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: ملخص

انًُىرج الاَسٍاتً يقذو كُظاو رو . هزا انًقال ٌعانح انسهىك انذٌُايٍكً نًحزتزب يخًذ يشٌ تشكم يثانً ويعشض ندهذ خاسخً رو َىع صنضانً

جى جأسٍس حصٍهة انطاقة أساسًا . ، إثاسة غٍشيحًاثهة فً يدال انضغظ (تلاسحٍكً تشكم يثانً)إثاسة يحُاظشة :دسخة جغٍش واحذة يحًثم فً حانحٍٍ 

. (...انحشدد انضاوي انًكافئ ، انحخًٍذ ، عايلانلاجًاثم فً قىة الإثاسة )تانُظش إنى انطاقة انًحشححة أثُاء انحزتزتات ، وفقانهًحغٍشات انهٍكهٍة نهًُىرج 

. جشحث فً طاقة انذوسة انحذودٌة انًحىاخذة فً يُطقة انحىافق انسهىكٍة وانحً ٌسٍطش عهٍها يخطظ انحشعة

 .يحزتزب يخًذ يشٌ تشكم يثانً، انًُىرج الاَسٍاتً، انطاقة انًحشححة، انذوسة انحذودٌة، انحىافق، يخطظ انحشعة :الكلمات المفتاحية

Résumé : 

L’article traite le comportement dynamique d’un oscillateur élastoplastique parfait amorti, sollicité par une 

charge extérieure, de type sismique. Le modèlerhéologiqueest présenté comme un système à un seul degré de 

liberté (1DDL), pour les deux cas : une excitation symétrique (élastoplasticité parfaite), et une Asymétrie dans le 

domaine de la compression. Le bilan énergétique est essentiellement établi à partir de l’énergie dissipée au cours 

des oscillations, en fonction des paramètres structuraux du modèle (fréquence angulaire équivalente, 

l’amortissement, paramètre d’asymétrie de la force d’excitation…).Une dissipation de l’énergie du cycle limite 

dans la zone comportementale de l’accommodation contrôlée par la frontière de bifurcation. 

Mots Clés: Oscillateur élastoplastique parfait amorti, modèle rhéologique, énergie dissipée, cycle limite, 

accommodation, frontière de bifurcation. 

 

Abstract 

This paper deals with the dynamic behaviour of a perfect damped elastoplastic oscillator, subjected to an external 

seismic load. The rheological model is presented as a single-degree-of-freedom system, for the two cases: a 

symmetrical excitation (perfect elastoplasticity); and an asymmetry in the compression field. The energizing 

assessment is essentially established from the dissipated energy map during the oscillations, according to the 

structural parameters of the model (equivalent angular frequency, damping, parameter of the asymmetric 

excitation force…). A dissipation of the limit cycle energy observed for the alternating plasticity behavioural 

area, which is controlled by the bifurcation boundary. 

 

Keywords: Perfect Damped Elastoplastic Oscillator, Rheological model, Dissipated energy, Limit cycle, 

Alternating plasticity, Bifurcation boundary.  
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1. Introduction  

Knowing that the cyclical behaviour of dynamical systems is strongly related to the hysteretic 

character which depends on the history of the material, a difficult subject, in which the analysis aims 

to present the response of dynamic models according to the external excitation, these models 

represented by rheological oscillators, which may reflect the behaviour of civil engineering structures 

subjected to cyclic vibrations of seismic kind. The study of the response -often periodically- of these 

oscillators will help in the control of the dynamic stability of structures, based on dynamic parameters, 

and thus determine and draw the energy map. However, the simplest model for dynamic analysis is 

that a single degree of freedom (s-d-o-f) as in Fig. 1, and the behavior that has been the subject of 

many research studies [1], [2], [3], is the elastoplastic that being more representative in term of its 

cyclical (dynamical) character. Thus, the chosen model -from the literature- for the study and the 

energetic evaluation of elastoplastic structures is that, where the elastoplastic behavior is perfect for 

both cases, asymmetric: the force amplitudes are equal in both domains (tension and compression) and 

a perfect elastoplasticity with asymmetry in the compression field. 

2. Presentation of the rheological model  

Let us consider the single degree of freedom model (Fig. 1), a rheological system composed of a mass 

(M), which is attached to an elastoplastic spring (𝐾0), and damping coefficient noted (C), necessarily 

positive. The inelastic system is submitted to a harmonic external force 𝐹(𝑡) defined by its amplitude 

(𝐹0) and its pulsation (Ω). 

 

Figure.1. Dynamic s-d-o-f model (Rheological). 

This oscillator (Fig. 1), who is characterized by its position (𝑈), displacement rate  𝑈   and an internal 

plastic variable noted 𝑈𝑝 named the plastic displacement, can be approached by an inelastic 

incremental behaviour, (elastic perfectly plastic, see Fig. 2 (a and b). 

(a) Symmetric case (𝐹+ =  𝐹−) (b) Asymmetric Case (𝐹+ ≠  𝐹−) 

 

Figure. 2:  Incremental perfect elastoplastic behaviour 
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For this inelastic system, two types of dynamic states can be distinguished [2], [3], [4], [5], [6], [7], 

[8]: 

 Elastic State𝑬  : (reversible state) 

 Plastic State𝑷  : (irreversible state) associated to the evolution of the plastic displacement. 

This plastic state can be divided into two plastic states 𝑷+ and 𝑷−  in function of the sign of the elastic 

displacement (𝑈 − 𝑈𝑝). [6], [7], [8] 

3. Formulation of the motion equations  

The equations of motion for this perfect elastoplastic oscillator damped have been formulated, using 

dimensionless variables, for a system with one degree of freedom (s-d-o-f), and for the three states [7], 

[8] as follows: 

3.1.  Symmetric System  

 

State𝐸 :       𝑢 + 2𝜁𝑢 + 𝑣 = 𝑓0𝑐𝑜𝑠 ω𝜏  ;  𝑢 𝑝 = 0 

State𝑃 +:     𝑢 + 2𝜁𝑢 + 1 = 𝑓0𝑐𝑜𝑠 ω𝜏  ;  𝑢 𝑝 = 𝑢 

State𝑃 −:     𝑢 + 2𝜁𝑢 − 1 = 𝑓0𝑐𝑜𝑠 ω𝜏  ;  𝑢 𝑝 = 𝑢 

 with :
 

 

𝑓0 =
𝐹0

𝐹+

𝜔 = Ω 
𝑀

𝐾0

𝜁 =
𝐶

2 𝑀𝐾0

       (1) 

These equations of motion in the reduced domain phases (𝑣, 𝑢 ), are controlled by: 

 

State𝐸 :       𝑣 < 1 or 𝑣 = 1  and 𝑢  ≤ 0  or 𝑣 = −1  and  𝑢  ≥ 0  

State𝑃 +:     𝑣 = 1 and𝑢 ≥ 0                                                                                

State𝑃 −:      𝑣 = −1 and𝑢 ≤ 0                                                                           

       (2) 

The dynamic system (Eq. 1), represent the perfect damped elastoplastic model. However, the response 

of this system of differential equations, depends to the kind of elastoplasticity (symmetric or 

asymmetric), defined by the condition of equality of forces  𝐹+  and  𝐹− . Therefore, from the works 

of Challamel [7], and Hammouda [8], the perfect damped elastoplastic model could be seen as 

“Symmetric” (Fig. 2.a) if: 𝐹+ = 𝐹− , in otherwise, the model is “Asymmetric” (Fig. 2.b). 

3.2.  Asymmetric system  

The asymmetry of the perfect damped elastoplastic model will be introduced through: 

𝐹−

𝐹+ = −1 − 𝜀  with 𝜀 > 0              (3) 

 

State𝐸 :       𝑢 + 2𝜁𝑢 + 𝑣 = 𝑓0𝑐𝑜𝑠 ω𝜏  ;  𝑣 = 𝑢           

State𝑃 +:     𝑢 + 2𝜁𝑢 + 1 = 𝑓0𝑐𝑜𝑠 ω𝜏  ;  𝑣 = 0           

State𝑃 −:     𝑢 + 2𝜁𝑢 − (1 + 𝜀) = 𝑓0𝑐𝑜𝑠 ω𝜏  ;  𝑣 = 0

 with :
 

 

𝑓0 =
𝐹0

𝐹+

𝜔 = Ω 
𝑀

𝐾0

𝜁 =
𝐶

2 𝑀𝐾0

     (4) 

The equations of motion of the asymmetric model are also controlled by: 

 
 
 

 
 State𝐸 :      −1 − 𝜀 < 𝑣 < 1                                                          

or 𝑣 = 1  𝑎𝑛𝑑  𝑢 𝑣 ≤ 0  or 𝑣 = −1 − 𝜀   and 𝑢 𝑣 ≥ 0  

State𝑃 +:     𝑣 = 1 and𝑢 ≥ 0                                                         

State𝑃 −:      𝑣 = −1 − 𝜀 and𝑢 ≤ 0                                              

         (5) 
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4. Dynamic response of the perfect damped elastoplastic model  

4.1 Response of the Symmetric system  

The response of the symmetric dynamic model (Fig. 2.a), expressed by the equations of motion (Eq.1), 

in the case of forced vibrations of the elastic state (𝐸 ) can be written: 

𝐸: 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑣 𝜏 =  
𝐴𝑐𝑜𝑠  1 − 𝜁2 𝜏 − 𝜏𝑖  +

𝐵𝑠𝑖𝑛  1 − 𝜁2 𝜏 − 𝜏𝑖  
 𝑒−𝜁(𝜏−𝜏𝑖)

+
𝑓0

 1−𝜔2 2+4𝜔2𝜁2
  1 − 𝜔2 cos 𝜔𝜏 + 2𝜔𝜁 sin 𝜔𝜏  

𝑢  𝜏 =  
 −𝜁𝐴 + 𝐵 1 − 𝜁2 cos  1 − 𝜁2 𝜏 − 𝜏𝑖  +

 −𝜁𝐵 − 𝐴 1 − 𝜁2 sin  1 − 𝜁2 𝜏 − 𝜏𝑖  
 𝑒−𝜁(𝜏−𝜏𝑖)

+ 
𝜔𝑓0

 1−𝜔2 2+4𝜔²𝜁²
 2𝜔𝜁 cos 𝜔𝜏 −  1 − 𝜔2 sin 𝜔𝜏  

with:             
𝐴 = 𝑣𝑖 − 𝑓0

 1−𝜔2 cos  𝜔𝜏𝑖 +2𝜔𝜁sin (𝜔𝜏𝑖)

 1−𝜔2 2+4𝜔²𝜁²

𝐵 =
𝑢 𝑖+𝜁𝐴

 1−𝜁2
−

𝜔𝑓0

 1−𝜁2

2𝜔𝜁 cos  𝜔𝜏𝑖 − 1−𝜔2 sin  𝜔𝜏𝑖 

 1−𝜔2 2+4𝜔2𝜁2

        (6) 

In the case of two plastic states𝑃 +, 𝑃 −: 

𝑃: 

 
 
 

 
 𝑣 𝜏 = ±1                                                                                         

𝑢  𝜏 =  𝑢 𝑖 +
𝑣𝑖

2𝜁
− 𝑓0

2𝜁 cos  𝜔𝜏𝑖 +𝜔𝑠𝑖𝑛 (𝜔𝜏𝑖)

4𝜁2+𝜔2  𝑒−2𝜁 𝜏−𝜏𝑖 

−
𝑣𝑖

2𝜁
+ 𝑓0

2𝜁 cos  𝜔𝜏 +𝜔𝑠𝑖𝑛 (𝜔𝜏 )

4𝜁2+𝜔2

     (7) 

 

4.2 Response of the Asymmetric system  

Once the equivalence between asymmetric loading and asymmetric resistance is formulated 

analytically [8], the periodic solution of the asymmetric model (Fig. 2b) is given for the elastic 

vibrations, by: 

𝐸 :

 
 
 
 
 
 
 

 
 
 
 
 
 

𝑣 𝜏 =  
𝑐𝑜𝑠  1 − 𝜁2 𝜏 − 𝜏𝑖   𝑣𝑖 − 𝑓0

 1−𝜔2 cos  𝜔𝜏𝑖 +2𝜔𝜁sin (𝜔𝜏𝑖)

 1−𝜔2 2+4𝜔²𝜁²
  +                     

𝑠𝑖𝑛  1 − 𝜁2 𝜏 − 𝜏𝑖   
𝑢 𝑖+𝜁𝑣𝑖

 1−𝜁2
+ 𝑓0

−𝜁 (1+ω2)cos  𝜔𝜏𝑖 +𝜔 1−𝜔2−2𝜁² sin  𝜔𝜏𝑖 

 1−𝜁2  1−𝜔2 2+4𝜔2𝜁2 
 
 𝑒−𝜁(𝜏−𝜏𝑖)

+𝑓0
  1−𝜔2 cos  𝜔𝜏 +2𝜔𝜁 sin  𝜔𝜏  

 1−𝜔2 2+4𝜔2𝜁2

𝑢  𝜏 =

 
 
 
  𝑢 𝑖 + 𝑓0

−2𝜔²𝜁 cos  𝜔𝜏𝑖 +𝜔 1−𝜔2 sin  𝜔𝜏𝑖 

 1−𝜔2 2+4𝜔2𝜁2  cos  1 − 𝜁2 𝜏 − 𝜏𝑖  +                          

 −
𝑣𝑖+𝜁𝑢 𝑖

 1−𝜁2
+ 𝑓0

(2 ω2𝜁2+1−𝜔2)cos  𝜔𝜏𝑖 + 𝜔𝜁  1+𝜔2  sin  𝜔𝜏𝑖 

 1−𝜁2  1−𝜔2 2+4𝜔2𝜁2 
 sin  1 − 𝜁2 𝜏 − 𝜏𝑖  

 
 
 
 

𝑒−𝜁(𝜏−𝜏𝑖)

+ 𝜔𝑓0
 2𝜔𝜁 cos  𝜔𝜏 − 1−𝜔2 sin  𝜔𝜏  

 1−𝜔2 2+4𝜔²𝜁²

 

(8) 

 

 



Rev. Sci. Technol., Synthèse 36: 141-152 (2018)     M. Chenia & al 

©UBMA - 2018 

145 

For the two plastic states 𝑃 +, 𝑃 −, the response is written as: 

𝑃 :

 
 
 

 
 𝑣 𝜏 = 1    or𝑣 𝜏 = −1 − 𝜀                                          

𝑢  𝜏 =  𝑢 𝑖 +
𝑣𝑖

2𝜁
− 𝑓0

2𝜁 cos  𝜔𝜏𝑖 +𝜔𝑠𝑖𝑛 (𝜔𝜏𝑖)

4𝜁2+𝜔2  𝑒−2𝜁 𝜏−𝜏𝑖 

−
𝑣𝑖

2𝜁
+ 𝑓0

2𝜁 cos  𝜔𝜏 +𝜔𝑠𝑖𝑛 (𝜔𝜏 )

4𝜁2+𝜔2

          (9) 

5. Evolution of the Dynamical Systems  

By following the evolution of the dynamic systems presented by the equations of motion (Eq.1; 4), 

which are controlled by the conditions of space phases (Eq.2, 5), expressed by the response (Eq.6;7; 8 

and 9), it can clearly distinguished two types of movement called behavioural areas: “Shakedown” 

which represents an elastic stationary phase, and the “Alternating plasticity” which is an alternation of 

two plastic phases through an elastic state (Fig. 3) [7], [8].  

The limit cycles controlled by the alternating plasticity area presents a central symmetry [6], [8], and 

thus, these cycles depend of the structural parameters (𝑓0,𝜁,𝜔). So, according to the works of 

Challamel [6], [7], and Hammouda [8], [9], there is a bifurcation boundary (Fig. 3) between the two 

behavioural areas: Shakedown and Alternating plasticity, in which one can consider an asymptote 

phase to  𝑣 = 1, this boundary [2], [3] is expressed by 

𝑓0 =   1 − 𝜔2 2 + 4𝜔²𝜁²       (10) 

This bifurcation boundary (Eq.10) is the same as in the works of Liu and Huang [10]: 

 

Figure.3: Bifurcation boundary between the behavioural areas 

In the reduced phase space, from the works of Capecchi [11], the displacement  𝑣  can represent the 

force associated to the dimensionless dynamic system [7],[8],[9],[12]. The representation of the 

behavioural relationship can be expressed by the elastic displacement versus total displacement, which 

is equivalent to the relationship Force-Displacement illustrated in (Fig. 2). 

For the elastoplastic oscillations, the chosen relationship: Force -Displacement, is asymptotic to (| 𝑣 | 

= 1), as shown from a hysteresis case of the relation (𝑣,𝑢), which can be called “Adopted Behaviour” 

(Fig.4). Similar results are given by Ahn [13]. 
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6. Dissipated energy of the elastoplastic oscillator  

6.1 Energetic assessment of the symmetric system  

The energy aspect of this perfect, damped and symmetrical elastoplastic oscillator, assumes that the 

dissipated energy by the oscillator is indeed, the air of the hysteresis loop coming from the limit cycle 

of the (𝑣, 𝑢) behaviour [9], [14]. 

 

Figure. 4: Adopted Behaviour (hysteresis loop),  

For: 𝒗𝟎, 𝒖 𝟎 =  𝟎, 𝟏 ; 𝜻 = 𝟎. 𝟏; 𝝎 = 𝟎. 𝟓 ; 𝒇𝟎 = 𝟏 

The calculus of the dissipated energy during oscillations, for a set of appropriate structural 

parameters (which represents the behavioural area of alternating plasticity in Fig. 3, where there is 

an alternation between the elastic and plastic phases), may be approximately equal to :[9] 

𝐸(Limit Cycle) =  𝑓 𝜁 𝑢 𝜁 𝑑(𝜁)
𝜏

0
       (11) 

𝐸 = 2 ∗ 𝑏           (12)  

 

The energetic assessment can be illustrated through a curve often called “energy map” (Fig.5), 

independent of the initial conditions, because it concerns the limit cycle (after convergence), which 

shows the agreement with the boundary bifurcation (Fig.3) [8]. 

 

Figure. 5: Energy Assessment for the perfect damped and symmetric elastoplastic oscillator for: 𝒗𝟎, 𝒖 𝟎 =

 𝟎, 𝟎 ; 𝜻 = 𝟎. 𝟏; 𝒇𝟎 = 𝟏 

This assessment of the dissipated energy (Fig. 5) during the oscillations of perfect damped 

elastoplastic model in equal amplitude values of excitation force (Symmetric) , highlights an 

energy variation with very close values of the equivalent pulse , and valid for the same occasion the 
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next one (Fig. 6),  presented by the recent works of Hammouda et al , [9] , in the energetic and 

rheological study of this type of hysteretic oscillations, and we can affirm that for small values of 

pulse , energy is greatly dissipated , following the super-harmonic motions due to the fact that the 

system acts as a rigid plastic oscillator. This phenomenon is previously mentioned in the works of 

Capecchi [15] for an undamped system, and those of Liu and Huang [10] for the same damped 

system, as well as Challamel and Gilles [6] . We can say that this work discusses the most 

important perspective of the previous ones [8-9] by studying the variation of the energy according 

to the structural parameters, such as damping, which represents the energy dissipation device 

widely discussed in this topic. 

The energy -theoretically- dissipated by the studied oscillator, can be expressed, according to the 

damping parameter(𝜁), which should not -in any case- be ignored, for their connection, because of 

the damping term is always linked to the reverse conversion side of the energy to return the 

dynamic system to its initial position [14], the following curve(Fig.6) exhibit this relationship: 

 

Figure.6: Energy Assessment for the perfect damped and symmetric elastoplastic oscillator for: 𝒗𝟎, 𝒖 𝟎 =

 𝟎, 𝟎 ; 𝝎 = 𝟎. 𝟓; 𝒇𝟎 = 𝟏 

The energy assessment represented by this curve (Fig. 6) expresses the variation of the energy 

according to different damping rates, and criticizes the idea to always increase the damping of an 

oscillator to obtain better energy dissipation, something to deal with delicacy, because we must not 

deny the existence of the dissipated energy by the periodic motions of the oscillator, which causes 

the increase of the stored and absorbed energy by its stiffness. This result validates the third 

conclusion of the works of Zhang and Iwan [16], which assert the existence of the phenomenon of 

small oscillations ride on the component (damping), causing long-period excitations, therefore, this 

undesirable phenomenon makes the dissipation of reduced energy. That feeds also, on choosing a 

good set of parameters taken from the bifurcation boundary (Fig.3), to stay in the Alternating 

plasticity behavioural area. 

For an undamped model (Fig. 7), it can clearly realize that, although the model is not damped, but 

we can notice a decrease in the dissipated energy during the cyclical movements, which confirms 

the discussion of the curve above (Fig. 6): 
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Figure. 7 : Energy Assessment for the perfect damped and symmetric elastoplastic oscillator  

for: 𝒗𝟎, 𝒖 𝟎 =  𝟎, 𝟎 ; 𝜻 = 𝟎; 𝒇𝟎 = 𝟏 

The variation of the energy, dissipated by the elastoplastic damped model, can be also expressed 

(Fig. 8) in function of the parameter of the outside excitation force (𝑓0), for a fixed damping and 

pulsation coefficients: 

 

Figure. 8: Energy Assessment for the perfect damped and symmetric elastoplastic oscillator for: 𝒗𝟎, 𝒖 𝟎 =

 𝟎, 𝟎 ; 𝜻 = 𝟎. 𝟏; 𝝎 = 𝟎. 𝟓 

This curve shows the high variability in the dissipated energy by increasing the amplitude of the 

external force, but moderately, the relationship is not stronger than that of previous curves, and it is 

known that a dynamic load with high amplitude and low pulsation, does not necessarily give the 

same effect as another load of a higher pulse, and through a lower amplitude [14]. 

In this section of a perfect damped, and symmetric elastoplastic oscillator (Fig. 2.a), we have 

treated the variation of the dissipated energy, according to the different structural parameters and 

establish an energy assessment, thus to carefully study and analyse this type of non linear oscillator, 

and especially to give an idea about the choice of parameters playing a role in the response of this 

model. The authors perspective in previous study [9], was to study the oscillator when it presents 

an asymmetry (𝐹+ ≠ 𝐹−) in its behaviour (Fig.2.b), whether in traction or compression, a prospect 

discussed in what follows. 
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6.2 Energetic assessment of the asymmetric system 

In this section, we will enter directly to the energy assessment of the asymmetric system without 

going through the evolution of this system (see [8]).This system brings up a new structural 

parameter denoted (𝜀), which represents the difference between  𝐹+ and  𝐹−  in compression or 

tension field, but without affecting the choice of the other parameters, that it was previously 

mentioned [8],[9],and it was concluded that the bifurcation boundary does not depend on the 

asymmetry parameter (𝜀). 

The following curve (Fig.9) presents the Adopted behaviour (𝑣 − 𝑢) during the oscillations 

(hysteresis loops): 

 

Figure. 9. Behaviour of the perfect damped and asymmetric in compression elastoplastic oscillator (F
+
< F

-
), 

“Dynamic ratcheting” for: 𝒗𝟎, 𝒖 𝟎 =  𝟎, 𝟎 ; 𝜻 = 𝟎. 𝟏; 𝝎 = 𝟎. 𝟕𝟓, 𝒇𝟎 = 𝟎. 𝟖, 𝜺 = 𝟎. 𝟎𝟓 

This curve clearly shows the effect of “rochet” observed for this type of oscillator, which caused by 

the asymmetry of compression amplitude, this effect occurs when increasing a field strength 

compared to the other (traction or compression), and therefore leads to a divergence of the limit 

cycle [8]. 

We can also study the energy assessment of such oscillators, starting with the variation of the 

dissipated energy according to the pulsation (Fig. 10), and this for a fixed asymmetry rate (𝜀): 

 

Figure.10: Energy Assessment of the perfect damped and a symmetric elastoplastic oscillator for :𝜻 =

𝟎. 𝟏;  𝒇𝟎 = 𝟎. 𝟖;  𝜺 = 𝟎. 𝟎𝟓 
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The variation of the dissipated energy which is equal to the air of the last hysteresis loop, 

depending on the equivalent angular frequency of the system for a fixed asymmetry, is not different 

from that of the symmetric oscillator. This result leads us to express the energy dissipation 

according to the progressive variation of the asymmetry rate (ε), to investigate its influence (Fig. 

11). 

 

Figure. 11. Energy Assessment of the perfect damped and asymmetric elastoplastic oscillator 

for:𝜻 = 𝟎. 𝟏;  𝒇𝟎 = 𝟎. 𝟖;  𝝎 = 𝟎. 𝟕𝟓 

This curve (Fig. 11) shows the “Dynamic ratcheting”, for an asymmetry between the two domains 

leading to a significant decrease of the dissipated energy for higher asymmetry, something to be 

avoided and must be taken into consideration on seismic design [8]. 

Besides the parameter that we have just to distinguish, who plays a very important role in the 

energy assessment of the asymmetric model, the dissipated energy also depends on other structural 

parameters (Fig. 12). 

 

Figure. 12. Energy Assessment of the perfect damped and asymmetric elastoplastic oscillator for :𝜺 =

𝟎. 𝟎𝟓;  𝒇𝟎 = 𝟎. 𝟖;  𝝎 = 𝟎. 𝟕𝟓 

In terms of damping and energy dissipation, the above figure (Fig. 12) supports the assumption 

discussed earlier (Fig.6), concerning the choice of damping parameter, which must not tolerate the 

excess of oscillations energy absorption, and consequently, reducing dissipation [14]. 
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So, we can at the last point of the energy assessment analysis, varying the force amplitude, to study 

the variation of the dissipated energy while remaining -naturally- in the alternating plasticity area 

(Eq.10, Fig.3). 

 

Figure. 13. Energy Assessment of the perfect damped and asymmetric elastoplastic oscillator for :𝜺 =

𝟎. 𝟎𝟓;  𝜻 = 𝟎. 𝟏;  𝝎 = 𝟎. 𝟕𝟓 

The influence of the amplitude of the external excitation of the asymmetric in compression model, 

cannot give us a clear vision on the choice of this parameter, because of the increase in the 

dissipated energy is caused -of a part- by the increase of the kinematic energy from the cyclic 

movements. 

7. Conclusion 

This work represents a part of a wide program studying the energy assessment by exposing the 

variation of the dissipation energy of a perfect damped elastoplastic oscillator, whose can reflect the 

behaviour of structures subjected to dynamic loads of seismic type in both cases: symmetric and 

asymmetric, depending on structural parameters that characterize the behavioural areas of this 

oscillator. It was found that the dissipated energy in the first case where the behaviour is 

symmetrical, essentially depends on the equivalent angular frequency between the external force 

and the own pulsation of the model. 

Regarding the damping term, often associated with the dissipated energy, we have demonstrated 

that the dissipation of energy is not exclusively due to the devices and damping elements of the 

model, but it can also caused by the cyclic movements in the hysteresis loops. 

The second case brings up another structural parameter, which plays a very important role in the 

energy dissipation, which is manifested by the “Dynamic ratcheting” in alternating plasticity that 

implies the divergence of phase trajectories, and therefore the domination of one domain to the 

other, without contradicting the choice of the other parameters.  

We can, at the end of this study indicate that the main prospects is to consider another behaviour 

law, more complex such as in the presence of kinematic hardening elastoplasticity [17], which will 

also appear the hardening rate as a new structural parameter and this will probably could enrich the 

topic. 
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