
 ISSN:

Science, Technology

Copyright

Software Excellence Augmentation through Defect Analysis

1
College of Computing and Informatics

Abstract

The key challenge for any software organization is to develop a software product
with less post deployment defects. Moreover if the defects reach till the deployment
face then the project will be at a higher risk in terms of its cost and time aspects. A
small amount of initial effort on software quality will definitely save a good amount of
cost and time compare to defect recognition and removal strategy.
focus on finding the total number of defects that has occurred in the SDLC (software
development life cycle) for five similar type of projects done by final year graduating
students in Haramaya University. The technology used in all the five projects is also
same. Orthogonal Defect Classification (ODC) is the most prevailing technique for
identifying defects wherein defects are grouped into types rather than measured
independently. This technique highlights those areas in SDLC
The paper will also focus on finding root causes of the defects and use the learning
of the projects as preventive ideas. In the remaining part of the paper, the preventive
ideas are used in a new set of projects developed by the graduating students in next
phase resulting in the reduction of the number of similar defects.

INTRODUCTION

Defect prevention is a group task. When an IT
organization adopts a defect prevention strategy,
it keeps analyzing and acting on defect data
directly with its development group members. It
exactly tells the cost of group’s errors and
challenges the group to avoid the defects, by
taking the responsibility of product quality. This
practice results in giving economical high quality
design and motivates the collection of high quality
dimensions. It creates a competent system where
feedback is continually used to optimize the
design and check up processes.

In developing a project, a lot of defects would

emerge during the development process. It is a
fallacy to believe that defects get injected in the
beginning of the cycle and are removed through
the rest of the development process (Paulk,
1993). Defects happen all the way through the
development process. Hence, defect prevention
becomes a critical part of software process
quality improvement.

ISSN: 2226-7522(Print) and 2305-3327

cience, Technology and Arts Research

Jan-Mar 2013,

www.starjournal.org

Copyright©2013 STAR Journal. All Rights

Software Excellence Augmentation through Defect Analysis
and Avoidance

Abdul Kadir Khan

Computing and Informatics, Post Box No: 337, Haramaya University, Dire Dawa, Ethiopia

Abstract Article Information

The key challenge for any software organization is to develop a software product
with less post deployment defects. Moreover if the defects reach till the deployment
face then the project will be at a higher risk in terms of its cost and time aspects. A

all amount of initial effort on software quality will definitely save a good amount of
cost and time compare to defect recognition and removal strategy. This paper will
focus on finding the total number of defects that has occurred in the SDLC (software
evelopment life cycle) for five similar type of projects done by final year graduating
students in Haramaya University. The technology used in all the five projects is also
same. Orthogonal Defect Classification (ODC) is the most prevailing technique for
dentifying defects wherein defects are grouped into types rather than measured
independently. This technique highlights those areas in SDLC that require attention.
The paper will also focus on finding root causes of the defects and use the learning

projects as preventive ideas. In the remaining part of the paper, the preventive
ideas are used in a new set of projects developed by the graduating students in next
phase resulting in the reduction of the number of similar defects.

 Article History:

 Received
Revised
Accepted

 Keywords
Defect Prevention
Software Quality
Orthogonal
Defect Classification
Defects

*Corresponding Author

Abdul Kadir Khan

E-mail:

qadirforu@gmail.com

Defect prevention is a group task. When an IT
adopts a defect prevention strategy,

it keeps analyzing and acting on defect data
directly with its development group members. It
exactly tells the cost of group’s errors and
challenges the group to avoid the defects, by

ct quality. This
practice results in giving economical high quality

of high quality
t creates a competent system where

feedback is continually used to optimize the

lot of defects would
emerge during the development process. It is a
fallacy to believe that defects get injected in the
beginning of the cycle and are removed through
the rest of the development process (Paulk,

he way through the
development process. Hence, defect prevention
becomes a critical part of software process

The most effective way to manage defects is
to prevent their initial introduction. In the PSP,
there are three different but mutually supportive
ways to prevent defects. The first is to have
engineer’s record data on each defect they find
and fix. Then they review these data to determine
what caused the defects and to make process
changes to eliminate these causes. By measuring
their defects, engineers are more aware of their
mistakes, they are more sensitive to
consequences, and they have the data needed to
avoid making the same mistakes in the future.
The rapid initial decline in total defects during the
first few PSP course programs indicates the
effectiveness of this prevention method.

The second prevention approach is to use an

effective design method and notation to produce
complete designs. To completely record a design,
engineers must thoroughly understand it.
only produces better designs; it results in fewer
design mistakes.

Original Research

64

3327 (Online)

esearch Journal

, 2(1): 64-68

www.starjournal.org

2013 STAR Journal. All Rights Reserved

Software Excellence Augmentation through Defect Analysis

337, Haramaya University, Dire Dawa, Ethiopia

Article Information

Article History:
Received : 18-01-2013
Revised : 22-03-2013
Accepted : 26-03-2013

Keywords:
Defect Prevention
Software Quality
Orthogonal
Defect Classification

*Corresponding Author:

Abdul Kadir Khan

qadirforu@gmail.com

The most effective way to manage defects is
to prevent their initial introduction. In the PSP,

mutually supportive
ways to prevent defects. The first is to have
engineer’s record data on each defect they find
and fix. Then they review these data to determine
what caused the defects and to make process
changes to eliminate these causes. By measuring
their defects, engineers are more aware of their

sensitive to their
consequences, and they have the data needed to
avoid making the same mistakes in the future.
The rapid initial decline in total defects during the

rse programs indicates the
effectiveness of this prevention method.

The second prevention approach is to use an
effective design method and notation to produce
complete designs. To completely record a design,
engineers must thoroughly understand it. This not
only produces better designs; it results in fewer

Original Research

Abdul Kadir Khan Sci. technol. arts Res. J., Jan-Mar 2013, 2(1): 64-68

65

The third defect prevention method is a direct
consequence of the second: with a more
thorough design, coding time is reduced, thus
reducing defect injection. PSP data for 298
experienced engineers show the potential quality
impact of a good design. These data show that
during design, engineers inject an average of
1.76 defects per hour, while during coding they
inject 4.20 defects per hour. Since it takes less
time to code a completely documented design, by
producing a thorough design, engineers will
correspondingly reduce their coding time. So, by
producing thorough designs, engineers actually
inject fewer coding defects (Watts, 2000).

In the Figure 1, Software Production, Software

Testing, Problem Database blocks and processes

associated with these blocks symbolize the
handling of defects within the existing philosophy
of most of the software organizations.

The blocks (Cause Analysis Meeting, Action

Team Meeting) and the processes associated
with these blocks represent the important part of
the defect prevention methodology. The vital
process of the defect prevention methodology is
to examine defects to get their root causes, to
decide a quick solution and preventive action.
These preventive procedures, after consent and
commitments from team members, are
embedded into the organization as a baseline for
future projects. The methodology is aimed at
providing the organization a long-term solution
and the maturity to learn from mistakes.

Figure 1: Defect Prevention Cycle (Source: 1998 IEEE Software Productivity Consortium.

Most of the activities of the defect prevention
methodology require a facilitator. Since final year
projects developed by the graduating students
represent the real life project and are very similar
to the projects taken by different commercial
organization, a facilitator was chosen from every
team to facilitate the research methodology. Five
similar types of projects were selected to carry
out this research. All the groups used the same
technology (PHP with SQL Server) to carry out
the work. For each group, an advisor/Technical
Expert from the college is assigned to help the
students time to time. The facilitator is involved in
arranging meetings, communication with
advisor/technical experts, and consolidating the
defect prevention guidelines. Many software
organizations have designed their own defect
prevention methodologies in the beginning of
SDLC processes. So many researchers have
also conducted their own independent research

to predict and prevent the defects. A tool named
Bug Tracing System (BTS) for defect tracing was
introduced by Fang Chenbin (2008). It got
popularity because of its low cost and defect
tracking accuracy. IBM and HP, the two well
known companies in software field, have their
own defect classification approach. IBM approach
is known as Orthogonal Defect Classification
(ODC) and the HP approach is based on three
dimensions -Defect Origin, Types and Modes.
Pankaj Jalote and Naresh Agarwal (2007)
stressed out on how analysis of defects
originated in first iteration can provide view for
defect prevention in later iterations, leading to
quality and advent output improvement. In this
paper, through the combination of above
research findings, a better defect prevention
cycle has been introduced for the better software
quality.

Abdul Kadir Khan Sci. technol. arts Res. J., Jan-Mar 2013, 2(1): 64-68

66

Steps for Improving Quality

Projects Data Summary

Information like kilo number of lines of code
(KLOC) produced by the software and number of
defects in the project are collected. Then Defect

density is measured to track the impact of defect
reduction and to judge the quality improvement.

Defect Density (DD) = Number of defects/size
(kloc) – (1)

1 KLOC = 1000 lines of codes- (2)

Table 1: 1
st
 Set of Projects Data Summary.

Project
No.

Name of the Project KLOC
No. of
Defects

Defect
Density

1
Haramaya University Human
Resource Management
System

7 104 0.014

2
Metrology Agency Automation
System in Oromia

5 97 0.019

3
Clearance System for
Haramaya University

9 150 0.016

4
Haramaya University Students
Dormitory Placement System

11 93 0.008

5
Harari Region Tourism Guide
and Information System

6 79 0.013

Average Defect Density in Table I = 0.014.

Table 2: Categorizing Defects.

SDLC Stage Defect Type Activity No. of Defects

Requirement & Analysis RQA Review 72

Design DSN Review 148

Coding LOG Testing 180

GUI GUI Review 40

User Manual DOC Review 83

Table 3: Defects Detail and descriptions.

Defect Type Full Name Defect Description

RQA Requirements Error Insufficient requirement Definition

DSN Design Error Inadequate design or faulty design

LOG Logical Error Error in Programming or faulty code

GUI Graphical Error Report layout errors

DOC Typing Error Spelling mistakes or mistyped code

Table 4: Categorizing Defects across Projects.

Project No.
Defect Type

Total
RQA DSN LOG GUI DOC

1 17 20 35 10 22 104

2 13 24 30 15 15 97

3 19 31 59 11 30 150

4 9 29 43 2 10 93

5 13 44 13 2 6 79

Abdul Kadir Khan Sci. technol. arts Res. J., Jan-Mar 2013, 2(1): 64-68

67

Research Findings

 From the above tables, the research
outcomes are given below:

� 34.41% of total defects were found in coding
stage (Table 2).

� 40.06% of total defects were found in
requirements and design stages (Table 2).

� 15.86% of total defects were found in
documentation part which is very unusual if we
look at the software defects globally.

� In Ethiopia, Students does not have a good
command over English Language.

� GUI stage has least number of defects.

Root Cause Analysis

 It is a way of finding activities/processes
which causes errors/defects and also finds out
the activities/processes to reduce the defects by
providing remedial measures. Root cause
analysis works on 2 main principles:

i. Self Review – The developer himself improves
the software quality by revisiting the SDLC
stages where defects/errors were found.

ii. Peer Review –Objective of peer as well as self
review is same (i.e. to remove the defects). In
peer review, local or third party technical
expertises are called to remove the defects.

Cause and defect diagram is used to know the
causes which generate defects. It is also known
as fishbone diagram which is commonly used for
knowing the defect causes. A simple cause–
defect diagram is shown in Figure 2.

 Figure 2: Cause and effect diagram for a defect.

This diagram is generally developed in a
brainstorming session by the working team. Once
the causes are listed, elimination methods require
another brainstorming session.

Table 4 shows the result of brainstorming
session for root causes of defects and possible
preventive plans by another brainstorming
session.

Table 5: Root Causes and Preventive Plan.

Defect Root Cause Preventive Plan

RQA

� Lacking clarity in requirement
documentation.

� Less preparation by reviewers.
� Incorrect way of data gathering.
� Taking the stage very lightly

� Arranging requirement meetings to know the exact
information.

� Reviewing the result with full attention.
� Using professionally approved way for data

gathering.
� Continuously in touch with client for exact

information gathering.

DSN

� Improper use of designing tool.
� Inadequate requirement information
� Insufficient system knowledge.
� Improper review

� Select the proper design tool.
� Proper System knowledge through different

meetings/workshop.
� Cross checking the reviewed document.
� Good knowledge of System design.
� Proper training of design software

LOG

� Technically weak
� Lack of new technology/language
knowledge

� Improper algorithm.
� Lack of experienced staffs

� In advance, proper training should be provided for
the new languages/technology.

� Experienced and technically sound staffs should
be hired.

� Different assessment methods should be
implemented to know the skills of staffs.

GUI

� Software is incompatible with
hardware or vice versa.

� Improper system settings.
� Lack of advanced graphic
applications.

� Knowledge of hardware requirements in advance.
� Installation of latest graphics applications.
� Manage the system resources properly.

DOC
� Not a good command over English
language.

� Grammatically incorrect sentences.

� Organise workshops to strength the English
language.

� Proper review of the documentation before release

Abdul Kadir Khan Sci. technol. arts Res. J., Jan-Mar 2013, 2(1): 64-68

68

Effects of Implementing the Defect Preventive
Plan

To see the effects of preventive plan
discussed in table 5, same group of students

were given five new similar types of projects to
work on.

Table 6: 2

nd
 Set of Projects Data Summary (after Implementing Table 5 Preventive Plans)

Project No. Name of the Project KLOC No. of Defects Defect Density

1
Haramaya University Model School

Management System
8 76 0.009

2
Haramaya University Students

Cafeteria System
5 43 0.008

3
Haramaya University Job

Placement System
10 113 0.011

4
Haramaya University Finance

Management System
7 49 0.007

5 Movie on Demand Website 9 91 0.010

 Average Defect Density from Table 6 = 0.009.

It is quite clear that the average defect density
(0.009) of table VI is less than the average defect
density (0.014) of table I. So after implementing
the preventive plans, the numbers of defects in
second set of similar projects are less.

CONCLUSION

Implementation of defect preventive strategies
helps in getting quality product. It is also a good
way to learn from our own mistakes as well as
from others’ mistakes. Defect preventive plans
help us in Reducing cost and time without
compromising the product quality. It reduces
rework and makes better understanding among
the team members. It also creates better
professional environment through helping each
others. It increases the customer satisfaction and
productivity. Through Defect prevention
strategies, we also creates better teaching
learning environment and avoids the same
mistakes to be happen again. This research also
confirms that Orthogonal Defect Classification
(ODC) approach accepted by IBM is very useful
to get better knowledge about defects. Through
ODC, we get better ideas to avoid the errors or
defects in the future projects. Defect preventive
strategy derived from ODC help us in finding the
solutions to our common mistakes in software
development process.

REFERENCES

Adam A. Porter., Carol A. Toman and Lawrence G.
Votta. (1997). An Experiment to Assess the Cost-
Benefits of Code Inspections in Large Scale
Software Development. IEEE Transactions on
Software Engineering, 23 (6).

Chillarege, I.S., Bhandari, J.K., Chaar, M.J., Halliday,
D.S., Moebus, B.K., Ray M., Wong, Y. (1992).
"Orthogonal Defect Classification-A Concept for In-
Process Measurements. IEEE Transactions on
Software Engineering, 18 (11), 943-956.

Chillarege. (2002).”Test and development process
retrospective a case study using ODC triggers”.

Jasmine, K.S., Vasantha, R. (2007). ”DRE – A Quality
Metric for Component based Software Products”,
proceedings of World Academy Of Science,
Engineering and Technology, 23.

Pan Tiejun, Zheng Leina, Fang Chengbin. (2008).
“Defect Tracing System Based on Orthogonal
Defect Classification”. Engineering & Applications,
43, 9-10.

Pankaj Jalote, Naresh Agarwal. (2007). “Using Defect
Analysis Feedback for Improving Quality and
Productivity in Iterative Software Development” In
proceedings- ITI 3

rd
 International Conference on

Information and Communications Technology, pp.
703-713.

Paulk. (1993). “Capability Maturity Model for Software”
Version 1.1, Mark C.Paulk, Bill Curtis, Mary Beth
Chrissis, Charles V.Weber, Software Engineering
Institute.

Bonnie K Ray, Man-Yuen Wong. (1992). “Orthogonal
Defect Classification - A Concept for In-Process
Measurements”, IEEE Transactions on Software
Engineering, 18(11).

Steve McConnel. (2001). “An ounce of prevention”,
IEEE software.

Watts S. Humphrey. (2000). “The Personal Software
Process (PSP)”.

Yang. (1992). “Orthogonal Defect Classification A
Concept for In- Process Measurements”

