times, 

the vehicle reaches a maximum speed of 50km/h. figure 7 and figure 8 represent the reel engine speed 

(rpm) and the engine speed target, the engine torque (Nm),the engine power (W), the throttle using 

PID controller, and model predictive control respectively. Tested on the cycle 2 which is an extra 

urban driving cycle (EUDC standards), it reaches a top speed of 120 km/h. 

It is noticed that the engine undergoes untimely accelerations and is submitted to unnecessary effort 

which is produced by PID controller output action. This may strongly undermine the engine 

performance in the long run (Fig. 5 and 7). In contrast, the predictive controller generates appropriate 

action signal with reduced effect on the engine demand. The magnitude of the controller action is well 

lower than that of the PID controller. Moreover, it is observed that the action of the MPC controller is 

generated just when required to follow the various reference cycles and is null at idle time. It is thus 

clear that the model predictive control is more advantageous, see figure 6 and 8. The proposed 

controller could be well recommended for use in such control strategy. The parameters used in the 

MPC control are: Sampling time „t = 0.005‟, Prediction Horizon „u1 = 2‟, Control Horizon „u2 = 10‟, 

and the constraints of the imput system (Throttle): „Umin = 0‟, „Umax = 1‟, the constraints on the 

output system (Engine Speed): „Smin = 800‟, „Smax = 4500‟.  

7.  MODE LOGIC 

For efficient power management, an understanding of the economics of managing the power flow in 

the system is required. For example, during deceleration, the kinetic energy of the wheels can be 

partially converted to electrical energy and stored in the batteries. This implies that the system must be 

able to operate in different modes to allow the most efficient use of power sources [20, 21, 22]. 

The Stateflow® chart which is a realization of the conceptual framework shown in figure 9 has two 

notable differences. The “acceleration” and “cruise” states have been grouped to form the “normal” 

super state, and the “low speed/start” and “normal” states have been grouped together to form the 

Figure 7 : PID controller simulation results 

in extra urban driving cycle (EUDC 

standards). 

 

Figure 8 : model predictive control 

simulation results in extra urban     

driving cycle (EUDC standards). 
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“motion” super state. This grouping helps organize the mode logic into a hierarchical structure that is 

simpler to visualize and debug. 

 

Figure 9 : Mode logic modelled with Stateflow®. 

The State flow® model produces three outputs that lead to Motor, Generator, and Engine control 

systems.   However, by default, those signal connections do not affect the output of those control 

systems. For that we must connect the State flow® to the rest of the model. Each subsystem has a 

manual switch in it which allows selecting a signal that uses the Stateflow® output to enable or disable 

the output of the PI controller. 

In order to assess the emission levels of the engine, and fuel economy in hybrid vehicle (HEV), we use 

New European Driving Cycle (NEDC standards). The latter is composed of two parts: UDC (Urban 

Driving Cycle) repeated 4 times, is plotted from 0 s to 780 s and EUDC (Extra Urban Driving Cycle) 

is plotted from 780 s to 1180 s. 

After enable mode logic is switched on, the obtained results are shown in figures 10, 11 and 12. 

 

  

 

 

 

 

 

 
 

Figure 10 : Mode logic inputs. 

 

Figure 11 : Mode logic outputs. 
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The mode logic has four inputs (vehicle speed, brake, charge and engine speed) shown in figure 10, 

and three outputs connected to controllers of motor, generator and engine shown in figure 11, the 

output is logic, 0 for disable and 1 for enable. 

 

Figure 12 : Results obtained on New European Driving Cycle (NEDC standards) with enable mode logic. 

Using the mode logic from HEV simulator, we notice that the engine is enabled only in ultra-urban 

cycle figure 11 and 12. We also note that the peak appeared in throttle, appears also in engine torque 

and power figure 12. The fuel consumption is 2.146 L/100. These results are obtained using mode 

logic and PID controller from HEV simulator, the last results will be compared with the enhanced 

mode logic and model predictive control, to gain more fuel economy and get better performance. 

8. ENHANCED MODE LOGIC: 

 

 

 

 

 

 

 

 

 

In the enhanced mode logic we propose two motion modes: the first mode, called Motion_mode1, 

which can reach a maximum speed of 60 km/h and a second mode, called Motion_mode2, starting 

from a minimal speed of 60 km/h to a maximum speed of 120 km/h. The „acceleration‟ and „cruise‟ 

modes have been combined into one mode known as  the normal mode, which can be further 

combined with the „low speed/start‟ to form the  Motion_Mode.  Through this structure, a hierarchical 

 

Figure 13 : Enhanced mode logic modeled with Stateflow®. 
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framework of the enhanced mode logic is obtained which is easier to visualize and debug. This 

grouping is also applied to the modes of Motion_Mode2, The enhanced mode logic is programmed 

under Matlab/Stateflow® shown in figure 13. 

 

 

Figure 14: Enhanced mode logic inputs 

Enhanced mode logic has four inputs (vehicle speed, brake, charge and engine speed) shown in figure 

14, and three outputs connected to controllers of motor, generator and engine as shown in figure 15, 

the output takes on  logic value, 0 for disable and 1 for enable. Using the enhanced mode logic, we 

notice from figure 15 and 16 that the engine is enabled only when the speed is above 60 km/h. We also 

Figure 15 : Enhanced mode logic 

outputs. 

 

Figure 16 : Results obtained on New 

European Driving Cycle (NEDC 

standards) with enable enhanced mode 

logic. 
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notice that the peaks disappeared in throttle MPC and also in the engine torque and power figure 16. 

The fuel consumption is 2.002 L/100. These results are obtained using enhanced mode logic combined 

with MPC. 

Table 1 : Fuel Economy on New European Driving Cycle (NEDC standards). 

 

 

 

 

 

 

The table 1 shows the different consumption quantities in the New European Driving Cycle (NEDC 

standard). It is noticed that by using MPC controller, accompanied or not by the two various logic 

modes, the fuel consumption remains lower than that obtained by the PID controller. Also, the 

introduction of enhanced mode logic optimizes better the consumption quantity. It should be noted 

that the fuel saved in the new control strategy so little, remains appreciably important when 

considering the number of kilometres traversed by the vehicles around the world. We may therefore 

conclude that the enhanced mode logic with model predictive control are more powerful and optimal, 

for reducing the fuel consumption thus reducing NOx emissions that are harmful to the environment. 

9. CONCLUSION 

Due to the development of rigorous methodologies for the design of models and powerful algorithms 

of control and optimization, we used the subspace method to obtain an acceptable model of the 

thermal engine. This model has been the subject of the application of the predictive control. It is 

noticed that the results of simulation under various scenarios for different cycles are satisfactory. This 

may allow us to assert that the MPC controller fulfils well the objectives stated at the beginning, 

namely reduced fuel consumption, a more comfortable driving and increased longevity of the HEV 

vehicle equipment. The Introduction of a new optimization strategy of the operating modes allowed 

substantially improving the economic indices, reducing the energy consumption, considering the 

environment and reducing NOx emissions as well. Finally, this work opens the way for research in the 

three parts treated in order to satisfy even more the performance criteria of the series-parallel hybrid 

vehicle HEV. 
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NOMENCLATURE 

k: Current control interval. 

ρ: Prediction horizon (number of intervals). 

Q nu − by − nu , Ru , R∆u (nu − by − nu ): positive-semi-definite weight matrices. 

Sy : Diagonal matrix of plant output variable scale factors, in engineering units. 

Su : Diagonal matrix of MV scale factors in engineering units. 

𝑟(𝑘 + 1|k) : ny  plant output reference values at the ith prediction horizon step, in engineering units. 

y(k + 1|k):  𝑛𝑦  plant outputs at the ith prediction horizon step, in engineering units. 

zk : QP decision. 

𝑢𝑡𝑎𝑟𝑔𝑒𝑡  𝑘 + 𝑖 : 𝑛𝑢  MV target values corresponding to 𝑢(𝑘 + 𝑖|𝑘), in engineering units. 
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